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Abstract
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low MM range and resultant PARP cleavage.

warrants further investigation.

Background: PI3K and mTOR are key components of signal transduction pathways critical for cell survival.
Numerous PI3K inhibitors have entered clinical trials, while mTOR is the target of approved drugs for metastatic
renal cell carcinoma (RCC). We characterized expression of p85 and p110a. PI3K subunits and mTOR in RCC
specimens and assessed pharmacologic co-targeting of these molecules in vitro.

Methods: We employed tissue microarrays containing 330 nephrectomy cases using a novel immunofluorescence-
based method of Automated Quantitative Analysis (AQUA) of in situ protein expression. In RCC cell lines we
assessed synergism between PI3K and mTOR inhibitors and activity of NVP-BEZ235, which co-targets PI3K and

Results: p85 expression was associated with high stage and grade (P < 0.0001 for both). High p85 and high mTOR
expression were strongly associated with decreased survival, and high p85 was independently prognostic on multi-
variable analysis. Strong co-expression of both PI3K subunits and mTOR was found in the human specimens. The
PI3K inhibitor LY294002 and rapamycin were highly synergistic in all six RCC cell lines studied. Similar synergism
was seen with all rapamycin concentrations used. NVP-BEZ235 inhibited RCC cell growth in vitro with ICsos in the

Conclusions: High PI3K and mTOR expression in RCC defines populations with decreased survival, suggesting that
they are good drug targets in RCC. These targets tend to be co-expressed, and co-targeting these molecules is
synergistic. NVP-BEZ235 is active in RCC cells in vitro; suggesting that concurrent PI3K and mTOR targeting in RCC

Background

Renal cell carcinoma (RCC) is among the ten leading
causes of cancer-related deaths, and the incidence has
been increasing by approximately 2% per year [1-4].
RCC is typically resistant to chemotherapy and radiation
therapy. The five-year survival rate is 90.8% for localized
RCC (confined to primary site), 63.3% for cases with
regional disease, and 11.1% in patients with distant
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metastases [5]. The immunogenicity of RCC has been
the basis for use of cytokines such as interleukin-2 and
interferon for metastatic RCC, which benefit about 15%
of patients [6,7]. Alternative drugs are needed for
patients who are not responsive and/or are intolerant to
these therapies.

A growing understanding of the pathogenesis of RCC
has enabled us to identify factors pertinent to develop-
ment of RCC-targeting therapies. The discovery of VHL
tumor-suppressor gene inactivation and consequent
hypoxia-induced factor (HIF) activation of genes and
downstream pathways important to tumor progression,
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have provided the impetus for development of new
agents that target angiogenesis and proliferation path-
ways. Specifically, therapies that have demonstrated ben-
efit in metastatic RCC include the small molecule
tyrosine kinase inhibitors sunitinib, sorafenib and pazo-
panib [8-10], the anti-VEGF antibody bevacizumab [11],
temsirolimus and everolimus, inhibitors of mTOR,
which has been implicated in HIF transcription [12].
Although these new agents improve progression free
survival, none have shown a statistically significant
improvement in overall survival. In effect none are cura-
tive, and duration of response is often limited.

The PI3K pathway is activated and/or up-regulated in
cancers, and plays a critical role in tumor progression
[13,14]. There are three classes of PI3Ks; each has its
own substrate specificity [15,16]. Class I, PI3Ks, the
most widely implicated in cancer, primarily phosphory-
late phosphatidylinositol-4,5-bisphosphate to generate
the second messenger phosphatidylinositol-3,4,5-trispho-
sphate. This enzyme is a heterodimer consisting of a
p85 regulatory and a p110 catalytic subunit. Class I
PI3K is activated by receptor tyrosine kinase (RTK) sig-
naling [17,18]. Binding of p85 to activated RTKs serves
both to recruit the p85-p110 heterodimer to the plasma
membrane, where its substrate phosphatidylinositol-4,5-
bisphosphate resides, and to relieve basal inhibition of
pl10a by p85. Downstream mediators, including Akt
and PDK1, directly bind to phosphatidylinositol-3,4,5-
trisphosphate. Akt phosphorylates several cellular pro-
teins, including GSK3, GSK383, FOXO transcription fac-
tors, MDM2, and BAD, to facilitate cell survival and cell
cycle entry [15]. Akt phosphorylation also results in acti-
vation of the mTOR/raptor complex, which regulates
protein synthesis, cell growth, and proliferation [19].
There are two distinct functional mTOR complexes,
mTORC1 and mTORC2. mTORCI1 (rapamycin sensi-
tive) consists of mTOR and Raptor, and its activation
results in phosphorylation of p70S6 and 4E-BPI.
mTORC2 consists of mTOR and the rapamycin-insensi-
tive companion of mTOR (Rictor), and causes Akt phos-
phorylation. Akt promotes protein synthesis and cell
growth by alleviating TSC1/2 suppression of mTOR,
allowing the latter to act as part of the mTOR-raptor
complex on 4EBP1 and S6 kinases.

Activation of the PI3K pathway in cancers has been
demonstrated in numerous studies. The two most com-
mon mutations are of p110a (PIK3CA) and loss of the
tumor suppressor PTEN. Amplification of PIK3CA and
Akt are occasionally observed in epithelial cancers [15].
Recently, high expression of the PI3K/p110y isoform
was implicated in pancreatic adenocarcinoma progres-
sion [20]. There is specific evidence of PI3K pathway
activation in RCC; it is constitutively activated in RCC
cells regardless of VHL status, and activation is tumor
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specific [21]. Activation of mTOR can also up-regulate
HIF gene expression, which, in patients with VHL muta-
tions, can magnify HIF accumulation and expression of
HIF-inducible genes.

In RCC, data from moderate sized studies support
activation of the mTOR signaling pathway. Immunos-
tained tissue microarray sections of 150 RCCs showed
significantly higher expression of phosphorylated
p70S6K (p-p70S6K), phosphorylated-mTOR (p-mTOR)
and phosphorylated Akt (p-Akt) compared to normal
kidney, p < 0.05 [22]. Additionally, Robb et. al found
strong co-expression of phosphorylated-S6 (p-S6) and p-
mTOR in 14 of 29 clear cell carcinomas [23]. Signifi-
cantly decreased mean disease-free survival was
observed when caveolin was co-expressed p-AKT, p-
mTOR, p-S6 and phosphorylated-4EBP1 [24]. Therefore,
inhibition of mTOR has the potential to inhibit tumor
progression at multiple levels, and along with PI3K inhi-
bition is particularly attractive for development for RCC
treatment.

