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When there is a separation of time scales, an effective description of the dynamics of the slow vari-
ables can be obtained by adiabatic elimination of fast ones. For example, for anisotropic Langevin
dynamics in two dimensions, the conventional procedure leads to a Langevin equation for the slow
coordinate that involves the potential of the mean force. The friction constant along this coordinate
remains unchanged. Here, we show that a more accurate, but still Markovian, description of the slow
dynamics can be obtained by using position-dependent friction that is related to the time integral
of the autocorrelation function of the difference between the actual force and the mean force by a
Kirkwood-like formula. The result is generalized to many dimensions, where the slow or reaction
coordinate is an arbitrary function of the Cartesian coordinates. When the fast variables are effec-
tively one-dimensional, the additional friction along the slow coordinate can be expressed in closed
form for an arbitrary potential. For a cylindrically symmetric channel of varying cross section with
winding centerline, our analytical expression immediately yields the multidimensional version of the
Zwanzig-Bradley formula for the position-dependent diffusion coefficient. [doi:10.1063/1.3626215]

I. INTRODUCTION

The dynamics along one Cartesian coordinate, say x, of
a multidimensional diffusive system is in general highly non-
Markovian. However, when the dynamics along x is much
slower than along all the other coordinates, it is well known
that the slow dynamics can be described as simple diffu-
sion along x in the presence of the potential of mean force,
UMF (x), with the intrinsic diffusion coefficient, Dx . This de-
scription has the attractive feature that, even when there is not
a sufficient separation of time scales, it describes the equilib-
rium properties of the system exactly in the sense that the den-
sity at long times is proportional to exp(−βUMF (x)), where
β = 1/(kBT ), kB is the Boltzmann constant, and T is the ab-
solute temperature. This property holds even if the diffusion
coefficient is position dependent, Dx → D(x), as can be seen
from the resulting evolution equation for the probability den-
sity, p(x, t),

∂p

∂t
= ∂

∂x
D(x)e−βUMF (x) ∂

∂x

[
eβUMF (x)p

]
. (1.1)

When the time scale separation is not sufficient, it should
be possible to find a D(x) such that the above equation de-
scribes the actual dynamics along x, better than the anal-
ogous equation that involves simply Dx . A widely used
approach is to approximate the actual non-Markovian dynam-
ics along x using a position-dependent diffusion coefficient
that is extracted from simulations of the multidimensional
system in such a way that Eq. (1.1) provides the best possi-
ble description.1–5

a)Author to whom correspondence should be addressed. Electronic mail:
berezh@mail.nih.gov.

In this paper, we derive a physically transparent expres-
sion for D(x) by extending the familiar adiabatic elimination
of fast variables to the next order. Our derivation is a gener-
alization of the procedure used by Zwanzig6 to analyze dif-
fusion in a channel of variable cross section with hard walls.
The traditional one-dimensional description of this problem is
based on the Fick-Jacobs equation, which describes diffusion
along the symmetry axis, x, of the channel in the presence
of a potential of mean force that is proportional to the loga-
rithm of the cross section area (the width in two dimensions).
Zwanzig showed that a better description of the dynamics can
be obtained by using a position-dependent diffusion coeffi-
cient, which in two dimensions is given by

D(x) = D

1 + w′(x)2

12

, (1.2)

where w(x) is the width of the channel and w′(x)
= dw(x)/dx. He derived this by treating the derivative as a
small parameter, calculating D(x) to the first order, and finally
constructing the simplest Pade approximation. Zwanzig’s
paper6 stimulated a number of studies on the effect of
position-dependent confinement on transport.7–11

Here, we generalize Zwanzig’s work in a number of di-
rections. We consider an arbitrary multidimensional system
undergoing Langevin dynamics. Instead of working with the
diffusion equation, we start with the more general Klein-
Kramers equation that describes diffusion in phase space
and involves friction coefficients. This approach has the
advantage that it is the friction coefficient rather than the dif-
fusion coefficient that is renormalized. Specifically, we find
that the friction along the slow x-coordinate is the sum of
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the intrinsic friction and the friction due to fluctuations of
the force along x resulting from motion along the fast coordi-
nates:

ζe(x) = ζx + β

∫ ∞

0
〈δFx(t)δFx(0)〉x dt, (1.3)

where ζx and ζe(x) are intrinsic and position-dependent ef-
fective friction coefficients, δFx is the difference between
the actual force and the mean force, −dUMF (x)/dx, and
〈δFx(t)δFx(0)〉x is the force-force autocorrelation function at
fixed value of x. Because of the Einstein relation, this result
can be expressed in terms of diffusion coefficients as

1

De(x)
= 1

Dx

+ β2
∫ ∞

0
〈δFx(t)δFx(0)〉x dt. (1.4)

Equations (1.3) and (1.4) are key results of this paper. They
are so natural that they may seem obvious at the first sight
(see the heuristic arguments in Sec. II). The simplest rigorous
derivation of these equations that we found is given in Sec.
III.

II. HEURISTIC ARGUMENTS

Consider two-dimensional Langevin dynamics in a po-
tential U (x, y). The equation of motion along x is

mxv̇ + ζxv + ∂U (x, y)/∂x = fx(t), (2.1)

where v = ẋ = dx/dt and mx , ζx , and fx(t) are the mass,
friction constant, and random force associated with the
x-coordinate motion. The random force is Gaussian, δ-
correlated, with zero mean. It is related to the friction
constant by the fluctuation-dissipation theorem 〈fx(t)fx(t ′)〉
= 2ζxδ(t − t ′)/β. As a consequence, the friction constant is
the time integral of the autocorrelation function of the random
force,

ζx = β

∫ ∞

0
〈fx(t)fx(0)〉 dt. (2.2)

Dynamics along y is described by an equation of motion anal-
ogous to Eq. (2.1).

If the dynamics along y is much faster than along x, the
motions along x and y become uncoupled. In this case, the
distribution along y is close to the equilibrium one for a given
value of x. The dynamics along x occurs in the presence of
the potential of mean force, which is related to the local equi-
librium average of ∂U (x, y)/∂x with respect to y by∫

∂U (x,y)
∂x

e−βU (x,y)dy∫
e−βU (x,y)dy

= dUMF (x)

dx
. (2.3)

One can write Eq. (2.1) in terms of UMF (x) as

mxv̇ + ζxv + dUMF (x)

dx
− δFx(y) = fx(t), (2.4)

where δFx(y) is the difference between the actual force along
x at given value of y and the mean force,

δFx(y) = −∂U (x, y)

∂x
+ dUMF (x)

dx
. (2.5)

It follows from Eq. (2.3) that the average of δFx(y) over the
equilibrium distribution along y is zero.

In the fast y dynamics limit, the simplest approxima-
tion is to ignore δFx(y) in Eq. (2.4). Here, we seek a better
approximation. Dynamics along y influences the dynamics
along x (through δFx(y)) in two ways. It leads to an addi-
tional friction force as well as an additional random force,
the two being related by the fluctuation-dissipation theorem.
In general, these are non-Markovian leading to the general-
ized Langevin equation for dynamics along x. Here, we will
consider the effect of δFx(y) only in the Markovian limit.
In this limit, we can describe the influence of δFx(y) by an
additional friction force −�ζ (x)v and a corresponding addi-
tional random force �fx(t) with zero mean, which is δ-auto-
correlated, 〈�fx(t)�fx(t ′)〉 = 2�ζ (x)δ(t − t ′)/β. The rela-
tionship between �ζ (x) and the autocorrelation function of
the additional random force is analogous to that in Eq. (2.2),

�ζ (x) = β

∫ ∞

0
〈�fx(t)�fx(0)〉 dt. (2.6)

To obtain the desired result, we now make the assumption
that the above time integral, for each value of x, is equal to
the time integral of the autocorrelation function of δFx(y(t)),
which fluctuates solely due to dynamics along y:

�ζ (x) = β

∫ ∞

0
〈δFx (y(t)) δFx (y(0))〉x dt, (2.7)

where it is understood that the correlation function describes
fluctuations due to dynamics along y for the fixed value of x.

