Delivery Systems for Intradermal
Vaccination
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Abstract Intradermal (ID) vaccination can offer improved immunity and simpler
logistics of delivery, but its use in medicine is limited by the need for simple,
reliable methods of ID delivery. ID injection by the Mantoux technique requires
special training and may not reliably target skin, but is nonetheless used currently
for BCG and rabies vaccination. Scarification using a bifurcated needle was
extensively used for smallpox eradication, but provides variable and inefficient
delivery into the skin. Recently, ID vaccination has been simplified by introduction
of a simple-to-use hollow microneedle that has been approved for ID injection of
influenza vaccine in Europe. Various designs of hollow microneedles have been
studied preclinically and in humans. Vaccines can also be injected into skin using
needle-free devices, such as jet injection, which is receiving renewed clinical
attention for ID vaccination. Projectile delivery using powder and gold particles
(i.e., gene gun) have also been used clinically for ID vaccination. Building off the
scarification approach, a number of preclinical studies have examined solid
microneedle patches for use with vaccine coated onto metal microneedles,
encapsulated within dissolving microneedles or added topically to skin after
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microneedle pretreatment, as well as adapting tattoo guns for ID vaccination.
Finally, technologies designed to increase skin permeability in combination with a
vaccine patch have been studied through the use of skin abrasion, ultrasound,
electroporation, chemical enhancers, and thermal ablation. The prospects for
bringing ID vaccination into more widespread clinical practice are encouraging,
given the large number of technologies for ID delivery under development.
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1 Introduction
1.1 Immunologic Motivation for Intradermal Delivery

The skin contains high concentrations of antigen-presenting cells, and is thus a
site capable of inducing potent immune responses. The skin is composed of
multiple layers, each with characteristic resident and transient immune cell
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subsets. Outermost is the thin layer of the epidermis (0.05-0.2 mm), which is
primarily made up of epithelial cells as well as Langerhans cells, melanocytes,
and Merkel cells. Beneath the epidermis, the dermis is a thicker layer
(1.5-3 mm) consisting of a network of collagen fibers. Cells of the adaptive
and innate system reside in or circulate through the dermis, including
macrophages, mast cells, Langerhans cells, and dermal dendritic cells. Antigen-
presenting cells in the skin perform an essential role in processing incoming
antigens, resulting in immune system activation or immune tolerance of self or
harmless antigens (Nicolas and Guy 2008). For these reasons, it is possible that
delivery of vaccines to the epidermis or dermis may result in superior immune
responses compared to other anatomical sites (Glenn and Kenney 2006;
Lambert and Laurent 2008; Nicolas and Guy 2008). Alternatively, an
equivalent immune response could be stimulated by delivery of a smaller
quantity of vaccine antigen to the skin. Either of these mechanisms could be
beneficial for developing vaccines against new disease targets, improving
immune responses in hard-to-treat groups, or lowering the cost of vaccine
antigens, and may be particularly valuable for improving access to vaccines in
low-resource settings.

While a substantial number of clinical studies evaluating intradermal (ID)
delivery of vaccines have been performed, the majority of studies have not been
designed to evaluate whether ID delivery is immunologically superior to other
routes. In most cases, to simplify administration, a reduced dose (10 or 20%)
delivered ID was compared to the full dose delivered either subcutaneously (SC)
or intramuscularly (IM). Only a few studies have compared delivery of the same
dose of vaccine ID and SC/IM. Further research will be needed to establish
whether the potential for dose-sparing is unique to ID delivery (PATH 20009).
However, some ID delivery devices in development offer additional desirable
features such as needle-free delivery or improved ease of administration, which
may be drivers for further adoption of ID vaccine delivery even if there is no net
immunologic benefit.

1.2 Current Intradermal Vaccines

1.2.1 Smallpox

Vaccines for smallpox have been delivered to the skin dating back to Edward
Jenner’s first experiments in 1796 demonstrating that exposure to cowpox could
protect against smallpox infection. A variety of scarification techniques and
devices have been used to allow virus introduction, including knives, needles,
scalpels, and rotary lancets. During the global smallpox eradication campaign,
both multi-dose nozzle jet injectors and bifurcated needles were used for ID
vaccinia virus inoculation (Henderson et al. 2008).
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1.2.2 BCG

Bacille Calmette-Guérin (BCG) vaccine for tuberculosis is globally the most
widely delivered ID vaccine. ID injection by needle and syringe is the most
commonly used method, but in some areas BCG is also delivered to the skin using
a multipuncture device. New versions of BCG are under development in an effort
to improve immune protection, and are also delivered ID (Hoft et al. 2008).

1.2.3 Rabies

Rabies vaccines are conventionally delivered IM, but due to the high cost of cell-
culture-derived vaccines and the pressing need for affordable vaccination regimens
in endemic regions, ID delivery has been extensively studied. Both post-exposure
prophylaxis and pre-exposure prophylaxis ID regimens induce protective titers,
and WHO has recommended ID delivery of reduced doses of rabies vaccines since
1991 (WHO 2005; 2007). Given equivalent doses of antigen, delivery to the
dermis appears to be either superior or equivalent to IM/SC (Bernard et al. 1982;
Bernard et al. 1987; Fishbein et al. 1987; Phanuphak et al. 1990). A detailed
review on ID rabies vaccination can be found elsewhere in this special volume on
ID immunization (Warrell 2011).

1.3 Clinical Studies on other Intradermal Vaccines

1.3.1 Influenza

Multiple studies of reduced-dose delivery of influenza vaccines have been con-
ducted, providing some of the most informative clinical data on the potential for
dose-sparing through ID delivery. One study found that ID delivery of 6 g HA per
influenza strain was comparably immunogenic as the standard IM dose of 15 pg
HA per strain (Belshe et al. 2004). A later comparison of 3, 6, and 9 pg delivered
both ID and IM found equivalent responses for the two delivery routes for each dose
(Belshe et al. 2007). Trials have also been conducted with influenza using novel
microneedle devices to aid accurate ID delivery, as discussed in Sect. 3.2.