Despite the literature demonstrating the importance of
PI3K and mTOR in RCC pathogenesis, there is limited
information on total protein expression and co-expres-
sion in large cohort RCC tumor studies in the context
of patient survival. A previous meta-analysis of mRNA
expression microarrays revealed signature alternations in
the PIBK/AKT pathway that are associated with tumor
versus benign renal tissue [25]. Merseberger et. al deter-
mined expression patterns of PI3K, PTEN, p-Akt for
possible prognostic value in 176 RCC cases, and found
that activation of the PI3K pathway is associated with
adverse clinical outcome [26]. In a more recent study,
metastatic RCC samples from 132 patients and a subset
of 25 matched primary RCC specimens were stained for
PI3K, PTEN, p-Akt, p-mTOR, and p70S6. p-mTOR was
associated with decreased survival [27].

The relevance of the PI3K/Akt/mTOR signaling path-
way in RCC is the focus of ongoing research. Single-
agent mTOR inhibitors have some efficacy in RCC, and
co-targeting additional PI3K pathway members along
with mTOR might be a valuable strategy for overcoming
the escape mechanisms that can limit activity of mTOR
inhibitors. Seeing that PI3K inhibitors are currently in
clinical development, our purpose was to assess co-
expression of PI3K subunits, p110a and p85, and
mTOR in RCC tumors in a quantitative fashion and
study pharmacological co-inhibition of these targets in
vitro. To thoroughly assess co-expression of mTOR and
PI3K subunits in a quantitative fashion, we employed a
new method of automated, quantitative analysis
(AQUA) of in situ protein expression, which has been
validated and used in a number of previous studies
[28,29]. Expression of mTOR and PI3K, p85 and p110a
subunits was assessed in a large cohort of human
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specimens and we determined associations with stan-
dard clinical/pathological variables. We further studied
co-targeting these molecules in RCC cell lines, and
assessed the effects on cell growth and apoptosis using a
clinical quality compound, NVP-BEZ235.

Methods

Tissue Microarray (TMA) Construction

Briefly, representative regions were selected for coring
by pathologists based on the corresponding H&E-
stained full sections. The tissue microarray was con-
structed with single 0.6 mm-diameter cores of each case
spaced 0.8 mm apart in a grid format using a Tissue
Microarrayer (Beecher Instruments, Sun Prairie, WT).
The tissue microarray block was then cut into 5 pm sec-
tions with a microtome, adhered to the slide by an
adhesive tape-transfer method (Instrumedics, Inc., Hack-
ensack, NJ) and UV crosslinked. TMAs were con-
structed using RCC cores from 330 patients. Tumors
were represented by two cores from different areas of
the specimen. Specimens and clinical information were
collected with approval of a Yale University Institutional
Review Board. Histological subtypes included clear cell
(71%), papillary (14%), chromophobe (2%), mixed histol-
ogy (4%), oncocytomas (6%), and sarcomatoid tumors
(3%). Oncocytomas were excluded from survival ana-
lyses given that they have low metastatic potential and
are curable by nephrectomy. Eight percent had stage II
and III disease, 56% had stage I and 28% had stage IV
disease. 12% were Fuhrman nuclear grade I, 52% grade
II, 27% grade III and 9% grade IV. Specimens were
resected between 1987 and 1999; follow-up time was 2-
240 months (median-89.7). Age at diagnosis was 25-87
years (median-63). No patients were treated with suniti-
nib, sorafenib, pazopanib, bevacizumab, everolimus or
temsirolimus, although a few were previously treated
with interferon or interleukin-2 in the metastatic setting.
Performance status, LDH, hemoglobin and calcium
levels were unavailable.

Immunofluorescence

One set of two slides (each containing a core from dif-
ferent areas of tumor for each patient) was stained indi-
vidually for the three target markers, p85 and p110a
PI3K subunits, and mTOR. Antibody validation was
conducted by immunoblots to verify presence of a single
band of the appropriate size (not shown). AQUA stain-
ing was performed as described [30]. Slides were incu-
bated with mouse monoclonal anti-human PI3K p85,
(BD transduction Laboratories, Franklin Lakes, NJ) at
1:50, rabbit anti-human PI3K p110a, clone C73F8 (Cell
Signaling Technology, Danvers, MA) at 1:200 or rabbit
monoclonal anti-human mTOR, clone 7C10 at 1:40,
(Cell Signaling Technology). Goat anti-mouse (or anti-
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rabbit) HRP-decorated polymer backbone (Envision,
Dako North America, Carpinteria, CA) was used as a
secondary reagent. To create a tumor mask, slides were
simultaneously incubated with rabbit (for p85) or mouse
(for p1100. and mTOR) anti-cytokeratin (Dako) at 1:100,
and visualized with an appropriate secondary antibody
conjugated to Alexa 488 (Molecular Probes, Inc.,
Eugene, OR). The target antibody was visualized with
Cy5-tyramide (Perkin-Elmer, Boston, MA, and mounted
with ProLong Gold antifade reagent with 4, 6-diami-
dine-2-phenylindole (DAPI) (Invitrogen, Carlsbad, CA).
To verify that there was no background staining from
the Alexa 488, slides were stained with and without Cy5
tyramide.

Automated Image Acquisition and Analysis (AQUA)
Images were acquired and analyzed using extensively
described algorithms [30]. Briefly, monochromatic, high-
resolution (1024 x 1024 pixel) images were obtained of
each histospot. Tumor was distinguished from stroma
by cytokeratin/streptavidin signal. Cell surface coales-
cence of cytokeratin was used to localize membranes
and DAPI to identify nuclei. The target signal (p85,
p110a or mTOR) from the pixels within the cytoplasm
was normalized to area of tumor mask and scored on a
scale of 0-255 (the AQUA score). Histospots were
excluded if the tumor mask represented < 3% of the his-
tospot area.