The effective position-dependent friction coefficient is
then given by

ζe(x) = ζx + �ζ (x)

= ζx + β

∫ ∞

0
〈δFx (y(t)) δFx (y(0))〉x dt. (2.8)

A more accurate, but, of course, still approximate, Langevin
equation for dynamics along x is

mxv̇ + ζe(x)v + dUMF (x)

dx
= fe(t), (2.9)

where the effective Gaussian δ-correlated random force fe(t)
has zero mean and its autocorrelation function is given by
〈fe(t)fe(t ′)〉 = 2ζe(x)δ(t − t ′)/β. Using Eqs. (2.2) and (2.7)
and the fact that forces fx(t) and δFx(y) are uncorrelated, we
can express the effective friction coefficient as

ζe(x) = β

∫ ∞

0
〈(fx(t) + δFx(y(t)))

× (fx(0) + δFx(y(0)))〉xdt. (2.10)

However, this does not mean that fe(t) = fx(t)
+ δFx(y), because then Eqs. (2.4) and (2.9) would be incon-
sistent. Similarly, although δFx(y) results in both a frictional
and a random force, as argued above, one cannot write δFx(y)
= �ζ (x)v + �fx(t) because then Eqs. (2.6) and (2.7) would
be inconsistent. This is why, we consider the above argu-
ments to be heuristic, even though the final result seems so
plausible.

The stochastic dynamics governed by Eq. (2.9) can also
be described in terms of the evolution of the probability den-
sity in the phase space of the system. In the high friction
limit, the corresponding Klein-Kramers equation reduces to
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the Smoluchowski equation for the probability density along
x, p(x, t),

∂p

∂t
= ∂

∂x
De(x)e−βUMF (x) ∂

∂x

[
eβUMF (x)p

]
. (2.11)

Here, e−βUMF (x) ∝ ∫
e−βU (x,y)dy and De(x) is the position-

dependent diffusion coefficient related to the friction coeffi-
cient by the Einstein relation

1

De(x)
= βζe(x) = 1

Dx

+ β�ζ (x)

= 1

Dx

+ β2
∫ ∞

0
〈δFx(y(t))δFx(y(0))〉x dt,

(2.12)

where Dx = 1/(βζx). As we will see, in two dimensions,
�ζ (x) can be expressed analytically as

�ζ (x) = ζy

∫ ∞

−∞

dy

peq(y|x)

[
∂

∂x

∫ ∞

y

peq

(
y ′|x)

dy ′
]2

,

(2.13)

where

peq(y|x) = e−βU (x,y)∫
e−βU (x,y ′)dy ′ , (2.14)

is the normalized Boltzmann distribution of y at a fixed value
of x.

The above arguments are heuristic. The final result is,
however, rigorous in the sense that in the high friction (dif-
fusion) regime it is exact to linear order in ζy/ζx = Dx/Dy in
the limit that ζy/ζx = Dx/Dy → 0. We will show this in Sec.
III using a procedure that is a generalization of the one used
by Zwanzig6 to derive the generalized Fick-Jacobs equation
which describes diffusion in a channel of varying cross sec-
tion using a position-dependent diffusion coefficient.

III. RIGOROUS DERIVATION

For the sake of simplicity, we consider only one fast co-
ordinate, although the derivation below can be readily ex-
tended to a d-dimensional subspace of fast variables. Let
p2(x, v, y, u, t), v = ẋ, u = ẏ, be the phase space probabil-
ity density of a two-dimensional system undergoing Langevin
dynamics. This function satisfies the Klein-Kramers equation

∂p2

∂t
= Lp2; L = Lx v(y) + Ly u(x) (3.1)

with

Lx v(y) = −v
∂

∂x
+ 1

mx

∂U (x, y)

∂x

∂

∂v
+ ζx

βm2
x

∂

∂v
f (v)

∂

∂v

1

f (v)
,

(3.2)

where f (v) = √
2π/(βmx) exp(−βmxv

2/2) is the Maxwell
velocity distribution. Ly u(x) is obtained from Lx v(y) by re-
placing x, v, mx , and ζx by y, u, my , and ζy , respectively. We
assume that x and v are slow variables compared to y and
u, and that we are outside the low friction (energy diffusion)

regime. This implies that both the friction and the velocity re-
laxation time in the x-direction are larger than those in the y-
direction (ζx > ζy and mx/ζx > my/ζy). The normalized local
equilibrium distribution of the fast variables at a fixed value
of x is given by

�(y, u|x) = peq(y|x)f (u) = e−βU (x,y)f (u)∫
e−βU (x,y)dy

. (3.3)