1.3.2 Hepatitis B

ID delivery of reduced doses of hepatitis B vaccine has been evaluated in healthy
infant, child, and adult populations as well as in immuno-compromised patient
groups. Meta-analyses have concluded that seroconversion rates are lower than
full-dose IM delivery, although responses are higher in children and females (Chen
and Gluud 2005; Sangare et al. 2009). When the same dose of hepatitis B antigen
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has been delivered ID and IM, immune responses were equivalent for both routes
(Ayoola 1984; Milne et al. 1986; Heijtink et al. 1989; Coberly et al. 1994; Rahman
et al. 2000).

1.3.3 Hepatitis A

Hepatitis A vaccines have also been proposed as a possible target for reduced-dose
ID delivery. Two studies found that reduced doses delivered ID produced com-
parable immune responses to IM delivery, while a third indicated that the ID route
was inferior (Brindle et al. 1994; Carlsson et al. 1996; Pancharoen et al. 2005).
Local reactogenicity was observed for alum-adjuvanted formulations.

1.3.4 Polio

In a few countries, ID was originally the standard route of delivery for inactivated
poliovirus vaccine, but injection depth was later shifted to IM (Weniger and
Papania 2008). Studies have found that ID delivery of reduced doses is capable of
inducing seroconversion, which may help make this vaccine more affordable for
use in developing countries (Samuel et al. 1991; Samuel et al. 1992; Nirmal et al.
1998). More recently, the WHO Global Polio Eradication Initiative has worked to
determine the potential for this mode of delivery to be used in post-eradication
settings after phase-out of oral polio vaccine.

1.3.5 Measles

Several studies have been conducted evaluating ID delivery of measles vaccine,
with mixed results (Burland 1969; Kok et al. 1983; Whittle et al. 1984; de Moraes
et al. 1994). However, the vaccine dose and method used to deliver the vaccine
varied, and it is possible that trials using older generation delivery technology did
not deliver vaccine reliably to the dermis (PATH 2009). Transcutaneous immu-
nization of measles vaccine on a coated patch has also been attempted. Although a
salivary sIgA response was observed, the key marker of immunity, an increase in
neutralizing serum IgG, was not detected (Etchart et al. 2007).

1.3.6 Yellow Fever

Studies were conducted delivering the 17D attenuated yellow fever virus vaccine
by scarification, but this delivery mode was abandoned as efficacy was low. More
recently, a clinical trial compared full dose SC delivery of a 17D vaccine to 1/5
dose delivered ID by Mantoux injection, which found equivalent seroprotection
between the two routes (Roukens et al. 2008). A more extensive description on ID
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vaccination against yellow fever is provided elsewhere in this special volume on
ID immunization (Roukens et al. 2011).

1.3.7 Others

A number of other vaccines have been considered for ID delivery. Research has
shown that a reduced ID dose of vaccines for diphtheria-tetanus-pertussis, tetanus
toxoid, and tick-borne encephalitis can generate a comparable immune response to
the standard dose and way of injection (Stanfield et al. 1972; Zoulek et al. 1984;
Zoulek et al. 1986; Dimache et al. 1990). ID delivery is also under investigation
for a number of vaccines in development, including vaccines for tuberculosis,
enterotoxigenic E. coli, and pandemic influenza, as well as DNA vaccines.

1.4 Difficulties to Make Intradermal Delivery More Widespread

The traditional methods used for ID delivery of vaccines have limitations which may
hinder adoption of ID delivery. Bifurcated needles and multipuncture devices have
been used successfully for delivery of smallpox and BCG vaccines, but do not deliver
reproducible quantities of vaccine antigen to the dermis and are therefore unlikely to
be appropriate delivery devices for new vaccines (Lambert and Laurent 2008). The
Mantoux method of inserting a needle at a shallow angle into the skin can also be
inconsistent, and requires additional training and skill to perform correctly (Flynn
et al. 1994). The perceived difficulty of performing an ID injection using this method
may prevent development of vaccines for ID delivery. New generations of devices,
such as those discussed in the rest of this article, may improve the reliability of ID
delivery and enable adoption of the ID route for more vaccines.

2 Injecting into the Skin

Most vaccines are administered IM or SC using a hypodermic needle. To achieve ID
vaccination, conventional hypodermic needles can be used by employing the
Mantoux technique to inject into the skin. Simpler and more reliable ID injection is
being pursued through adaptations of hypodermic needle technology, as well as novel
hollow microneedle devices produced by microfabrication (Prausnitz et al. 2009).

2.1 Hypodermic Needles: Mantoux Intradermal Injection

The Mantoux technique is an ID injection method characterized by a needle
inserted at a 5-15 degree angle, approximately 1 mm deep into the dermis, to
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a b

Fig. 1 Needles used for ID vaccination. a 32 gauge hypodermic needle with ID bevel used for
Mantoux technique injections. b Bifurcated needles used for smallpox vaccination by
scarification. ¢ Hollow microneedle developed for reliable ID injection, currently used for ID
influenza vaccination (Courtesy of BD). d Mag-11 tattoo needle. e Microneedle injection system,
consisting of a single-use syringe coupled to a microneedle shown in part ¢ (Courtesy of BD).
f Microneedle injection system containing of a row of four microneedles (Courtesy of NanoPass
Technologies)

inject a vaccine or drug (Fig. 1a). This method was developed by Charles Mantoux
in the early 20th century, and it has been used to identify tuberculosis infection by
the ID injection of tuberculin (Mantoux 1909). However, this technique requires
training and is often considered an inconsistent delivery method, thus preventing
vaccine makers or medical practitioners from using ID injection as a common
immunization method (Lambert and Laurent 2008). Also, age or elasticity-related
skin conditions have a significant effect on adequate placement of the needle in the
dermis for the traditional ID injection technique (Dean et al. 2005; Laurent et al.
2007), thus leading to inadequate vaccination. Other disadvantages of Mantoux
technique injection include inaccurately delivered dosage of vaccine, vaccine
wastage in dead space of the needle, and variable injection success when using
different gauge needles (Flynn et al. 1994). Moreover, success rate of ID injection
by untrained personnel was found to be 80-90% (Howard et al. 1997). In an effort
to reduce training requirements and to improve the reliability of the Mantoux
injection technique, an intradermal adapter is under development by PATH
(Seattle, WA, USA), a nonprofit, international health agency that develops and
advances health technologies for low resource settings, and SID Technologies.
This device fits over a conventional hypodermic needle and syringe and limits the
angle and depth of penetration of the needle into the skin in order to facilitate
delivery to the dermis.
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2.2 Single Hollow Microneedles