Statistical Analysis

Statview and JMP 5.0 software were used (SAS Institute,
Cary, NC). AQUA scores for replicate tumor cores were
averaged. Prognostic significance of parameters was
assessed using the Cox proportional hazards model with
RCC-specific survival as an endpoint. Associations
between continuous AQUA scores of the target and
clinical and pathological parameters were assessed using
ANOVA. For demonstrating survival analyses, continu-
ous target AQUA scores were divided into quartiles and
survival curves were generated using the Kaplan-Meier
method, with significance evaluated using the Mantel-
Cox log-rank test.

Human Cell Lines

A498, ACHN, Caki-1, Caki-2, 769-P, and 786-0 cells
were obtained from American Type Culture Collection
and maintained per the supplier’s instructions (Mana-
ssas, VA).

Viability and Synergism Studies

At a density of 10, cells were plated in triplicate in 96
well plates with growth medium and allowed to
adhere overnight. The PI3K inhibitor, LY294002 (LC
Laboratories, Woburn MA), was used alone and in
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combination with the mTORCI1 inhibitor, Rapamycin
(LC Laboratories), at 5-25 pmol/L and 0.02-0.5 pmol/
L, respectively for 48 hours. NVP-BEZ235 was studied
alone at concentrations of 10-500 nmol/L for 48
hours. The relative number of viable cells was
assessed by the luminometric Cell-Titer Glo assay
(Promega), and luminescent quantification was mea-
sured using a Viktor plate reader (Perkin Elmer).
Using CalcuSyn software (Biosoft, Ferguson, MO),
results were analyzed for synergistic, additive, or
antagonistic effects. Synergism is indicated by a Com-
bination Index (CI) of < 0.9, additivity by CI values of
0.9-1.1, and antagonism by CI > 1.1 [31]. To deter-
mine the ICsy for NVP-BEZ235, we used XLfit soft-
ware (IDBS, Surrey, UK).

Immunoblots

After treatment with NVP-BEZ235 at 100 nM for 1, 6
and 24 hours, cells were lysed using standard methods.
Primary rabbit anti-human antibodies were used: phos-
porylated AKT Ser™*”?, phosphorylated p70S6K Thr**’
and phosphorylated pS6 Ser*®*>?*¢ at 1:1000 (Cell Signal-
ing Technologies). To assess apoptosis, cells were trea-
ted with 100 nM, 500nM and 1000 nM NVP-BEZ235
for 72 hours. Levels of cleaved PARP (rabbit polyclonal
antibody, Cell Signaling) and cleaved caspase-2 (mouse
monoclonal antibody, BD Biosciences) were measured at
1:1000 for both. Mouse or rabbit anti-B-actin antibodies
(Sigma Aldrich) were used to visualize protein gel
loading.

Results

AQUA analyses

To assess intra-tumor heterogeneity, two separate slides,
each containing a core from a different area of the
tumor for each patient, were used for each marker (p85,
pl10a and mTOR). None of the markers had nuclear
staining, and only membranous/cytoplasmic compart-
ments were analyzed. By log-regression analysis, scores
for matching histospots were highly correlated (R = 0.7
for p85, R = 0.8 for p110a and R = 0.7 for mTOR).
Scores from the automated analysis are continuous from
0 to 255. The range of AQUA scores was 3.6-91.4 (med-
ian-32.3) for p85, 1.8-46.5 (median-7.9) for p110a and
4.1-75.5 (median-25.38) for mTOR. Examples of strong
AQUA staining for p85, p110ac and mTOR are shown
in Figure 1A-C.

Scores from the two slides were combined for a single
dataset. Spots were deemed uninterpretable if they had
insufficient tumor, loss of tissue or abundant necrosis. A
composite score was formed by averaging the scores.
Patients with only one core were excluded from the ana-
lysis. The combined dataset had 264 cases for p85, 237
for p110a and 267 for mTOR.
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We found a moderate correlation between expression
of the two PI3K subunits (p = 0.129, P = 0.046) and
stronger correlations between mTOR and the two PI3K
subunits; p = 0.251 for p85 and p = 0.385 for p110a (P
< 0.0001 for both). Expression of both PI3K sub-units
and mTOR was significantly higher in sarcomatoid
tumors (P = 0.002, P = 0.04 and P = 0.02, respectively),
and expression of p110o. and mTOR was also signifi-
cantly higher in oncocytomas. Expression of mTOR was
also somewhat higher in papillary carcinomas (P = 0.02)
(Figure 2A). We found significant differences in p85
expression between early and late stage disease, and
expression of mTOR was higher in high grade tumors),
(Figure 2B), (P <0.0001 for all). p85 expression was
higher in cases with high Fuhrman grade (P < 0.0001)
(Figure 2B). No association was found between expres-
sion of p110a and stage or grade (Figure 2B).

AQUA provides continuous output scores rather than
divisions into “high” and “low” categories. We therefore
arbitrarily divided the continuous AQUA scores for the
three markers into quartiles. For p85 and mTOR, survi-
val of patients with AQUA scores in the top quartile
was significantly lower (Figure 2C). Using Cox univariate
analysis of continuous AQUA scores, high p85 PI3K
expression was strongly associated with decreased survi-
val (P < 0.0001). No association was found between con-
tinuous pl10a scores and survival (P = 0.8287), while
continuous mTOR AQUA scores were associated with
decreased survival (P = 0.0099).

Using the Cox Proportional Hazards Model, we per-
formed multivariable analyses. Expression of p85
retained its independent prognostic value, as did stage
and Fuhrman grade (Table 1).

Synergism between PI3K and mTOR inhibition

Using 5, 25 and 50 uM of LY294002, we studied syner-
gism with a range of concentrations of rapamycin (20,
100 and 500nM). Synergism was seen in all six cell lines
at 5 pM LY294002 with all three concentrations of rapa-
mycin (Table 2). We note that the degree of viability
inhibition with all concentrations of rapamycin was
almost identical, as shown in Figure 3, using A498 and
Caki-2 cells as examples (p > 0.5 for comparison
between combinations of rapamycin and LY294002).
Viability of cells treated with LY294002, rapamycin or
the combination is calculated as a percent of the viabi-
lity of the untreated (control) cells.

