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Summary
Aging is a major risk factor for chronic disease in the human population, but there is little human
data on gene expression alterations that accompany the process. We examined human peripheral
blood leucocyte in-vivo RNA in a large-scale transcriptomic microarray study (subjects aged 30 to
104 years). We tested associations between probe expression intensity and advancing age
(adjusting for confounding factors), initially in a discovery set (n = 458), following-up findings in
a replication set (n=240). We confirmed expression of key results by real-time PCR. Of 16,571
expressed probes, only 295 (2%) were robustly associated with age. Just six probes were required
for a highly efficient model for distinguishing between young and old (Area Under the Curve in
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replication set; 95%). The focussed nature of age-related gene expression may therefore provide
potential biomarkers of aging. Similarly, only 7 of 1065 biological or metabolic pathways were
age-associated, in Gene Set Enrichment Analysis (GSEA), notably including the processing of
messenger RNAs (mRNAs); (p<0.002, FDR q<0.05). This is supported by our observation of age-
associated disruption to the balance of alternatively-expressed isoforms for selected genes,
suggesting that modification of mRNA processing may be a feature of human aging.
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Introduction
Advancing age is a major risk factor for many common diseases, including type 2 diabetes,
cardiovascular disease and many cancers (Butler et al. 2008). However, aging is
characterized by progressively rising heterogeneity, with some people becoming frail in
their seventies while others remain fit into their nineties or even longer. Characterizing the
changes underpinning the heterogeneity of aging processes at a molecular level has been a
long held goal.

One theory of aging is that random and widespread unrepaired damage to DNA (and other
molecules), accumulated over a lifetime may cause cellular senescence (Gensler &
Bernstein 1981), but it has not been established whether such damage is associated with
large scale alterations of gene expression in the aged human population. Alteration to highly
sequence dependent processes such as mRNA processing (Cartegni et al. 2002) have been
suggested in previous studies (Yannarell et al. 1977; Meshorer & Soreq 2002), but to date
there are little human data to assess this empirically. Several age-related diseases are known
to be caused by alterations in the splicing patterns of the mRNA transcripts, including the
Hutchison Gilford progeria syndrome, where premature aging is caused by a synonymous
mutation (G608G) in the Lamin A (LMNA) gene, which obstructs the normal post-
translational processing of the protein product and leads to the premature aging phenotype
(Eriksson et al. 2003). Similarly, alterations in the relative balance of alternatively-
expressed microtubule-associated protein tau (MTAP) isoforms are a feature of Alzheimer’s
disease-related tauopathies. (Chen et al. 2010)

Gene expression arrays provide a powerful technology for identifying age-related alteration
to the levels of gene transcripts in a comprehensive genome-wide way. Identification of
individual transcripts and functionally coherent gene sets that are under- or over-expressed
with aging in humans would provide key insights into the mechanisms of aging processes
and age-related disease (Zahn et al. 2006). This may provide a ‘biomarker signature’ for
monitoring the effects of interventions to slow age related changes, in an easily accessible
tissue, peripheral blood leucocytes.

A variety of age-related expression analyses in cell lines or stored cell material have been
reported, although results have had limited reproducibility (de Magalhaes et al. 2009). This
is likely to be due to the small sample sizes in previous studies and to the sensitivity of
mRNA transcripts to variation in aspects of storage and handling (Min et al. 2010). It is
clear that identifying robust changes in age-related gene expression in humans will depend
on large numbers of samples collected with optimal sample handling, so that results reflect
in-vivo mRNA expression. Blood-derived leucocytes are a relevant tissue for the study of
in-vivo aging processes in humans, as ‘immunosenescence’ is well described (Gruver et al.
2007). Blood is likely to remain the principal accessible ‘live’ tissue for large-scale in-vivo
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expression studies and clinical analysis in humans. Blood-derived white cell transcriptome
studies have already proved valuable in identifying signatures of major diseases and drug
responses some with promising clinical applications (Dumeaux et al. 2010).