To overcome these limitations of conventional ID injection, Becton-Dickinson
(BD) has developed a micro-sized needle that can be inserted into skin vertically,
unlike the angled injection of the Mantoux method. This novel microneedle device
has been studied in animals and human subjects, and is currently used in approved
influenza vaccines INTANZA® and IDflu®). BD’s microneedle device (called
Soluvia™) uses a 30 gauge microneedle that extends 1.5 mm beyond an insertion
depth-limiting tip, which is connected to a prefilled syringe (Figs. 1c and le). The
microneedle system was evaluated versus the conventional Mantoux technique to
compare delivery efficiency and safety in human subjects. Using ultrasound
echography analysis, the distribution of fluid delivered by the microneedle was
seen to be larger than the Mantoux injection control. In addition, the microneedle
system had a high ID administration success rate (95%) and, in a study of patient
compliance and safety, the microneedle device showed promising results. This
system also caused fewer occurrences of injuries to the papillary dermis, lesser
pain than Mantoux injection and was administered easily by untrained personnel
(Laurent et al. 2007).

2.2.1 Preclinical Studies

An earlier prototype of the BD microneedle using a 1 mm, 34 gauge needle has
been tested in rats for delivery of influenza vaccines which showed dose sparing
effects compared to an IM control. ID microneedle administration of a low dose
(0.01 pg) of inactivated virus vaccine induced similar serum antibody response as
IM injection of a dose 100 times larger (1 pg). Additionally, using microneedles
for ID immunization with split-viron vaccine (seasonal HINI1 strain) showed
approximately ten-fold dose-sparing compared to IM immunization. In the same
study, ID immunization using plasmid DNA vaccine encoding the hemagglutinin
protein of influenza A virus showed similar dose-sparing effects after multiple
immunizations (Alarcon et al. 2007). The BD microneedle was also used to deliver
a live attenuated vaccine against Japanese encephalitis (ChimeriVax ™-JE) in
non-human primates. In this study, ID microneedle injection was compared to SC
injection and transcutaneous microabrasion (see Sect. 6.1). The microneedle ID
injection provided the best and most consistent immune responses (i.e., neutral-
izing antibodies) of the three types of immunizations (Dean et al. 2005).

A further study compared anthrax vaccine delivery using ID microneedle
immunization, IM injection, intranasal delivery, and epidermal delivery by
microabrasion (Mikszta et al. 2005) into mice (10 pg dose) and rabbits (50 pg
dose). Microneedle ID vaccination showed slightly better response in the murine
model than the other routes used, while all treatments in the rabbit had similar
responses. A follow-up ID immunization was performed to compare ID injection
with IM injection over a range of doses in a rabbit model: 10, 0.2, and 0.08 pg of
anthrax vaccine (Mikszta et al. 2006). After prime immunization, ID injection
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showed significantly higher immunogenicity than IM injection when using 10 and
0.2 ng dosages. Interestingly, ID injection with 0.2 pg showed a statistically
equivalent response to IM administration of the 10 pg dose. After administration
of a booster immunization, this dose-sparing phenomenon continued. Furthermore,
an aerosol lethal challenge with anthrax spores showed that a 10 pg ID injection
completely protected the immunized rabbits, whereas IM injection of the same
dose protected only 71% of the rabbits.

2.2.2 Clinical Trials

An early prototype of the BD microneedle system was first tested in a clinical
study examining influenza vaccine delivery in healthy adults (18-60 yrs) and
elderly adults (>60 yrs) (Belshe et al. 2004). In this study, 6 pg of hemagglutinin
was delivered by ID injection and compared to a full dose (15 pg) delivered by IM
immunization. It was found that in younger participants, ID immunization was not
significantly different from immunization by IM, as shown by geometric mean
hemagglutination inhibition (HAI) titers. However, ID administration showed
lower HALI titers than IM in elderly patients. Further evaluation of ID microneedle
vaccination against influenza was performed in clinical studies of healthy adults
(18-57 yrs) (Leroux-Roels et al. 2008; Beran et al. 2009) and elderly persons
(>60 yrs) (Holland et al. 2008; Arnou et al. 2009). For healthy adults, 9 pg of
hemagglutinin (H1, H3, and B strains) was delivered by ID injection and was
compared to a 15 pg IM immunization. This study confirmed previous results that
reduced-dose ID injection was equally immunogenic as full-dose IM injection
(Leroux-Roels et al. 2008).