Activity of the dual PI3K-mTOR inhibitor NVP-BEZ235 in
RCC cell lines

Given the synergism seen between the LY294002 and
rapamycin in RCC cell lines, we studied the in vitro
activity of NVP-BEZ235, which has been given to solid
tumor patients in phase I clinical trials. In all 6 RCC
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Cytokeratin

p85

p110

Cytokeratin

Figure 1 Automated, Quantitative Analysis (AQUA) of expression of p85, p110a and mTOR in renal cell carcinoma. AQUA uses
cytokeratin to create a tumor mask (two upper left quadrants at x 10). Cytokeratin staining was cytoplasmic and the mask is made by filling in
holes (lower left quadrants on left). 4, 6-diamidino-2-phenylindole (DAPI) defines the nuclear compartment within the tumor mask, which is then
subtracted from the tumor mask to create a cytoplasmic compartment within the tumor mask. Target expression (A - p85, B - p110a. and C -
mTOR) expression is measured within the cytoplasmic compartments, within the tumor mask (lower right quadrants), and each clinical case is
assigned a score based on pixel intensity per unit area within the tumor mask. Squares on right show x 40 magnification. in the tissue
microarray. The correlation with p110a was particularly strong.
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Figure 2 Associations between marker expression and clinical/pathological variables. (A) Associations between target expression (p85,
p110a and mTOR) and histologic subtype. Expression of all three targets was higher in sarcomatoid tumors. (B) Associations between target
expression and tumor stage and Fuhrman grade. p85 and mTOR were associated with high grade and p85 with high stage. p110a levels were
not associated with stage or grade. (C) Kaplan-Meier survival curves of quartiles of AQUA scores for the three targets. High levels of both p85
and mTOR were associated with decreased survival.

cell lines the ICs50s of this compound were in the nM
range (Table 3).

NVP-BEZ235 target inhibition and induction of apoptosis

Targets of NVP-BEZ235, p-P70S6K, p-Akt and p-S6
were decreased in Caki-1, 769-P, A498 and 786-0 cells
with exposure to the drug. Cells were exposed to 0.1
and 1.0 pM NVP-BEZ235, or DMSO for 4 and 24

hours. B-actin is shown as a loading control. p-P70S6K
levels are undetectable at all concentrations and time
points studied, whereas levels of p-Akt and p-S6
decrease after 4 hours of drug exposure in a dose-
dependent fashion (Figure 4). Exposure of RCC cells to

Table 2 Combination indexes assessing synergism/
additivity/antagonism in rapamycin and LY294002

L LY294002 R in A498 ACHN CAKI- CAKI- 769- 786-
Table 1 PI3K, p85 and p110 and mTOR Multivariate apamycin 1 5 p 0
Analysis*

y (nM) (nM) (@) (@ (@) (@) (@) (@)
Marker Relative 95% Confidence P-value 5000 500 0476 0371 0593 0201 0430 0242

Risk Interval 5000 100 0461 0193 0492 0212 0444 0262

PI3K - p85 1026 [1.004 - 1.048] 0.02 5000 20 0441 0173 0472 0184 0385 0281
PI3K - p110c 0946 [0872 - 1.025] 01762 25000 500 1388 0678 1409 1270 1356 0830
mTOR 101710992 - 1042) 0.178 25000 100 1420 0586 1193 1074 1430 0847
Stage 4087  [2120 - 5469] <  0.0001 25000 20 1393 0484 1227 1020 1530 0910
Nuclear Grade 2.898 [1.536 - 5.469] 0.001

*Statistically significant markers are bolded

Synergism is indicated by a Cl of < 0.9, additivity by Cl values between 0.9
and 1.1, and antagonism by Cl of > 1.1.
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combination therapies (p > 0.5 for all).

Figure 3 Synergism between PI3K and mTOR inhibition. Cell viability assays in A498 (A) and Caki-2 cells (B): Cells were treated with
LY294002 alone, rapamycin alone (at three concentrations) or the combination of LY294002 and rapamycin. The combinations were highly
synergistic, with similar viability seen for all three concentrations of rapamycin used. There was no significant difference between the different

ascending concentrations of NVP-BEZ235 at 72 hours
resulted in PARP cleavage and cleavage of caspase-2
(Additional file 1, Figure 1). Caspase-2 was selected as it
has been shown in other publications to be activated in
response to treatment with NVP-BEZ235 [32,33].

Discussion

We studied expression patterns of PI3K pathway mem-
bers critical for cell survival and proliferation in a large
cohort of RCC specimens. We used a novel method of
quantitative immunofluorescence, AQUA. This method
is void of the pathologist-based bias associated with
DAB staining. The p85 subunit was associated with high
grade, high stage and decreased survival, and remained
an independent prognostic marker on multi-variable
analysis. p110a was not associated with high stage,

Table 3 IC5, values of RCC cell lines treated with NVP-
BEZ235

Cell Line 1C5o NVP-BEZ235 (M)
A498 25
ACHN 30
Caki-1 26
Caki-2 164
769-P 67
786-0 87

In all 6 RCC cell lines the ICsos of NVP-BEZ235 were in the nM range.

grade or survival. mTOR was associated with survival
on uni-variable analysis; however on multi-variable ana-
lysis it lost its independence as a prognostic marker.
The association between PI3K and mTOR and disease
progression suggests that they might be valuable drug
targets. The p85 subunit has both a regulatory and a sti-
mulatory role in activity of the PI3K pathway. The
pl10a subunit is thought to be stimulatory only. The
functional roles of the subunits, in conjunction with our
findings of stronger co-expression of the p110a subunit
and mTOR, suggest that pharmacological co-targeting
of p110ac and mTOR might be a useful strategy for
treating RCC.