We used a well-characterized population representative cohort, the InCHIANTI aging study
(Ferrucci et al. 2000), to examine transcriptome-wide alterations in gene expression
associated with chronological age in samples from 698 individuals by microarray analysis.
We predicted widespread transcriptomic alterations with advancing age, and that
inflammatory or immune function genes would be prominent in our results given our choice
of target tissue (peripheral white blood cells). We aimed to identify both the most
deregulated individual transcripts, but also the most deregulated gene sets grouped into
biological pathways.

We found that although the largest single-transcript associations in human peripheral blood
leucocytes do indeed include genes involved in inflammation or immune function,
widespread alterations in gene expression levels were not apparent. In fact only a very small
proportion (295 of 16,571 transcripts; 2%) of transcripts demonstrated robust age-related
differences in gene expression. Furthermore, a statistical model using just 6 of the top 25
transcripts was able to classify samples into ‘young’ or ‘old’ with high precision. These six
transcripts may provide a biomarker set to monitor interventions aimed at slowing aging.

Gene Set Enrichment Analysis (GSEA) (a method to determine whether specific molecular
or functional pathways are associated with a given trait) demonstrated that the pathways
most disrupted by human aging include genes involved in messenger RNA splicing,
polyadenylation and other post-transcriptional events. This was accompanied by specific
changes in the ratios of expression between isoform-specific transcripts for selected genes in
our extended analysis. Deregulation of mRNA processing pathways may comprise a
mechanism involved in human cellular aging.

Results
A small proportion of transcripts demonstrate marked age-related expression differences

16,571 transcripts gave reliable signals above background (p≤0.01) in >5% of the sample
population following QC of microarray data, and were selected for analysis of gene
expression alterations with age. The cohort was divided into discovery and test sets, based
on analytical batch. Individual probes were only considered to be associated with
chronological age (with adjustment for major confounders) if they reached a False
Discovery Rate (FDR) q<0.001 in the discovery set, and also replicated in the test set with
an FDR q<0.05. Of 16,571 transcripts, we identified gene expression differences with age in
only 2%; 360 probes in the discovery set, of which 295 replicated in our test set (see
supplementary table S1 online). Fifty (18%) of differentially-expressed transcripts were up-
regulated and 245 were down-regulated. Analysis of the extremes of the age distribution
only (<50years (n=93) versus >80 years (n=232) yielded only 53 probes associated with age,
supporting our observation that human aging is associated with large-scale alterations in the
expression of only a small number of transcripts.

The CCR6 (chemokine receptor 6), CCR7 (chemokine receptor 7) and CD27 genes,
previously associated with age and immunosenescence (Yung et al. 2007), were also found
to be associated with age in our study. Plots of microarray signal intensity against increasing
age (Cloud plots) for these, and the top 3 up- and down- regulated genes in our analysis;
namely leucine-rich repeat neuronal protein 3 (LRRN3), endosialin (CD248), lymphoid
enhancer-binding factor 1 (LEF1), vesicle-associated membrane protein 5 (VAMP5),
guanylate binding protein 5 (GBP5) and signal transducer and activator of transcription 1
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(STAT1) are presented in figure 1. The 25 most up-regulated and the 25 most down-
regulated transcripts are shown in tables 1a and 1b. The most statistically significant
association between age and gene expression was for the LRRN3 gene (p = 8.2 × 10−28),
thought to be involved in MAPK activity and endocytosis.

It is possible that some of the effects we note may result from increases in age-related
variation in inter-individual expression levels. However, the Breusch Pagan test of
conditional heteroscedasticity did not provide evidence to support this hypothesis. The
lowest p-value for the effect of age on residual expression variability failed to reach
genome-wide significance before or after adjustment for age effects on mean expression
(minimum p=3.2 × 10−5, FDR q=0.18). Therefore, these results provide no evidence for
increased variability in inter-individual gene expression with age.

Six of the most deregulated 25 probes provide good discrimination between young and
old

We then identified which of the 25 most strongly age-associated probes provide the best
discrimination between a younger group (age < 65; n=107 in discovery set) and older
subjects (age ≥ 75; n=308 in discovery set). We used multivariable logistic regression
modelling to select probes that add significantly to classification (see methods, statistical
analysis). Our final model included six genes; LRRN3, CD248, CCR6, GRAP (growth factor
receptor-bound protein 2 related adaptor protein), VAMP5 and CD27, which together
explained 63% of the age-group associated variation (supplementary table S2 online). The
multivariable logistic regression model was used to generate an age-group classification for
subjects in the independent replication set. The ROC curve (supplementary fig. 1 online)
shows that this small subset of genes is sufficient to achieve exceptionally strong separation
between older and younger subjects (ROC Area Under the Curve, AUC=96% in discovery
set and 95% in validation set). The area under the curve (AUC) for alternative age-group
comparisons within our replication set are 91% for < 60 v age >= 60 and 84% for the age
60–69 v age 70–79.