In a Phase II clinical trial, the effects of lower dose ID immunization was
investigated using 3, 6, and 9 pg of hemagglutinin (ID) and 15 pg of hemagglu-
tinin (IM). ID immunization using 3 and 6 pg of hemagglutinin induced inferior
immune response as shown by HALI titer, but a dose of 9 pug showed comparable
response compared to full-dose (15 pg) IM vaccination (Beran et al. 2009). For
elderly subjects (>60 years old), a booster vaccine (15 pg) was administered due
to the inferior immune system generally found in the elderly compared to younger
adults (Goodwin et al. 2006). Therefore, 15 pg of hemagglutinin was administered
twice by either ID or IM routes in elderly subjects. In this phase II clinical trial, ID
immunization showed significantly better immune response as determined by post-
immunization GMT (geometric mean titer), seroprotection (% participants with
HAI titers >40), GMTR (geometric mean ratio of post-immunization titer to
pre-immunization titer), and rate of seroconversion (post-immunization titer in
participants with a pre-immunization titer <10). Therefore, ID microneedle
vaccination provided superior immunogenicity in a high priority population for
protection from influenza due to high vulnerability (Holland et al. 2008). These
findings were further confirmed in a phase III clinical trial for elderly persons
(>60 years old), where ID immunization showed superior seroprotection, GMTR,
and rate of seroconversion compared to IM after prime immunization.
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After administration of two booster immunizations, ID immunization induced
consistently higher seroprotection rates than IM immunization (Arnou et al. 2009).

As a final note, ID immunization caused more local inflammatory-like reactions
than IM immunization. It is possible that because ID delivery occurs in the skin,
inflammatory or immunologic reactions are more easily visible than those that may
occur after IM immunization, which presents the antigen deep into the muscle layer
where an inflammatory reaction would not be visible to the eye (Belshe et al. 2004;
Holland et al. 2008; Arnou et al. 2009; Beran et al. 2009; Van Damme et al. 2009).

2.3 Arrays of Hollow Microneedles

Hollow microneedles have also been developed as multi-needle arrays, which have
involved shorter needles (<<l mm) produced by novel microfabrication tech-
niques, including laser micromachining (Davis et al. 2005), silicon-based MEMS
technique using deep reactive-ion etching (Gardeniers et al. 2003; Roxhed et al.
2007), integrated lithographic molding technique (Luttge et al. 2007), deep X-ray
photolithography (Perennes et al. 2006), photolithography with micromolding
technique (Wang et al. 2009), drawing lithography with viscoelastic polymer (Lee
et al. 2010) and others. In addition, glass hollow microneedles have been fabri-
cated by drawn glass micropipette techniques (Wang et al. 2006). A recently
developed hollow microneedle array (MicronJet from NanoPass Technologies)
was used in a human clinical trial involving healthy adults (Van Damme et al.
2009). This device consists of a row of four hollow silicon microneedles that are
450 pm in length (Fig. 1f). In this study, ID injection with the array using 20 and
40% of the IM dose (15 pg) induced similar immune response as measured by
GMT increase, seroconversion rate, and seroprotection rate.

3 Shooting into the Skin

ID delivery can also be achieved via jet injection or particle injection routes, which
are needle-free methods of vaccine and drug delivery. There have been decades of
clinical experience with jet injection, and more recent studies are being conducted
with newer innovations in this technology.

3.1 Jet Injector

Needle-free jet injectors create a fine stream of pressurized liquid that penetrates
the skin. The depth of delivery—ID, SC, or IM—is largely determined by design
variables such as the injection stream coherence, quality, and pressure; orifice size,
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skin and tissue thickness, and the angle of the injection relative to the skin
(Schramm-Baxter and Mitragotri 2004; Weniger and Papania 2008). Vaccines that
have been shown to achieve immunity when administered via jet injection to
conventional depths (i.e., ID, SC, or IM, depending on the vaccine) include typhoid,
cholera, BCG, tetanus-diphtheria for adults, whole cell diphtheria-tetanus-pertussis
(DTP), measles, meningococcal A and C, smallpox, yellow fever, hepatitis A,
hepatitis B, influenza, plague, polio, and tetanus (Weniger and Papania 2008).

3.1.1 History

Historically, multi-use nozzle jet injector (MUNII) devices with reusable nozzles
were used successfully worldwide in the latter half of the 20th century to deliver
countless millions, or by some estimates billions of doses of vaccines to both
adults and children over the course of several decades (Weniger and Papania
2008). In response to the risks of disease transmission due to cross contamination
from reuse of injection devices, a new generation of jet injector designs were
developed starting in the late 1980s to address this safety concern. These new jet
injectors utilize a sterile, disposable cartridge or syringe for each patient injection
and a reusable hand-piece that relies on a power source, such as a manually
powered spring or gas canister. A number of disposable-syringe jet injectors
(DSJIs) have been developed and approved by national regulatory authorities for a
variety of applications and uses, including vaccine delivery. Some of these are
low-cost, manually powered DSJI technologies, developed specifically for appli-
cation to developing countries’ immunization requirements and needs, which
include design features to prevent reuse (‘auto-disable’) of the needle-free syrin-
ges. DSJIs in clinical development for ID delivery include the Biojector®™ 2000 and
Zetajet® (Bioject), and PharmaJet® (Pharmalet Inc.).

There is a long history of ID delivery via the jet injector route through the use of
modified syringe orifice nozzles that can either have direct contact to the skin or can
involve a setback feature or ‘spacer’ intended to introduce a gap between the nozzle
orifice and the injection site, thereby weakening the injection stream and limiting
deposition to the dermal space (Weniger and Papania 2008) (Figs. 2a, b). MUNIJI
devices provided millions of ID smallpox doses during the implementation of the
smallpox eradication program (Millar and Foege 1969; Weniger and Papania 2008).
Jet injectors have also been utilized historically for ID vaccination of rabies (Bernard
et al. 1982; Bernard et al. 1987), hepatitis A (Williams et al. 2000), BCG (Paul et al.
1978; Parker 1984), DTP combination vaccine (Stanfield et al. 1972), measles
(Burland 1969; Kok et al. 1983), and influenza vaccine (Weniger and Papania 2008).