Activation of the PI3K-Akt pathway and its role in
RCC progression was previously evaluated in a small
study of 48 patients with RCC by immunohistochemis-
try using an antibody to p-Akt, showing that p-Akt was
associated with high tumor grade and metastatic disease.
In addition, high p-Akt immunostaining was signifi-
cantly associated with decreased cancer-specific survival
[34]. Activation of the PI3K-Akt signaling pathway was
also examined in RCC cell lines treated with PI3K inhi-
bitors, wortmannin and LY294002 in previous studies
[21]. This study demonstrated that the PI3K-Akt signal-
ing pathway is constitutively activated in RCC cells,
regardless of VHL status, and that activation of this
pathway is tumor specific relative to corresponding nor-
mal renal tissue [21]. The same group conducted in vivo



Elfiky et al. Journal of Translational Medicine 2011, 9:133 Page 8 of 10
http://www.translational-medicine.com/content/9/1/133
( N
BEZ235 (uM)

01 - + = + = o« + = F - o + = F - = + = *

1.0 =

Phospho-p70S6K

Phospho-Akt

—— : e i 3 _ |Phospho-rpsé
(S —————— "--i (M- w—— - -actin
NT 4 24 NT 4 24 NT 4 24 NT 4 24 Time (hours)
CELL LINE CAKI-1 769-P A498 786-0

Figure 4 Effects of NVP-BEZ235 on renal cell carcinoma cells in vitro. Targets of NVP-BEZ235, p-P70S6K, p-Akt and p-S6 were decreased in
Caki-1, 769-P, A498 and 786-0 cells with exposure to the drug. Cells were exposed to 0.1 and 1.0 uM NVP-BEZ235, or DMSO (vehicle) for 4 and

24 hours. B-actin is shown as a loading control.

studies of nude mice bearing human RCC xenografts
treated with LY294002. LY294002 inhibited tumor
growth, and p-Akt was reduced in these tumors [21].

The recognition that the PI3K pathway has gained as a
putative target in cancer therapy is reflected by the
recent increase in literature regarding novel PI3K inhibi-
tors [4,15,35-37]. Preliminary data from a phase I study
of the oral PI3K/mTOR inhibitor, NVP-BEZ235 was
conducted in patients with histologically confirmed,
advanced, unresectable solid tumors[38]. The findings in
the breast and colorectal patients which were reported
showed that NVP-BEZ235 was well tolerated with a
favorable safety profile.

There is also emerging evidence that mTOR activation
may play a role in promoting cell survival through the
activation of antiapoptotic proteins that contribute to
tumor progression. Given that the mTOR pathway is
deregulated in a number of cancers, it was anticipated
that mTOR inhibitors would have broad therapeutic
application across many tumor types. Two mTOR inhi-
bitors have been approved for use in metastatic RCC.
Both have clinical activity in this disease, however pri-
mary and acquired resistance limit their use, and our
studies suggest that the addition of a PI3K inhibitor
might result in improved outcome. While both wort-
mannin and LY294002 have provided tools to study
PI3K inhibition in pre-clinical models, the clinical use of
these compounds is limited due to their chemical prop-
erties, lack of specificity and poor tolerability [39-41].
Given the diversity of activity of PI3K family members,
isoform-selective inhibitors could potentially be better
tolerated [42]. Compounds that inhibit the p110¢ and
p85 subunits with a high degree of selectivity are in
development. Examples include the semi-synthetic viri-
din and wortmannin derivative PX-866 (Oncothyreon/
ProIX Pharmaceuticals) which has entered Phase I trials,
the LY294002 RGDS-conjugated pro-drug SF-1126
(Semafore Pharmaceuticals) which has entered Phase I/

II trials [43]. GDC-0941 (Genentech/Piramed/Roche) is
a Pan-class I PI3K inhibitor in Phase I trials. The Exe-
lexis compounds XL-147 and XL-765 are also in Phase I
trials.

In our models, activity of LY294002 alone in RCC cell
lines was limited, with ICs¢s in the micromolar range.
While this compound is also a weak inhibitor of mTOR,
there are a number of potential mechanisms of resis-
tance to PI3K inhibitors when administered alone. For
example, Akt can be activated by PI3K-independent
mechanisms such as mTORC?2 activation [44]. Members
of the MAPK pathway have been shown to activate Akt
as well: ERK and RSK inhibit TSC2, which can result in
mTOR activation despite effective PI3K inhibition, as
reviewed [45]. Others have shown that inhibition of
PI3K results in down-regulation of S6K, a negative regu-
lator of PI3K through phosphorylation and inhibition of
insulin receptor substrate 1, causing a negative feedback
loop, as reviewed by Chalhoub and Baker [46]. One
potential method to overcome this resistance to pure
PI3K inhibition is co-inhibition of the down-stream
mediator, mTOR.

We found that the combination of LY294002 and
rapamycin was highly synergistic in all six RCC cell
lines studied. We used concentrations of rapamycin that
ranged from 20nM to 500nM. Similar inhibition of via-
bility was seen with all rapamycin concentrations used.
This is most important when designing novel therapies
and novel drug combinations, particularly as toxicity
associated with higher doses of mTOR inhibitors can be
quite remarkable [12]. Grade 3 adverse events occur in
a subset of patients treated with temsirolimus mono-
therapy and include hematologic toxicities, hyperlipide-
mia, hyperglycemia, asthenia and dyspnea. Similar
toxicities were seen in patients treated with everolimus
[47]. Moreover, combinations of mTOR inhibitors and
other targeted therapies have sometimes been surpris-
ingly toxic [48].
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Due to the poor pharmacologic properties of
LY294002, we further investigated the co-targeting of
PI3K and mTOR using a clinical-grade dual inhibitor,
NVP-BEZ235. Previously, significant toxicity in preclini-
cal models has been an issue in combined PI3K and
mTOR inhibitor studies. NVP-BEZ235 has an advanta-
geous pharmacologic profile and in vivo administration
results in high and sustained exposure in tumor tissue
[49]. It inhibits both mTORC1 and mTORC?2, resulting
in enhanced inhibition of p-Akt compared to either
LY294002 or rapamycin, or the combination of
LY294002 and rapamycin, as shown in other malignan-
cies [50]. We found that this compound was highly active
in vitro, inhibiting RCC cell growth with ICsgs in the low
nM range. Our studies further support results published
by Cho et. al demonstrating growth arrest in RCC cell
lines in vitro and in vivo using NVP-BEZ235 [51].