The phase space probability density of the slow variables,
p1(x, v, t), is defined as

p1(x, v, t) =
∫ ∫

p2(x, v, y, u, t)dydu. (3.4)

Without loss of generality, we use p1(x, v, t) and �(y, u|x)
to write p2(x, v, y, u, t) as

p2(x, v, y, u, t) = �(y, u|x)p1(x, v, t) + �(x, v, y, u, t),

(3.5)

where �(x, v, y, u, t) describes the deviation from the local
equilibrium. Since

∫ ∫
�(y, u|x)dydu = 1, �(x, v, y, u, t)

satisfies ∫ ∫
�(x, v, y, u, t)dydu = 0. (3.6)

Substituting the expression for p2(x, v, y, u, t) in Eq. (3.5)
into Eq. (3.1), integrating over y and u, and using the relations
in Eqs (2.3) and (2.5), and (3.6) we find that

∂p1

∂t
= LMF

x v p1 − 1

mx

∂

∂v

∫ ∫
δFx�dydu, (3.7)

where LMF
x v is obtained from Lx v(y), Eq. (3.2), by replacing

∂U (x, y)/∂x by dUMF (x)/dx. Substituting p2(x, v, y, u, t) in
Eq. (3.5) into Eq. (3.1) and using Eq. (3.7), we obtain

∂�

∂t
= L�+ �

mx

∂

∂v

∫ ∫
δFx�dydu− �

mx

δFxf (v)
∂

∂v

p1

f (v)
.

(3.8)

The last two equations are exact.
By omitting the last term in Eq. (3.7) (i.e., putting

�(x, v, y, u, t) = 0), one recovers the familiar result that the
motion along x occurs in the presence of the potential of mean
force with the intrinsic mass and friction (if the dynamics
along x and v is much slower than that of y and u). We will
now derive a more accurate approximate closed-form evolu-
tion equation for the phase space probability density of the
slow variables, p1(x, v, t), in two steps. First, we find an ap-
proximate solution for �(x, v, y, u, t) from Eq. (3.8). Then,
we substitute the resulting expression for �(x, v, y, u, t) into
Eq. (3.7).

To find an approximate solution for �(x, v, y, u, t), when
there is a separation of the time scales, we neglect the second
term on the right-hand side of Eq. (3.8) and replace L in the
first term by Ly u(x). As a result, Eq. (3.8) takes the form

∂�

∂t
= Ly u(x)� − �

mx

δFxf (v)
∂

∂v

p1

f (v)
. (3.9)

Solving this equation with the initial condition
�(x, v, y, u, 0) = 0 that corresponds to the local equi-
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librium of fast variables, we obtain

� = − 1

mx

∫ t

0
eLy u(x)t ′δFx�f (v)

∂

∂v

p1(t − t ′)
f (v)

dt ′. (3.10)

We use the separation of the time scales: (i) to ignore the
dependence of p1(x, v, t − t ′) on t ′ and move this function
outside the integral and (ii) to replace the upper limit of
integration with respect to t ′ to infinity. This results in a
Markovian approximation for �(x, v, y, u, t)

� = − 1

mx

[∫ ∞

0
eLy u(x)t ′δFx�dt ′

]
f (v)

∂

∂v

p1(t)

f (v)
. (3.11)

Substituting this into Eq. (3.7), we finally have

∂p1

∂t
= −v

∂p1

∂x
+ 1

mx

dUMF (x)

dx

∂p1

∂v

+ ζe(x)

βm2
x

∂

∂v
f (v)

∂

∂v

p1

f (v)
, (3.12)

where ζe(x) is the effective friction coefficient given in
Eq. (2.10).

Equation (3.12) is the improved Klein-Kramers evolu-
tion equation for the phase space probability density of the
slow variables that corresponds to the underlying stochastic
dynamics described by the Langevin equation in Eq. (2.9). It
was derived by making two approximations in Eq. (3.8) that
determines the deviation �(x, v, y, u, t): (1) neglecting the
term proportional to δFx� on the right-hand side and (2) ne-
glecting variation of the slow variables in the evolution oper-
ator (L → Ly u(x)). We expect these approximations to give
the correct result for the deviation �(x, v, y, u, t) to the low-
est non-trivial order in the time-scale separation. This implies
that the Langevin equation obtained in Sec. II on the basis
of the heuristic arguments is rigorous in the sense that it pro-
vides the Markovian description of the stochastic dynamics
of the slow variables that is correct to linear order in ζy/ζx , as
ζy/ζx → 0, as long as mx/ζx > my/ζy . If either of the above
approximations were relaxed in order to find a better approxi-
mation for �(x, v, y, u, t), the Klein-Kramers structure of the
resulting evolution equation would be destroyed.