3.1.2 Recent Intradermal Vaccination Clinical Studies

A number of studies have been or will soon be implemented to address the
application of DSJI ID delivery to vaccines of importance to global public health.
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Fig. 2 Liquid jet and solid a
projectile injectors. a Jet

injector (Biojector 2000) with

ID spacer (white portion at siorerter
end of syringe), used for
investigational use only
(Courtesy of Biolect). b Jet
injector applied to the skin for
injection (Courtesy of
PharmalJet). ¢ Epidermal
powder immunization device
for ID projectile injection
(Courtesy of PowderMed)

For example, the US Centers for Disease Control and Prevention is leading a study
on seasonal influenza vaccine delivered ID via a DSJI technology in children of
6—24 months of age. This study compares full and fractional dose IM with ID
vaccination. Results-to-date indicate that injections were generally tolerable with
few study-related adverse events. Initial blinded assay results demonstrate
comparable immune response rates. Final study results and analysis can be found
in Gomez et al. (2010).

The WHO Global Polio Eradication Initiative has worked to determine the
potential for DSJI ID delivery of inactivated poliovirus vaccine (IPV) to be used in
post-eradication settings after phasing out the use of oral polio vaccine. Studies
have been conducted in Oman, Cuba, and India to evaluate reduced (‘fractional’)
dose of IPV delivered with two different DSJI devices. Compared to IM, inferior
seroconversion rates were found when ID doses were delivered at 6, 10, and
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14 weeks of age, but non-inferior rates of protection (>95%) were seen using a
later 2, 4, and 6 month schedule. When IPV was used as a booster to oral polio
vaccine, inferior seroconversion rates were observed for ID compared to IM
delivery (Sutter 2009; Mohammed et al. 2010; Resik et al. 2010).

DSIJI technology has also been used for the delivery of DNA vaccines for
malaria in young adults (Epstein et al. 2002; Wang et al. 2006) and an HIV-vaccine
candidate (PATH 2009). A pilot study assessment of human papillomavirus vaccine
has also recently occurred (PATH 2009). PATH is also working to implement a
new study of purified Vero cell rabies vaccine for ID post-exposure prophylaxis
using a DSJI technology in India. Results of this study are anticipated in 2012.
Other vaccine trials of ID vaccine delivery are planned for other applications
including BCG, IPV, varicella zoster virus, HIN1 and yellow fever (PATH 2009).

3.2 Projectile Delivery

Epidermal powder immunization (EPI) and particle-mediated epidermal delivery
(PMED) utilize helium gas to deliver powdered proteins, polysaccharides,
inactivated pathogens, or DNA-coated particles into the epidermis at supersonic
speeds (Weniger and Papania 2008) (Fig. 2c). Companies involved in developing
this technology include Powderject, PowderMed (acquired by Pfizer in 2006),
and Iaculor Injection. It is not known if this device technology class is still in
active development (PATH 2009). Conventional protein antigens must be spe-
cially formulated for delivery by EPI, and are spray dried into powders of
suitable density and size (20-70 pm). A clinical trial has been conducted
evaluating delivery of a powdered inactivated influenza vaccine by EPI injection,
which found that immunogenicity was comparable to standard delivery by IM
needle and syringe (Dean and Chen 2004). EPI has also shown efficacy in
preclinical studies with hepatitis B and HIV vaccines (Chen et al. 2002; Osorio
et al. 2003).

In PMED, gold beads 1-3 um in diameter are coated with vaccine and deliv-
ered by needle-free jet injection into the epidermis. This approach may be par-
ticularly suited to DNA vaccines, as deposition of coated particles into the stratum
corneum and epidermis may encourage DNA uptake and expression by resident
antigen-presenting cells. DNA vaccines for hepatitis B delivered by PMED have
induced protective antibodies (Roy et al. 2000; Roberts et al. 2005). Clinical
studies have also been conducted with DNA vaccines for seasonal influenza to
evaluate the feasibility of this approach. Results have been promising, but immune
responses are not yet equivalent to standard vaccine delivery methods (Drape et al.
2006; Jones et al. 2009). EPI and PMED delivery of DNA vaccines for a variety of
other diseases have also shown immunogenicity preclinically, including malaria,
avian influenza, herpes simplex virus, HIV, non-small cell lung cancer, Eurasian
encephalitic viruses, hantaviruses, SARS coronavirus, and smallpox (Weniger and
Papania 2008).
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4 Piercing into the Skin

For more than 200 years, various sharp instruments have been used for vaccination
by creating small holes in the skin that allow vaccine to penetrate into the body
(Weniger and Papania 2008). Although most vaccine administration is currently
performed by hypodermic needle injection, sharp tools such as bifurcated needles
have historically been used for smallpox (Frey et al. 2002) and BCG (Darmanger
et al. 1977) vaccination and remain in use to this day. Over the past decade, new
skin piercing technologies for ID drug transport have been developed, and include
techniques such as microneedles (Prausnitz 2004) and tattooing (Bins et al. 2005).
Recently these methods, especially microneedles, have shown promise for deliv-
ering vaccines to the skin, thereby enabling improved immunogenicity and simpler
patient administration.

4.1 Bifurcated Needles

The bifurcated needle (Fig. 1b) was invented by Benjamin Rubin in 1961 for
smallpox vaccination. It consists of two sharp prongs which hold vaccine fluid by
capillary action between the two tines. The use of this device is simple and does
not require trained personnel (Baxby 2002; Weniger and Papania 2008). The
needles are dipped into vaccine and then punctured perpendicularly into skin
repeatedly over an area of about 5 mm diameter by a process called scarification
(WHO 2010). Although this method was effective for the smallpox eradication
program, poorly controlled dosing, inefficient use of vaccine and needle-stick
injuries were significant shortcomings that have limited the use of bifurcated
needles for other vaccines.