Conclusion

Expression of PI3K and mTOR is upregulated in aggres-
sive RCC tumor cells, suggesting that these are valuable
drug targets. Co-expression of the p110a subunit and
mTOR further indicate that co-targeting these molecules
in RCC might be a useful therapeutic approach. We
found that concurrent use of PI3K and mTOR targeting
drugs in RCC cell lines was synergistic in all cell lines
studied. The dual PI3K/mTOR inhibitor NVP-BEZ235
that is currently in clinical development is highly active
in RCC models, and further evaluation of this com-
pound in RCC is warranted.

Funding

AAE is supported by a Young Investigator Award from
the American Society of Clinical Oncology. RLC is sup-
ported by NIH Grant R21 CA116265. HMK is sup-
ported by NIH grants RO-1 R0-1 CA158167 (to H.
Kluger) R0-1 CA129034 (to F. Waldman) and by Ameri-
can Cancer Society Award M130572 (to H. Kluger).

Additional material

Additional file 1: Induction of apoptosis by NVP-BEZ-235. Western
blots demonstrating caspase-2 induction and PARP cleavage in RCC cells
exposed to NVP-BEZ-235

List of abbreviations

The following abbreviations were used: AQUA: Automated; Quantitative
Analysis; DAPI: 4; 6-diamidine-2-phenylindole; HIF: hypoxia-induced factor;
mTOR: Mammalian target of Rapamycin; PI3K: phospahtidylinositol-3 kinase;
RCC: renal cell carcinoma; RTK: receptor tyrosine kinase; and TMA: tissue
microarray.

Author details
'Division of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline
Ave, Boston, MA 02215, United States of America. “Section of Medical

Page 9 of 10

Oncology, Yale Cancer Center, Yale University, 333 Cedar St, New Haven, CT
06520, United States of America. “Department of Pathology, Yale University,
333 Cedar St, New Haven, CT 06520, United States of America. “Novartis
Institutes for Biomedical Research, AG CH-4002, Basel, Switzerland.

Authors’ contributions

AAE, SAA and PJC performed experiments. AAE and HMK designed
experiments. AAE, HMK and SAA wrote the manuscript. RLC performed the
statistical analysis. HMK supervised the project. All authors read and
approved the final manuscripts.

Competing interests

RLC is a co-founder, stockholder and consultant for a company called
HistoRx that has licensed the technology for automated tissue analysis used
in this study. WH and MM are employees and stock-holders of Novartis
Pharmaceuticals. AE, SAA, PJC, SS and HMK have no competing interests.

Received: 10 February 2011 Accepted: 11 August 2011
Published: 11 August 2011

References

1. Motzer RJ, Bander NH, Nanus DM: Renal-cell carcinoma. N Engl J Med 1996,
335:865-875.

2. Vogelzang NJ, Stadler WM: Kidney cancer. Lancet 1998, 352:1691-1696.

3. Pantuck AJ, Zisman A, Belldegrun AS: The changing natural history of
renal cell carcinoma. J Urol 2001, 166:1611-1623.

4. Ruckle T, Schwarz MK, Rommel C: PI3Kgamma inhibition: towards an
‘aspirin of the 21st century’? Nat Rev Drug Discov 2006, 5:903-918.

5. SEER Cancer Statistics Review, 1975-2008. .

6. Wolchok JD, Motzer RJ: Management of renal cell carcinoma. Oncology
(Williston Park) 2000, 14:29-34, discussion 34-26, 39.

7. McDermott DF, Regan MM, Clark JI, Flaherty LE, Weiss GR, Logan TF,
Kirkwood JM, Gordon MS, Sosman JA, Ernstoff MS, et al:- Randomized
phase Il trial of high-dose interleukin-2 versus subcutaneous interleukin-
2 and interferon in patients with metastatic renal cell carcinoma. J Clin
Oncol 2005, 23:133-141.

8. Motzer RJ, Hutson TE, Tomczak P, Michaelson MD, Bukowski RM, Rixe O,
Oudard S, Negrier S, Szczylik C, Kim ST, et al: Sunitinib versus interferon
alfa in metastatic renal-cell carcinoma. N Engl J Med 2007, 356:115-124.

9. Escudier B, Eisen T, Stadler WM, Szczylik C, Oudard S, Siebels M, Negrier S,
Chevreau C, Solska E, Desai AA, et al: Sorafenib in advanced clear-cell
renal-cell carcinoma. N Engl J Med 2007, 356:125-134.

10.  Hutson TE, Figlin RA: Novel therapeutics for metastatic renal cell
carcinoma. Cancer 2009, 115:2361-2367.

11. Yang JC, Haworth L, Sherry RM, Hwu P, Schwartzentruber DJ, Topalian SL,
Steinberg SM, Chen HX, Rosenberg SA: A randomized trial of
bevacizumab, an anti-vascular endothelial growth factor antibody, for
metastatic renal cancer. N Engl J Med 2003, 349:427-434.

12. Hudes G, Carducci M, Tomczak P, Dutcher J, Figlin R, Kapoor A,
Staroslawska E, Sosman J, McDermott D, Bodrogi |, et al: Temsirolimus,
interferon alfa, or both for advanced renal-cell carcinoma. N Engl J Med
2007, 356:2271-2281.

13. Nicholson KM, Anderson NG: The protein kinase B/Akt signalling pathway
in human malignancy. Cell Signal 2002, 14:381-395.

14. Hanada M, Feng J, Hemmings BA: Structure, regulation and function of
PKB/AKT-a major therapeutic target. Biochim Biophys Acta 2004,
1697:3-16.

15. Engelman JA, Luo J, Cantley LC: The evolution of phosphatidylinositol 3-
kinases as regulators of growth and metabolism. Nat Rev Genet 2006,
7:606-619.

16. Katso R, Okkenhaug K, Ahmadi K, White S, Timms J, Waterfield MD: Cellular
function of phosphoinositide 3-kinases: implications for development,
homeostasis, and cancer. Annu Rev Cell Dev Biol 2001, 17:615-675.