Key expression changes replicate when assayed by an alternative method; TaqMan Low
Density Array (TLDA) analysis

Taqman Low Density Array (TLDA) quantitative real-time PCR provides a robust
independent laboratory technique to validate array results and provides more accurate
estimates of effect sizes. We validated 27 of the most differentially-expressed genes
identified by microarray analysis using TLDA quantitative real-time PCR. Of the 27 genes
tested, 22 showed clear differences in gene expression with age (see supplementary table S3
online). Representative box plots (comparing data for 49 respondents aged 30 to 44 years
and 50 respondents aged 85 to 104) for one gene previously associated with aging (CCR7)
(Yung et al. 2007) and two of the top associations found in our study, LRRN3 and LEF1, are
given in figure 2. Of those that did not replicate, two had no detectable expression (AKTIP
and IGLL1) and three (RPS5, E2F5 and VEGFB) showed evidence of a trend for altered
expression, but were not statistically significant. These transcripts were at the lower limit of
statistical significance following Bonferroni correction for multiple testing (p~1 × 10−5) on
the microarray data, indicating that some of the genes located at the limits of statistical
significance may not represent genuine hits.

For our top gene (LRRN3) the mean expression intensity in the young sample (aged 30 to 44
yrs) was 1.65 (95%CI for the mean 1.36 – 1.94), compared to 0.53 (CI 0.44 – 0.62) in the
older sample (85 – 104 yrs), a highly significant difference (p<0.0001) (supplementary table
S3 online). This LRRN3 change represented a very large reduction i.e. the expression in the
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older sample is 32% of that in the young. In our TLDA validated genes, the expression in
the older group ranged from 32% to 175% of that in the young.

Gene Set Enrichment Analysis (GSEA) reveals that the major pathways affected by age in
humans relate to post-transcriptional processing of messenger RNA transcripts

We applied GSEA (Subramanian et al. 2005) to identify pathways (rather than individual
transcripts) that are associated with age. We examined 1065 predefined gene sets, grouped
by (mainly Gene Ontology) classification of molecular function or biochemical processes.
Of the 1065 pathways examined, only seven pathways were significantly associated with
age, after accounting for the multiple statistical testing (FDR q-value<0.05) (table 2). These
were: total RNA binding (nominal p-value<0.001), mRNA metabolic process (p<0.001),
mRNA binding (p<0.001), RNA splicing (p<0.001), mRNA processing (p<0.001),
ribonucleoprotein complex biogenesis and assembly (p<0.001) and chromatin assembly or
disassembly (p=0.002). Figure 3 shows the enrichment plot for the RNA splicing pathway.
Leading edge analysis (which identifies specific genes driving observed pathway
associations) revealed that there was significant overlap between genes in these pathways,
and that four pathways relate essentially to the same process; post-transcriptional processing
of messenger RNA transcripts (supplementary fig. 2 online). The remaining pathways
involve genes responsible for opening or closing the chromatin structure to allow (or
disallow) transcription, and genes involved in the production and action of ribosomes,
permitting translation of the processed messenger RNA transcript. GSEA also revealed two
biological function gene sets possibly up-regulated in older people (extracellular region
genes p=0.004) and ion transport genes p=0.008), although neither were significant when
accounting for multiple testing (FDR q-value=0.197 and q-value=0.207 respectively).