4.2 Solid Microneedles

In addition to hollow microneedles discussed in Sect. 2, solid microneedles can be
used to pierce the skin and thereby deposit vaccine in the epidermal and/or dermal
space (Prausnitz et al. 2009). Techniques for vaccination using solid microneedles
include the use of microneedles that penetrate the skin to make a hole through
which vaccine can be transported. Vaccine formulations may be placed on the skin
after microneedle penetration, coated onto microneedles or embedded within
microneedles and released into the skin after insertion. Solid microneedles can be
prepared as patches that can be easily applied to the skin, perhaps by self
administration.
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4.2.1 Coated Microneedles

Coated microneedles have been the most extensively studied technique for ID
microneedle vaccination (Figs. 3a, b). Using this approach, vaccine forms a solid-
state coating on the surface of solid microneedles that dissolves off within the skin
upon application. Typically, this method provides a bolus delivery of a sub-mil-
ligram dose of antigen within minutes of application, which is often suitable for
delivery of vaccines. An effective microneedle coating process typically involves
dip-coating metal microneedles in a coating solution containing the vaccine, a
surfactant to promote wetting of the microneedle surface, and a viscosity enhancer
to increase coating thickness (Gill and Prausnitz 2007b; Gill and Prausnitz 2007a).
Using this technique, compounds over a large range of sizes including small
molecules, proteins, DNA, and virus particles have been coated onto microneedles.
Novel coated microneedle designs for improved delivery have been demonstrated,
such as the three-dimensional grooves-embedded microneedle (Han et al. 2009)
and the pocketed microneedle (Gill and Prausnitz 2008). The first ID vaccination
using coated microneedles delivered ovalbumin as a model protein antigen to

Fig. 3 Solid microneedle patches. a Arrays of solid silicon microneedles coated with gold.
(Courtesy of University of Queensland). b Array of solid stainless steel microneedles coated with
yellow dye. Each 12 mm by 12 mm device contains 50 microneedles measuring 700 pm tall.
Inset shows magnified view of two coated microneedles (Courtesy of Georgia Institute of
Technology). ¢ Dissolving microneedles shown intact before insertion into skin, partially
dissolved 1 min after insertion into skin and fully dissolved 5 min after insertion into skin
(Reproduced from (Sullivan et al. 2010); Courtesy of Georgia Institute of Technology)
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hairless guinea pigs (Matriano et al. 2002; Widera et al. 2006). In these studies, ID
microneedle vaccination showed a better immune response than an equivalent SC
or IM injection at low dose. The investigators also found that immune response by
microneedle vaccination was dose-dependent.

Among the various vaccine candidates, influenza vaccine has received the most
attention by ID immunization using small arrays of coated microneedles mea-
suring approximately 700 um in length (Zhu et al. 2009). Microneedles coated
with 10 pg of seasonal influenza HINT1 inactivated virus vaccine induced complete
protection against lethal virus infection in mice. However, subsequent studies
showed that influenza vaccine lost more than 95% of its antigenicity during the
coating process (Kim et al. 2010b). In order to maintain antigenicity, the disac-
charide trehalose was added to the coating formulation to serve as a stabilizer. This
enabled successful immunizations requiring smaller doses of vaccine (0.4 ng) as
compared to immunizations with similar immune responses by conventional IM
immunization (Kim et al. 2009; Kim et al. 2011). Coated microneedles also
showed improved thermal stability of vaccine compared to the liquid form of
vaccine (Kim et al. 2010b). More detailed studies showed that coated microneedle
vaccination with inactivated influence virus vaccine induced similar antibody IgG
response, HAI titer, and neutralizing activity as conventional IM immunization in
mice (Kim et al. 2009; Kim et al. 2010b). To account for antigenic changes to the
vaccine during the coating process, vaccine coated on microneedles was dissolved
off the needles and then delivered IM by injection. In this case, vaccination using
microneedles showed a better primary immune response than corresponding IM
immunization using the same antigen formulation (Quan et al. 2009).

Vaccination by coated microneedles induced robust immunity to influenza after
challenge in a mouse model (Kim et al. 2011). Notably, microneedle-immunized
mice were shown to have undetectable levels of influenza virus titer in their lungs
after challenge, unlike IM immunized mice, which had virus titers at least 100-fold
higher. Additional assays for immune response from corresponding lung samples
such as lung cytokine and lung IgG also consistently showed microneedle
immunization to be superior to IM. As evidence for microneedle-enhanced
immune system memory response, the microneedle immunized group was found to
have significantly higher levels of total IgG and isotypes IgG1 and IgG2a post-
challenge than pre-challenge, but antibody levels in IM immunized mice were
lower post-challenge than pre-challenge (Kim et al. 2011). In addition to improved
humoral immunity, coated microneedles also induced cellular recall response such
as MHC II-associated CD4" T helper cell response (Kim et al. 2009). Finally,
microneedle immunization performed using a different strain of influenza (H3N2)
virus vaccine induced similar complete protection against lethal challenge
(Koutsonanos et al. 2009). Studies using virus-like particle (VLP) vaccine coated
on microneedles were also performed. The VLP dose was controlled using a
coating formulation including antigen concentration and a number of coating dips
(Kim et al. 2010a). When a 0.35 pg dose of VLP was delivered, microneedle
vaccination induced a stronger immune response than IM, as measured by IgG,
IgG subtype (IgGl, 1gG2a, IgG2b), HAI, neutralizing activity, lung IgG, lung
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cytokine, and more suppression of lung virus infection. Microneedle immunization
by VLP showed complete protection from a lethal viral challenge without major
body weight loss, unlike IM after the same dose, which partially protected mice
from lethal viral infection (40%) and caused significant body weight loss
(Quan et al. 2010).