17. Kurosu H, Maehama T, Okada T, Yamamoto T, Hoshino S, Fukui Y, Ui M,
Hazeki O, Katada T: Heterodimeric phosphoinositide 3-kinase consisting
of p85 and p110beta is synergistically activated by the betagamma
subunits of G proteins and phosphotyrosyl peptide. J Biol Chem 1997,
272:24252-24256.

18. Roche S, Downward J, Raynal P, Courtneidge SA: A function for
phosphatidylinositol 3-kinase beta (p85alpha-p110beta) in fibroblasts


http://www.biomedcentral.com/content/supplementary/1479-5876-9-133-S1.DOC
http://www.ncbi.nlm.nih.gov/pubmed/8778606?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9853456?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11586189?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11586189?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17080027?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17080027?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15625368?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15625368?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15625368?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17215529?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17215529?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17215530?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17215530?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19402059?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19402059?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12890841?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12890841?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12890841?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17538086?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17538086?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11882383?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11882383?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15023346?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15023346?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16847462?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16847462?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11687500?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11687500?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11687500?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9305878?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9305878?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9305878?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9819398?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9819398?dopt=Abstract

Elfiky et al. Journal of Translational Medicine 2011, 9:133
http://www.translational-medicine.com/content/9/1/133

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

33

34.

35.

36.

37.

38.

39.

during mitogenesis: requirement for insulin- and lysophosphatidic acid-
mediated signal transduction. Mol Cell Biol 1998, 18:7119-7129.

Manning BD, Cantley LC: United at last: the tuberous sclerosis complex
gene products connect the phosphoinositide 3-kinase/Akt pathway to
mammalian target of rapamycin (mTOR) signalling. Biochem Soc Trans
2003, 31:573-578.

Edling CE, Selvaggi F, Buus R, Maffucci T, Di Sebastiano P, Friess H,
Innocenti P, Kocher HM, Falasca M: Key role of phosphoinositide 3-kinase
class IB in pancreatic cancer. Clin Cancer Res 2010, 16:4928-4937.

Sourbier C, Lindner V, Lang H, Agouni A, Schordan E, Danilin S, Rothhut S,
Jacgmin D, Helwig JJ, Massfelder T: The phosphoinositide 3-kinase/Akt
pathway: a new target in human renal cell carcinoma therapy. Cancer
Res 2006, 66:5130-5142.

Lin F, Zhang PL, Yang XJ, Prichard JW, Lun M, Brown RE: Morphoproteomic
and molecular concomitants of an overexpressed and activated mTOR
pathway in renal cell carcinomas. Ann Clin Lab Sci 2006, 36:283-293.
Robb VA, Karbowniczek M, Klein-Szanto AJ, Henske EP: Activation of the
mTOR signaling pathway in renal clear cell carcinoma. J Urol 2007,
177:346-352.

Campbell L, Jasani B, Edwards K, Gumbleton M, Griffiths DF: Combined
expression of caveolin-1 and an activated AKT/mTOR pathway predicts
reduced disease-free survival in clinically confined renal cell carcinoma.
Br J Cancer 2008, 98:931-940.

Mackler NJ, Bhandari M, Redman B, Rhodes D, Chinnaiyan A: The PI3K/AKT
pathway in renal (clear cell) carcinoma via meta-analysis of expression
microarrays. 2005 ASCO Annual Meeting Orlando, FL 2005.

Merseburger AS, Hennenlotter J, Kuehs U, Simon P, Kruck S, Koch E,

Stenzl A, Kuczyk MA: Activation of PI3K is associated with reduced
survival in renal cell carcinoma. Urol Int 2008, 80:372-377.

Abou Youssif T, Fahmy MA, Koumakpayi IH, Ayala F, Al Marzoogi S, Chen G,
Tamboli P, Squire J, Tanguay S, Sircar K: The mammalian target of
rapamycin pathway is widely activated without PTEN deletion in renal
cell carcinoma metastases. Cancer 2011, 117:290-300.

Kluger HM, Siddiqui SF, Angeletti C, Sznol M, Kelly WK, Molinaro AM,
Camp RL: Classification of renal cell carcinoma based on expression of
VEGF and VEGF receptors in both tumor cells and endothelial cells. Lab
Invest 2008, 88:962-972.

Camp RL, Chung GG, Rimm DL: Automated subcellular localization and
quantification of protein expression in tissue microarrays. Nat Med 2002,
8:1323-1327.

Camp RL, Chung GG, Rimm DL: Automated subcellular localization and
quantification of protein expression in tissue microarrays. Nat Med 2002,
8:1323-1327.

Chou TC, Talalay P: Quantitative analysis of dose-effect relationships: the
combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme
Regul 1984, 22:27-55.

Brachmann SM, Hofmann |, Schnell C, Fritsch C, Wee S, Lane H, Wang S,
Garcia-Echeverria C, Maira SM: Specific apoptosis induction by the dual
PI3K/mTor inhibitor NVP-BEZ235 in HER2 amplified and PIK3CA mutant
breast cancer cells. Proc Natl Acad Sci USA 2009, 106:22299-22304.

Aziz SA, Jilaveanu LB, Zito C, Camp RL, Rimm DL, Conrad P, Kluger HM:
Vertical targeting of the phosphatidylinositol-3 kinase pathway as a
strategy for treating melanoma. Clin Cancer Res 2010, 16:6029-6039.
Horiguchi A, Oya M, Uchida A, Marumo K, Murai M: Elevated Akt activation
and its impact on clinicopathological features of renal cell carcinoma. J
Urol 2003, 169:710-713.

Vivanco |, Sawyers CL: The phosphatidylinositol 3-Kinase AKT pathway in
human cancer. Nat Rev Cancer 2002, 2:489-501.

Wymann MP, Marone R: Phosphoinositide 3-kinase in disease: timing,
location, and scaffolding. Curr Opin Cell Biol 2005, 17:141-149.

Marone R, Cmiljanovic V, Giese B, Wymann MP: Targeting
phosphoinositide 3-kinase: moving towards therapy. Biochim Biophys
Acta 2008, 1784:159-185.