Evidence of age related changes in isoform ratios with advancing age
Given the prevalence of genes involved in mRNA processing in our GSEA results, we
sought to determine whether the pattern of alternatively-expressed isoforms might therefore
be disrupted with age. Of the ten genes fulfilling our criteria for study, we found evidence of
disruption to splicing patterns in seven of these (actin binding LIM protein 1 [ABLIM1],
signal transducer and activator of transcription 1 [STAT1], CD79a molecule,
immunoglobulin-associated alpha [CD79A], heat shock 60kDa protein 1 [HSPD1], clusterin
associated protein 1 [CLUAP1], lysosomal-associated membrane protein 2 [LAMP2] and
SON DNA binding protein [SON]), and the eighth, caspase 8 (CASP8) was near significant
at p = 0.097 (supplementary fig. 3 online; table 3). The ABLIM1 gene codes for four
alternatively processed reference sequence isoforms, NM_002313.5, NM_001003407.1,
NM_001003408.1 and NM_006720.3. Comparison of the amount of NM_006720.3 relative
to the other three isoforms reveals a progressive increase with age (correlation co-efficient
0.0009; p= <0.0001; supplementary fig. 3 online). The STAT1, CD79A, HSPD1, CLUAP1,
LAMP2 and SON genes exhibit similar disturbances to isoform ratios with advancing age
(table 3).

In a separate analysis, we sought to provide extra evidence for disruption of splicing with
increasing age using a more accurate quantitative technique, real-time PCR. We selected
alternatively spliced genes from the top 250 genes most associated with age, for which
commercial probes were available. Of 8 genes tested in the fifty youngest and fifty oldest
individuals, we found evidence for disruption to the ratio of alternatively expressed isoforms
in 3 (EFNA1, GPR18 and VCAN; p = 0.05, 0.05 and 0.02–0.04 respectively depending on
the comparison), with the 4th (BCL11B) being very near significance at p=0.053
(supplementary figure 4 online, table 4).
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Discussion
In this study we present the first assessment of age-related alterations in gene expression in a
large population-based cohort. Contrary to our expectations, we found relatively few age-
associated transcripts, but these did include several genes associated with inflammation or
immune senescence, as expected. Gene Set Enrichment Analysis (GSEA) indicated that only
a very small number of molecular or biological function pathways were robustly associated
with advancing age, comprising mainly genes involved in the processing and maturation of
messenger RNA transcripts. This finding was supported by subsequent observation of age-
associated differences in the balance of alternatively-expressed isoforms, as suggested by
previous studies (Yannarell et al. 1977; Meshorer & Soreq 2002). Our results suggest that
modification of messenger RNA (mRNA) processing may comprise an important feature of
human aging.

Very few genes (295 of 16,571; 2% of transcripts identified) demonstrated strong and robust
associations with advancing age in our study. Power calculations based on the method of
Hsieh (Hsieh et al. 1998) indicate that the relatively large sample available (n=458 in
discovery set) is sufficient to detect effect sizes for transcripts statistically ‘explaining’ as
little as 5.3% of the variation in age. Thus if we have not detected other genes due to ‘noisy’
data, individual effect sizes for such genes are likely to be of limited biological significance.

The transcripts with the largest effect sizes comprise a set of peripherally expressed
biomarkers of the aging process, some substantially stronger than those currently known.
Transcripts such as CCR6, CCR7 and CD27, previously reported to be involved in immune
senescence (Yung et al. 2007), were also associated with age in our study (figure 1). As
predicted, genes showing the largest differential in expression with age were involved in
inflammatory responses, or immune function (de Magalhaes et al. 2009). Genes related to
the human immune system, e.g. LRRN3, CD248, LEF1 (lymphoid enhancer-binding factor
1), CCR6, CCR7, CD27 and LTB (lymphotoxin beta - TNF superfamily, member 3)
expressed lower levels of mRNA transcripts with increasing age in our cohort, which is in
agreement with other studies in human peripheral lymphocytes (Hong et al. 2008). This is
not unexpected given that our study tissue was white blood cells. Reduced expression of
these genes with age implies that the mechanisms involved are likely to mark the process of
“immunosenescence”, characterised by reduced chemotactic migration of the immune
mediator cells, lowered activation and differentiation of lymphocytes and macrophages with
reduced synthesis of immunoglobulins and increased apoptosis of immune cells. Our finding
of a strong association of lower CCR7 gene expression with advancing age validates the
findings from Yung et al. (Yung et al. 2007).