A novel approach to coated microneedles involved the use of polyphosphazene
(PCPP), which served as both an effective coating excipient and an immune
adjuvant (Andrianov et al. 2009). ID microneedle immunization with hepatitis B
surface antigen (HBsAg) in pigs using the PCPP coating formulation was superior
in inducing antigen-specific IgG compared to ID injection by hypodermic needle
with or without PCPP. Another study demonstrated effective generation of cellular
immune responses to a hepatitis C DNA vaccine administered to mice using coated
microneedles (Gill et al. 2010). Other studies have sought to specifically target
delivery to antigen-presenting Langerhans cells using extremely short (~ 100 pum)
needles that penetrate only into the epidermis. These short needles were coated
using a novel coating process involving gas-jet drying (Chen et al. 2009). In an
initial study, vaccination with ovalbumin-coated needles induced similar immune
response to IM immunization. In a follow-up study, microneedles coated with a
low dose of hemagglutinin-based influenza vaccine generated a similar immune
response as IM vaccination at a 100-times larger dose. The authors proposed that
these short, densely packed microneedles could deliver more than half of the
antigen directly to antigen-presenting cells such as epidermal Langerhans cells and
dermal dendritic cells (Fernando et al. 2010).

Methods for long-term vaccine storage without significant immunogenicity
loss, especially without refrigeration, are important for vaccination campaigns.
Microneedles are coated with vaccine in the solid state, which is expected to
confer thermal stability. In a stability study of microneedles coated with inacti-
vated influenza vaccine, mice immunized with coated microneedles stored at room
temperature for 1 month produced similar IgG responses to those of mice
immunized by microneedles stored for 1 day. Furthermore, both groups were
completely protected from lethal challenge after viral infection. In vitro assay of
the microneedles, however, showed a decrease in antigenicity by about 80%
(Kim et al. 2010c).

4.2.2 Dissolving Microneedles

As an improvement over coated microneedles, dissolving microneedles have been
developed in order to eliminate sharp, biohazardous waste after vaccination
(Fig. 3c). Unlike non-dissolving (e.g., metal) microneedles coated with a vaccine
formulation, dissolving microneedles are made solely of material such as polymers
or sugars that will safely dissolve in the skin after insertion, which leaves behind
only the microneedle patch backing. Typically, the vaccine is incorporated into the
matrix of the microneedle and is released into the skin upon microneedle disso-
lution. Dissolving microneedles have been made using a number of different
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materials, including polyvinylpyrrolidone (Sullivan et al. 2008), maltose (Kolli
and Banga 2008), carboxymethylcellulose (Lee et al. 2008), polylactic and/or
polyglycolic acid (Park et al. 2005; Park et al. 2006) and dextrin (Ito et al. 2006).
In a recent study, dissolving microneedles were prepared by encapsulating inac-
tivated influenza vaccine in a polyvinylpyrrolidone matrix and used to immunize
mice. The vaccine was gently encapsulated without significant damage to
immunogenicity and was shown to generate similar antibody and cellular immune
responses compared to IM injection of the same dose and provided complete
protection against lethal challenge. Compared to IM injection, dissolving micro-
needle vaccination resulted in more efficient lung virus clearance and enhanced
cellular recall responses after challenge (Sullivan et al. 2010). TheraJect has also
developed biodegradable microneedles using carboxymethylcellulose containing
various biomolecules including influenza vaccine (Oh et al. 2006).

4.2.3 Pretreatment with Solid Microneedles

As a simpler, albeit probably less efficient, method, microneedles can be used to
pierce the skin to make it more permeable and thereby enable entry of topically
applied vaccines. This method is attractive because the micro-scale pores made by
microneedle insertion are generally too small for penetration of microorganisms
(Donnelly et al. 2009), yet large enough for delivery of sub-unit and possibly viral
vaccines. After insertion and removal of the microneedles, vaccine can be applied
using a patch or other topical formulation for slow delivery by diffusion through
long-lived pores (Kalluri and Banga 2011). This approach was investigated for
transcutaneous vaccination using diphtheria toxoid and influenza vaccine (Ding
et al. 2009a; Ding et al. 2009b). When diphtheria toxoid was applied to micro-
needle-pretreated skin in combination with cholera toxin adjuvant, a similar
immune response was induced compared to SC injection. However, microneedle
pretreatment did not enhance immune response for influenza vaccine. This vac-
cination approach has also been studied in an ex vivo human skin model to
investigate skin immune cell responses (Ng et al. 2009). Using a related approach,
blunt-tipped microneedles were used to scrape the skin, thereby making micro-
troughs in the skin through which a DNA vaccine encoding HBsAg was admin-
istered (Mikszta et al. 2002). This approach generated stronger humoral and cel-
lular immune responses than IM or ID injection.

4.3 Tattoo Vaccination

Tattoo guns use high-frequency oscillating needles to make thousands of punctures
in the skin, which is conventionally used to deposit tattoo ink in the dermis, but has
been adapted to deliver ID vaccines (Fig. 1d). In one study, hemagglutinin-
expressing DNA vaccine was administered to pigs and derived humoral and
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protective immunity as shown by methods including HAI titer and improved virus
clearance from nasal swabbing (Eriksson et al. 1998). To overcome the slow
processing of an immune response induced by DNA vaccination, DNA tattooing
was suggested for short-interval DNA vaccination (Bins et al. 2005). In this study,
it was shown that short-interval ID DNA tattoo immunization generated fast and
stable T cell responses to human papillomavirus and complete protection from
influenza virus challenge. When compared to the IM route, DNA tattoo vaccina-
tion elicited much stronger and quicker humoral and cellular immune responses. In
addition, studies indicated that even IM immunization with adjuvant was inferior
to DNA tattoo immunization (Pokorna et al. 2009). To determine the effect of the
tattooing process on DNA vaccine stability, the DNA topology change was
evaluated, including critical factors for antigen expression and immune response
(Quaak et al. 2009). It was found that the DNA tattooing tool had negligible effect
on DNA structure and activity. Other vaccines including an adenoviral vector
vaccine against respiratory syncytial virus (Potthoff et al. 2009) and a peptide
vaccine against human papillomavirus (Pokorna et al. 2009) were administrated by
ID tattooing. In the case of the adenoviral vector vaccine, tattooing showed similar
performance to ID injection. Tattooing of the peptide vaccine with CpG motifs
adjuvant showed better response than IM vaccination with adjuvant.