Burris H, Rodon J, Sharma S, Herbst S, Tabernero J, Infante JR, Silva A,
Demanse D, Hackl W, Baselga J: First-in-human phase | study of the oral
PI3K inhibitor BEZ235 in patients (pts) with advanced solid tumors. 2070
ASCO Annual Meeting Chicago, IL 2010.

Gupta AK, Cerniglia GJ, Mick R, Ahmed MS, Bakanauskas VJ, Muschel RJ,
McKenna WG: Radiation sensitization of human cancer cells in vivo by
inhibiting the activity of PI3K using LY294002. Int J Radiat Oncol Biol Phys
2003, 56:846-853.

Page 10 of 10

40. Ng SS, Tsao MS, Nicklee T, Hedley DW: Wortmannin inhibits pkb/akt
phosphorylation and promotes gemcitabine antitumor activity in
orthotopic human pancreatic cancer xenografts in immunodeficient
mice. Clin Cancer Res 2001, 7:3269-3275.

41, Ng SSW, Tsao MS, Chow S, Hedley DW: Inhibition of phosphatidylinositide
3-kinase enhances gemcitabine-induced apoptosis in human pancreatic
cancer cells. Cancer Res 2000, 60:5451-5455.

42, Stein RC: Prospects for phosphoinositide 3-kinase inhibition as a cancer
treatment. Endocr Relat Cancer 2001, 8:237-248.

43.  Garlich JR, De P, Dey N, Su JD, Peng X, Miller A, Murali R, Lu Y, Mills GB,
Kundra V, et al: A vascular targeted pan phosphoinositide 3-kinase
inhibitor prodrug, SF1126, with antitumor and antiangiogenic activity.
Cancer Res 2008, 68:206-215.

44, Serra V, Markman B, Scaltriti M, Eichhorn PJ, Valero V, Guzman M,

Botero ML, Llonch E, Atzori F, Di Cosimo S, et al: NVP-BEZ235, a dual PI3K/
mTOR inhibitor, prevents PI3K signaling and inhibits the growth of
cancer cells with activating PI3K mutations. Cancer Res 2008,
68:8022-8030.

45. Carracedo A, Pandolfi PP: The PTEN-PI3K pathway: of feedbacks and
cross-talks. Oncogene 2008, 27:5527-5541.

46.  Chalhoub N, Baker SJ: PTEN and the PI3-kinase pathway in cancer. Annu
Rev Pathol 2009, 4:127-150.

47. Motzer RJ, Escudier B, Oudard S, Hutson TE, Porta C, Bracarda S,

Grunwald V, Thompson JA, Figlin RA, Hollaender N, et al: Efficacy of
everolimus in advanced renal cell carcinoma: a double-blind,
randomised, placebo-controlled phase Il trial. Lancet 2008, 372:449-456.

48. Sosman J, Puzanov I: Combination targeted therapy in advanced renal
cell carcinoma. Cancer 2009, 115:2368-2375.

49.  Maira SM, Stauffer F, Brueggen J, Furet P, Schnell C, Fritsch C, Brachmann S,
Chene P, De Pover A, Schoemaker K, et al: Identification and
characterization of NVP-BEZ235, a new orally available dual
phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor
with potent in vivo antitumor activity. Mol Cancer Ther 2008, 7:1851-1863.

50. Roccaro AM, Sacco A, Husu EN, Pitsillides C, Vesole S, Azab AK, Azab F,
Melhem M, Ngo HT, Quang P, et al: Dual targeting of the PI3K/Akt/mTOR
pathway as an antitumor strategy in Waldenstrom macroglobulinemia.
Blood 2010, 115:559-569.

51. Cho DC, Cohen MB, Panka DJ, Collins M, Ghebremichael M, Atkins MB,
Signoretti S, Mier JW: The efficacy of the novel dual PI3-kinase/mTOR
inhibitor NVP-BEZ235 compared with rapamycin in renal cell carcinoma.
Clin Cancer Res 2010, 16:3628-3638.

doi:10.1186/1479-5876-9-133

Cite this article as: Elfiky et al: Characterization and targeting of
phosphatidylinositol-3 kinase (PI3K) and mammalian target of
rapamycin (mTOR) in renal cell cancer. Journal of Translational Medicine
2011 9:133.

Submit your next manuscript to BioMed Central
and take full advantage of:

e Convenient online submission

e Thorough peer review

¢ No space constraints or color figure charges

¢ Immediate publication on acceptance

¢ Inclusion in PubMed, CAS, Scopus and Google Scholar

¢ Research which is freely available for redistribution

Submit your manuscript at ( -
www.biomedcentral.com/submit BiolVied Central



http://www.ncbi.nlm.nih.gov/pubmed/9819398?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9819398?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12773158?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12773158?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12773158?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20876794?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20876794?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16707436?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16707436?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16951269?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16951269?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16951269?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17162089?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17162089?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18283322?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18283322?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18283322?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18587247?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18587247?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20830770?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20830770?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20830770?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18626467?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18626467?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12389040?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12389040?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12389040?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12389040?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/6382953?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/6382953?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20007781?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20007781?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20007781?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21169255?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21169255?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12544348?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12544348?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12094235?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12094235?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15780590?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15780590?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17997386?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17997386?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12788194?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12788194?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11595724?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11595724?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11595724?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11595724?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11034087?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11034087?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11034087?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11566615?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11566615?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18172313?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18172313?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18829560?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18829560?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18829560?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18794886?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18794886?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18767981?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18653228?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18653228?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18653228?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19402058?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19402058?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18606717?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18606717?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18606717?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18606717?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19965685?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19965685?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20606035?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20606035?dopt=Abstract

	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Tissue Microarray (TMA) Construction
	Immunofluorescence
	Automated Image Acquisition and Analysis (AQUA)
	Statistical Analysis
	Human Cell Lines
	Viability and Synergism Studies
	Immunoblots

	Results
	AQUA analyses
	Synergism between PI3K and mTOR inhibition
	Activity of the dual PI3K-mTOR inhibitor NVP-BEZ235 in RCC cell lines
	NVP-BEZ235 target inhibition and induction of apoptosis

	Discussion
	Conclusion
	Funding
	Author details
	Authors' contributions
	Competing interests
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 500
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 500
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