Our findings should also be considered in the context of age-related changes in lymphocyte
composition. Some age-associated transcripts may be expressed in different white cell
subtypes; the CD28, CCR7 and GZMH genes are differentially expressed in CD8+CD28+ T-
cells compared with CD8+CD28− T-cells, the ratio of which is know to alter with age
(Lazuardi et al. 2009). Some of the alterations in gene expression may therefore derive from
differences in the composition of the lymphocyte population in older people. What remains
to be seen is whether any of alterations in lymphocyte composition are themselves
attributable to the altered gene expression patterns we have demonstrated.

Several other factors have been implicated in aging or longevity, including alterations to
nutrient sensing pathways, such as insulin or TOR signalling. Oxidative stress/DNA repair,
inhibition of respiration, reproductive system signaling and telomere related mechanisms
(Kenyon 2010). Accordingly, genes representing some of these processes are evident
amongst the top 100 associations we have identified. These include the PASK, FOXO1,
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DKC1 and MYC transcripts, involved in energy sensing, insulin signalling, telomere
maintenance and ribosomal biogenesis respectively (Gu et al. 2009; Schlafli et al. 2009; Dai
et al. 2010; Smith et al. 2010).

The association of individual gene transcripts with age does not account for correlations
between markers. We developed a bi-class discriminant model which identified a set of six
transcripts within the top 25 strongest associations which form a potential predictive
signature of chronological aging (supplementary table S2; supplementary fig. 1 online). This
model was exceptionally good at classifying young and old, (the area under ROC curve was
96% in our discovery set, and this was only slightly diminished [95%] in the independent
replication set). The six genes in the predictive group comprise genes involved in immunity
or inflammation (LRRN3, CD27, CCR6) but also include some that are involved in the
maintenance or development of muscle tissue (VAMP5; myobrevin) or in vascularisation
(CD248, endosialin). Future versions of this discriminant model might attempt to
disentangle ‘aging’ from age-related disease effects: however, doing so is conceptually and
practically difficult, but the relative robustness of the model for different age-group
comparisons suggests that the transcript set is not merely distinguishing disease-free, from
diseased, individuals.

Gene Set Enrichment Analysis (GSEA) revealed a striking restriction in the number of
pathways that were associated with age in our dataset; only 7 of 1065 molecular or
biological function pathways are robustly associated with age. Four of these pathways
identified are involved in mRNA processing (namely mRNA binding, mRNA processing,
mRNA processing reactome and RNA splicing). Three of the age-associated pathways we
identified (RNA binding, RNA splicing and ribosome biogenesis and assembly) were also
noted in previous GSEA analyses in mice (Southworth et al. 2009). Differences between our
results and the studies may arise from differences between species in the aging process, or
from differences in the tissue-specificity of changes.

RNA processing is the mechanism by which the initial RNA products transcribed from
genes are prepared for eventual translation. This includes removal of introns and addition of
the poly-A tail and 5’ Cap structures (Keene 2010). These processes occur simultaneously
and ensure diversity of the mRNA transcriptome, and determine stability and half-life of the
mRNA transcripts (Fong & Bentley 2001). In our GSEA analysis, transcripts responsible for
all aspects of mRNA processing were present in the core-enriched fraction of the pathway
(supplementary table S4 online), with a surprising amount of overlap between the groups
(supplementary fig. 2 online). The remaining pathways relate to the accessibility of the
chromatin to transcription factors (chromatin assembly and disassembly) and to the
processes that surround the translation of the mRNA transcripts (RNA binding and
ribonucleoprotein complex biogenesis and assembly), which is in keeping with previous
observations of a reduction in rates of protein synthesis with age in humans and animal
species (Ballard & Read 1985; Kennedy & Kaeberlein 2009).

Our observation that disruption to the proteins involved in mRNA processing appears to
occur without widespread alterations in gene expression levels, may indicate that whilst
aged leukocytes in-vivo may be expressing most genes at comparable levels to those found
in younger cells, there may be differences in the relative balance of splice products produced
or increases in the occurrence of aberrantly spliced transcripts. In seven of ten alternatively
spliced genes we studied, we found disruptions to the patterns of isoform expression with
increasing age, and a near-significant result in one further case (table 3). We also noted
variation in splicing patterns with age by real-time PCR, finding alteration to the balance of
alternatively expressed isoforms in 3 of 8 (38%) alternatively spliced genes, with the 4th

very near significance. Our observation of very modest effects even in a very limited cohort
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of 100 people (7% to 37% alteration in the ratio of isoforms)suggests that the true level of
splicing disruption may be higher than we report and warrants a more detailed, targeted
study.