IV. ILLUSTRATIVE EXAMPLES: DIFFUSION
IN CONFINED ENVIRONMENTS

We begin by deriving the general formula for �ζ (x)
given in Eq. (2.13) for an arbitrary potential U (x, y) assuming
that

∫
U (x, y)dy is finite, so that the local equilibrium distri-

bution peq(y|x), Eq. (2.14), does exist. According to Eq. (2.7),
to determine �ζ (x) one has to find the area under the corre-
lation function 〈δFx(t)δFx(0)〉x . For diffusion in one dimen-
sion, the calculation of the area under a correlation function
can be reduced to quadrature using a generalization of the the-
ory of first-passage times.12 This formalism was first applied
to reorientational correlation functions that determine the flu-
orescence anisotropy in liquid crystals.13 In the present con-
text, this formalism can be used to find �ζ (x), Eq. (2.7), in

closed form. Specifically, �ζ (x) can be written as

�ζ (x)

ζy

= β2
∫ ∞

−∞

dy

peq(y|x)

[∫ ∞

y

δFx(y ′)peq(y ′|x)dy ′
]2

,

(4.1)
where we have used Eq. (65) from Ref. 14. By differentiating
Eq. (2.14) with respect to x and using Eqs. (2.3) and (2.5) we
have

δFx(y) = 1

βpeq(y|x)

∂peq(y|x)

∂x
. (4.2)

Using this in Eq. (4.1), we obtain the result for �ζ (x) given
in Eq. (2.13).

For the potential U (x, y) = V (x) + k(x)[y − y0(x)]2/2
the formula in Eq. (2.13) leads to the following relation be-
tween �ζ (x) and the parameters of the y-coordinate dynam-
ics:

�ζ (x)

ζy

= k′(x)2

4βk(x)3
+ y ′

0(x)2. (4.3)

Kalinay and Percus9 recently obtained the first term on the
right-hand side using a different approach.

When the y-coordinate motion occurs in a strip con-
strained by two rigid walls located at y−(x) and y+(x),
i.e., y−(x) < y < y+(x), the potential U (x, y) is U (x, y)
= V (x)/[H (y − y−(x))H (y+(x) − y)], where H (z) is the
Heaviside step function. In this case, the formula in Eq. (2.13)
leads to

�ζ (x)

ζy

=
∫ y+(x)

y−(x)

dy

peq(y|x)

[
∂

∂x

∫ y+(x)

y

peq(y ′|x)dy ′
]2

= w′(x)2

12
+ y ′

0(x)2. (4.4)

Here, w(x) = y+(x) − y−(x) and y0(x) = [y+(x)
+ y−(x)]/2 are the width and the centerline of the strip.
When ζx = ζy and hence Dx = Dy = D, the result in
Eq. (4.4) allows us to write the effective diffusion coefficient,
Eq. (2.12), as

De(x) = D

1 + y ′
0(x)2 + w′(x)2

12

. (4.5)

This is the Zwanzig-Bradley formula for the effective diffu-
sion coefficient. Zwanzig6 considered diffusion in a strip of
varying width with a straight centerline parallel to the x-axis
and obtained this result with y ′

0(x) = 0. The slowdown of the
effective diffusion along x due to the winding of the center-
line was considered in a recent paper by Bradley,11 who ob-
tained the result in Eq. (4.5). It is interesting to note that both
Eqs. (4.3) and (4.4) can be written as

�ζ (x)

ζy

=
(

d

dx

√〈
δy2

〉
x

)2

+
(

d

dx
〈y〉x

)2

, (4.6)

where δy = y − 〈y〉x and 〈f (y)〉x = ∫
f (y)peq(y|x)dy.