Whether or not the processing of a particular transcript is disrupted will depend on many
factors, not least how many different sequence elements are necessary to ensure the usage of
a particular splice junction. Presumably, highly regulated transcripts with weaker splice sites
that are very dependent on additional sequence factors (such as exon splicing enhancers
(Cartegni et al. 2002)) may be more susceptible to age-accumulated DNA and RNA damage
and thus more likely to show disruption of splicing and other related processes with age.
Interestingly, two of the most deregulated splicing proteins in our microarray data; SRFR6
(SRp55) and SRFS1 (ASF/SF2) (p = 1.3 × 10−6 and 0.0001 respectively), were members of
the SRFS (Splicing Factor, Arginine/Serine-Rich) family of splicing factors, which are key
players in maintaining the plasticitiy of the transcriptome by regulation of alternative
splicing (Valcarcel & Green 1996). This is particularly interesting since these proteins are
key ligands for the exon splicing enhancer (ESE) motifs which regulate splice site choice in
development and differentiation (Cartegni et al. 2002). Their deregulated expression during
the aging process may therefore manifest as a reduction in the adaptive capacity of the
transcriptome.

Disruption to the mRNA processing machinery may also lead to an increase in the
occurrence of unusual or aberrant splicing products, which of course would not be present
on the microarray chip. This would not be an unexpected finding in an aging organism,
given that they may arise from mutations in the DNA sequence elements that control splice
site usage, or from alterations in the RNA transcript itself, which is very susceptible to
damage by oxidative and other insult (Kong & Lin 2010). Some of the proteosomal
components that intercept and neutralise aberrant proteins produced from such transcripts
were up-regulated in our data (PMSB9; FDR q value = 0.008, p = 6 × 10−5, PMSB10; q=
0.005, p = 0.0008).

There is a growing body of evidence that results from peripheral blood white cells are also
relevant to less accessible tissues (Tang et al. 2003; Twine et al. 2003; Achiron et al. 2004).
In some reports, the majority of changes appeared to be in genes with little tissue specific
regulation, suggesting that most of the transcriptomic alterations with age might be
generalised (Rodwell et al. 2004; de Magalhaes et al. 2009). This is supported by other
evidence, where age-related expression differences were compared in brain, kidney and
muscle, in a population of 81 human subjects, and found to be conserved in each of these
tissues (Zahn et al. 2007). The age-related transcriptomic signature is also relatively stable;
of the 50 top associations reported by Hong et al (Hong et al. 2008), 32 of the 42
represented in our data also showed age-related differences, at least at p=<0.05 (data
available from authors), despite the differences expected comparing our in-vivo leukocyte
mRNA to mRNA from stored isolated lymphocytes. Lymphocytes are also the most
appropriate tissue for the study of immune senescence, which is key to many chronic disease
processes, including inflammation, and autoimmune alterations with age (Desai et al. 2010)

Possible limitations of our study analysis include the deliberate absence of accounting for
specific disease. This is because an increased susceptibility to disease is intrinsic to any
definition of aging, and thus accounting for disease would risk controlling out the
associations of interest (and also poses major practical difficulties with undiagnosed disease
being common at older ages). Similarly, our study does not account for variation in the
transcriptome of different blood cell subtypes. However, as noted above our results are
consistent with those from isolated lymphocytes (Hong et al. 2008), and our approach
avoids disruption to in-vivo expression patterns.
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In conclusion, we present the first genome-wide assessment of age-related in-vivo leukocyte
gene expression profiles in a large population based study. As aging is associated with
random damage to DNA (Gensler & Bernstein 1981), we tested the hypothesis that this
would result in widespread deregulation of gene expression. Instead, we found that human
aging is associated with a small number of focussed changes, mainly in individual genes
associated with immune cell function. The major pathways associated with older age in
humans were mainly involved with the processing of the primary RNA transcripts into
mature mRNAs, an observation supported by our finding of age-related changes in the
relative expression of alternatively-expressed isoforms of example loci. We suggest that
disruption to messenger RNA processing may comprise an important feature of aging in the
human population.

Experimental Procedures
Ethics Statement

Ethical permission was granted by the Instituto Nazionale Riposo e Cura Anziani
institutional review board in Italy. Participants gave informed consent to participate.

Cohort details
The InCHIANTI study (Ferrucci et al. 2000) is a population-based, prospective
epidemiological study of factors affecting aging, in the Chianti area (Tuscany) of Italy. The
participants were originally enrolled in 1998–2000, and were interviewed and examined
every three years. The recent 9-year follow-up exam involved 733 participants.
Characteristics of the study cohort are given in table 5.

RNA collection and extraction
Peripheral blood specimens preserving in-vivo RNA expression were collected at the 9 year
follow-up (2008/9), using the PAXgene technology to preserve levels of mRNA transcripts
as they were at the point of collection (Debey-Pascher et al. 2009). RNA was extracted from
peripheral blood samples using the PAXgene Blood mRNA kit (Qiagen, Crawley, UK)
according to the manufacturer’s instructions.

Whole Transcriptome Scan
Whole genome expression profiling of the samples was conducted using the Illumina
Human HT-12 microarray (Illumina, San Diego, USA) as previously described (Zeller et al.
2010). Pre-processing of microarray data is described in the supplementary methods.

Statistical analysis
Our dataset was subdivided on the basis of hybridization batch: a discovery dataset
containing approximately two-thirds of the full sample (n=458 individuals), and an
independent replication set (n=240 individuals). This is a form of test-set cross-validation, a
common and well-established approach when assessing performance of classification
models (Lubomirski et al. 2007).

We calculated median centered gene expression levels on the log2 scale to ensure maximum
overlap of profiles without altering their variance, in line with methodology used in previous
studies (Idaghdour et al. 2010). The relationship between gene expression and chronological
age was tested using a linear regression model with (log-transformed) gene expression level
as the dependent variable, chronological age (recorded at RNA extraction) as an explanatory
variable, and with adjustment for potential confounders. Separate regression models were
fitted for each of the full set of 16,571 probes which passed QC in the discovery dataset. We
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used the false discovery rate (FDR) to account for multiple testing, applying an FDR cut off
of q ≤0.001 to select probes expressing differentially with age. Transcripts selected at the
screening stage in the discovery set were tested for association with age in the replication
dataset using the same model specification. The development of a bi-class discriminant
model to identify the transcripts explaining the majority of the association with age is
described in the supplementary methods.

All our analyses were adjusted for the following potential confounding factors on gene
expression: gender; lifetime pack-years smoked (in five categories: none, less than 20 years,
20 to 39 years, 40 plus years, and missing); waist circumference (as a continuous trait);
highest level of education attained (in five categories: none, elementary, secondary, high
school, and university / professional); and study site (individuals were drawn from a rural
village [Greve] and an urban population [Bagno a Ripoli]). We also controlled for potential
hybridization and/or amplification batch effects in all our analyses (supplementary table S5
online).

TaqMan Low Density Array (TLDA) validation of microarray results
A subset of the cohort comprising the oldest men and women (85 – 104 years, n=50), was
compared with one comprising the youngest men and women (30–44y years, n=49) in this
analysis. Total RNA (100ng) was reversed transcribed in 20µl reactions using the
Superscript III VILO kit (Invitrogen, Paisley, UK), according to the manufacturer’s
instructions. RNA samples were then used for TLDA analysis. A list of target genes is given
in supplementary table S6 (online). Each 32-gene set included four endogenous control
genes which had been empirically validated as being unaffected by age on the basis of the
microarray results; 18S, GUSB, PPIA and IDH3B. Reaction conditions are described in the
supplementary methods online.

Pathway analysis (GSEA)
Gene Set Enrichment Analysis (GSEA was performed to assess pathways or pre-defined
gene sets associated with chronological age according to the method of Subramanian et al,
(Subramanian et al. 2005). “Enrichment statistic” and “Metric for ranking gene” parameters
were configured to “Weighted” and “Pearson” respectively. One thousand random
permutations of the phenotype label were used to calculate the empirical p-values of each
pathway. The gene sets with a nominal of p-value < 0.01 and false discovery rate (FDR) of
≤ 25% were considered as potential associated gene sets as previously described
(Subramanian et al. 2005). Gene symbols and the Illumina annotation file were used to
collapse 16,571 probes to 12357 genes by taking the median intensity of probes representing
each gene.