When the fast dynamics occurs in d dimensions, the for-
mula analogous to that in Eq. (2.13) can be obtained only
when the dynamics perpendicular to x is effectively one-
dimensional because of the axial symmetry of the potential.
When the motion occurs in the potential U (x, r) = U (x, |r
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− r0(x)|), the formula analogous to that in Eq. (2.12) is given
by

�ζ (x)

ζr

=
∫ ∞

0

dρ

peq(ρ|x)

[
∂

∂x

∫ ∞

ρ

peq(ρ ′|x)dρ ′
]2

+
(

dr0(x)

dx

)2

. (4.7)

Here, ζr is the friction constant in the d-dimensional sub-
space of fast variables and peq(ρ|x) is the local equi-
librium distribution at a fixed value of the slow x-
coordinate, peq(ρ|x) = ρd−1e−βU (x,ρ)/

∫ ∞
0 ρd−1e−βU (x,ρ)dρ,

with ρ = |r − r0(x)|. In the special case of U (x, r)
= V (r0(x)) + u(|r − r0(x)|/l(x)), using Eq. (4.7) one can ob-
tain a formula that is a generalization of Eq. (4.6), namely,

�ζ (x)

ζr

=
(

d

dx

√〈
δr2

〉
x

)2

+ r′
0(x)2, (4.8)

where 〈δr2〉x = ∫ ∞
0 ρ2peq(ρ|x)dρ. If the fast coordinate mo-

tion occurs in a tube of variable radius R(x) with rigid walls,
so that u(r) = 0 for |r − r0(x)| < R(x) and infinity otherwise,
Eq. (4.8) leads to

�ζ (x)

ζr

= d

d + 2
R′(x)2 + r′

0(x)2. (4.9)

When ζx = ζr and hence Dx = Dr = D, the effective diffu-
sion coefficient along the slow x-coordinate is given by

De(x) = 1

βζe(x)
= D

1 + r′
0(x)2 + [d/(d + 2)]R′(x)2

.

(4.10)

This is a multidimensional generalization of the Zwanzig-
Bradley formula for De(x).

V. CONCLUDING REMARKS

This paper focuses on the effective Markovian descrip-
tion of the dynamics of a slow x-coordinate when a separation
of time scales exists. The conventional approach describes the
slow dynamics by the Langevin equation that involves a po-
tential of mean force UMF (x) and intrinsic friction constant
ζx . Here, we show that this zeroth-order description can be
extended to the next order in the ratio of the time scales by re-
placing the intrinsic friction constant by an effective position-
dependent friction coefficient ζe(x) = ζx + �ζ (x). The phys-
ical reason for this is that the fast degrees of freedom behave
as an additional heat bath for the slow coordinate motion. This
leads to additional x-dependent random and friction forces,
which are related by the fluctuation-dissipation theorem.

When motion along the fast coordinates is diffusive and
effectively one-dimensional, we found a closed-form expres-

sion for �ζ (x) that only involves the local equilibrium dis-
tribution and the friction constant of the fast coordinates.
Using these formulas, we show how one can obtain the
d-dimensional generalization of the Zwanzig-Bradley for-
mula for the effective diffusion coefficient of a particle diffus-
ing in a cylindrically symmetric channel of varying diameter
and winding centerline.

Finally, we mention how our results can be generalized to
many dimensions when the slow reaction coordinate is a non-
linear function of the Cartesian coordinates. Consider a sys-
tem diffusing with diffusion tensor D in N dimensions in the
presence of a potential U (x1, x2, ..., xN ) ≡ U (x). Let q(x) be
a “reaction coordinate.” The corresponding potential of mean
force is

e−βUMF (q) ∝
∫

δ (q − q(x)) e−βU (x)dx. (5.1)

If q(x) is a nonlinear function of x, then the intrinsic diffusion
coefficient along q is already position-dependent:

D(q) =
∑

i,j

∫
δ (q − q(x)) ∂q(x)

∂xi
Dij

∂q(x)
∂xj

e−βU (x)dx∫
δ (q − q(x)) e−βU (x)dx

.

(5.2)
Dynamics along coordinates that are orthogonal to q lead to
additional friction, so that the effective diffusion coefficient
along q is

1

De(q)
= 1

D(q)
+ β2

∫ ∞

0

〈
δFq(t)δFq(0)

〉
q
dt, (5.3)

where δFq is the difference between the actual force and the
mean force along q, and it is understood that the correlation
function is evaluated keeping q fixed.
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