Molecular or biological function pathways and Gene Ontology (GO) gene sets were selected
from the molecular signature database (MSigDB)
(http://www.broadinstitute.org/gsea/msigdb/index.jsp). After filtering gene sets to those with
a minimum of 15 and a maximum of 500 gene set size, 294, 439, 209 and 123 gene sets
from the Canonical pathways, Biological Process Ontology gene sets, Molecular Function
Ontology gene sets and Cellular Components Ontology gene sets were used in the analysis,
respectively.

Examination of age related changes in microarray isoform ratios with advancing age
We examined the relative balance of alternatively expressed isoforms of selected genes for
evidence of disruption to splicing patterns. We first examined the top 50 genes robustly
associated with age (table S1) identified as candidates for study, but only four of them;
ABLIM1, CD79A, STAT1 and HSPD1, showed evidence both of alternative splicing, and
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expression identified by suitable probes within the expression data available to us. We then
selected further genes for study based on the following criteria: the presence of >5
alternative probes for the same gene, and the presence of >2 reference isoforms for the gene.
The probe sequences were then mapped back onto the specific transcript sequences to
determine which probe signals to use for analysis. By these methods, we identified ten genes
for study: ABLIM1, CD79A, STAT1, HSPD1, CASP8, CLUAP1, LAMP2, MAX, SON and
WTAP. We then carried out a logistic regression of the ratio of signal deriving from isoform-
specific probes according to age. Data were adjusted for gender.

TaqMan Low Density Array (TLDA) assessment of disruption to mRNA splicing
A subset of the cohort comprising the oldest men and women (85 – 104 years, n=50), was
compared with one comprising the youngest men and women (30–44y years, n=50) in this
analysis. Total RNA (100ng) was reversed transcribed in 20µl reactions using the
Superscript III VILO kit (Invitrogen, Paisley, UK), according to the manufacturer’s
instructions. RNA samples were then used for TLDA analysis for transcripts of the ANXA7,
BCL11B, CXCR5, EFNA1, GPR18, IL6ST, PUM1 and VCAN genes, which were selected on
the basis that they were alternatively-expressed isoforms of genes in the top 250 associations
with age which produced a minimum of 2 isoforms. Endogenous control genes were IDH3B
and GUSB, which were identified as the most stable controls by the GeNORM function of
the StatMiner TLDA analysis software (Integromics, UK). Reaction conditions are
described in the supplementary methods online.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. The expression of key genes with age
The figure shows the association between probe signal intensity (arbitrary units; Y axis) and
age (years; X axis) for three genes known to be associated with age; CD27, CCR6 and CCR7
(a–c), the top 3 down-regulated genes in our study; LRRN3, CD248 and LEF1 (d–f) and the
top 3 up-regulated genes in our study; VAMP5, GBP1 and STAT1 (g–i)
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Figure 2. Box plots showing gene expression changes obtained by TLDA
This figure demonstrates the difference in expression levels between young (30 – 44 years; n
= 49) and old (85 – 104 years; n = 50 years) individuals as assessed by TLDA analysis.
Gene expression levels expressed relative to the endogenous controls are given on the Y axis
and the patient group (young or old) are given on the X-axis.
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Figure 3. Gene Set enrichment analysis plot for the RNA splicing pathway
The Y axis gives the enrichment score for an association with age in the top panel and the
ranked list matrix in the bottom panel. The X-axis refers to the rank of each gene in the
ordered dataset. Each vertical line in the central portion of the figure refers to one gene
within the pathway. The position of each line relative to the central dashed line indicates
whether the gene is positively or negatively correlated with age. Positive correlations with
age (age-pos) locate to the left of the figure and negative correlations with age (age-neg)
locate to the right side of the figure. The dashed line represents the null point, where a gene
demonstrating no positive or negative correlation would appear. RLM = Ranked List Metric,
ES = Enrichment score.
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