DNA tattooing was evaluated in non-human primates, which have previously
shown poor DNA vaccine immunization effect, but showed remarkable enhance-
ment of immune response by this method administering an HIV vaccine
(Verstrepen et al. 2008). In order to advance this technique to human clinical trials,
a human ex vivo skin model was tested, which showed that DNA concentration
was the most critical factor for effective DNA vaccination by tattooing (van den
Berg et al. 2009). A human clinical trial for treating melanoma is planned (Quaak
et al. 2008). A comprehensive review on DNA tattooing can be found in one of the
accompanying papers in this special volume on ID immunization (Oosterhuis et al.
2010).

5 Permeabilizing the Skin

Most of the ID vaccination methods described so far involve minimally invasive
needle-based methods or non-invasive jet-based methods that actively deposit
vaccine within the skin. Another set of approaches involve mostly non-invasive
methods that increase skin permeability to enable vaccine transport into the skin in
a transiently permeabilized state. The key to success using these approaches is
disruption of skin’s outer layer, called stratum corneum. Although the stratum
corneum is only 10-20 pm thick, it provides a highly effective barrier to the
permeation of xenogens, including topically applied vaccine formulations
(Scheuplein and Blank 1971). A number of methods to increase skin permeability
have been developed, largely for drug delivery applications, many of which have
been tested for vaccination (Mitragotri 2005; Prausnitz and Langer 2008).
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5.1 Abrasion

A number of studies have demonstrated that the skin barrier can be broken by
abrasion. A variety of abrasion methods including rough surfaces (Frerichs et al.
2008), tape-stripping (Takigawa et al. 2001; Peachman et al. 2003; Inoue and
Aramaki 2007; Vandermeulen et al. 2009), and microdermabrasion devices (Gill
et al. 2009) have been shown to induce adequate removal of the stratum corneum.
Repeated peeling by tape (for example, Scotch® tape) effectively removes the
stratum corneum. Application of tumor epitope peptides on tape-stripped mouse
skin primed tumor-specific cytotoxic T cells in the lymph nodes and the spleen,
protected mice against a subsequent challenge with the corresponding tumor cells,
and also suppressed the growth of established tumors (Takigawa et al. 2001). Skin
abrasion using a razor and a toothbrush followed by application of adenoviral
vectors has yielded promising results in humans (Van Kampen et al. 2005).

Skin abrasion using an abrasive paper is perhaps the most commonly used
method of disrupting the stratum corneum for immunization. For example, abrasion
with emery paper, after skin hydration, has been shown to induce adequate pene-
tration of anthrax vaccine (Matyas et al. 2004) and influenza virus vaccine (Guebre-
Xabier et al. 2003), among others. This has led to the development of a Skin Prep
System (SPS) to provide a controlled method of stratum corneum disruption for
transcutaneous immunization currently under development by Intercell (Frerichs
et al. 2008) (Fig. 4a). This technique has been shown to be effective in humans.
Specifically, the skin was prepared by use of two mild strokes with the skin prep-
aration device containing a mild abrasive affixed to a pressure-controlled device.
The device was a single-use, disposable system and was discarded immediately after
use. Following skin preparation, the patch containing vaccine against traveler’s
diarrhea (LT patch) was applied within the marked area and worn for 6 h at each
vaccination, then removed and discarded by the participant. 59 LT-patch recipients
were protected against moderate-to-severe diarrhea (protective efficacy of 75%) and
severe diarrhea (protective efficacy of 84%). LT-patch recipients who became ill had
shorter episodes of diarrhea (0.5 vs 2.1 days) with fewer loose stools than placebo
(Frech et al. 2008). In another study, a similar technique was used to boost response
against influenza vaccine. In this case, prior to application, the patch area was lightly
abraded with ECG-grade emery paper on skin wetted with 10% glycerol/70%
alcohol to disrupt the stratum corneum. In weeks following vaccination, hemag-
glutination inhibition (HAI) responses in LT immunostimulatory patch recipients
showed improvement over those receiving vaccine alone (Frech et al. 2005).

Microdermabrasion is a common cosmetic procedure that has been adapted to
remove superficial skin layers by sandblasting and thereby enable selective
removal of the stratum corneum barrier. This approach has been shown to increase
skin permeability and thereby enable topical application of live attenuated vaccinia
virus on microdermabraded skin to generate virus-specific antibodies in the blood
(Gill et al. 2009). As mentioned in Sect. 4.2.3, a microneedle-based abrasion
method has also been successfully used for vaccination.
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Fig. 4 Skin permeabilization methods. a Skin abrasion device, in which a sandpaper device is
placed on the skin (1), scraped across the skin in a controlled fashion (2) and then a vaccine patch
is applied to the abraded skin (3) (Courtesy of Intecell). b Hand-held skin electroporation device,
which uses microneedles as electrodes to cause highly localized electroporation in the skin to
facilitate DNA vaccine delivery into skin cells (Courtesy of Cyto Pulse Sciences). ¢ Heat-based
device for thermal ablation of the skin. The microheater array (left side of inset) is used to ablate
the skin and then a vaccine patch (right side of inset) is applied to the ablated skin (Courtesy of
Altea Therapeutics)

5.2 Ultrasound

Ultrasound, especially at low frequencies, is very effective in permeabilizing the
skin (Tezel et al. 2001). It is now understood that acoustic cavitation, which is
formation, pulsation, and collapse of gaseous bubbles under the oscillating pressure
field of ultrasound, is the principal mediator for ultrasound-induced enhanced skin
permeability. Several studies have shown that during ultrasound exposure, transient
cavitation is predominantly induced in the coupling medium (the liquid present
between the ultrasound transducer and the skin) and is primarily responsible for skin
permeabilization (Tang et al. 2002; Tezel et al. 2002; Tezel and Mitragotri 2003).
An estimated 10 bubble collapses/s’icm® in the form of symmetric collapses
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(generating shock waves) or asymmetric collapses (producing microjets) near the
surface of the skin are sufficient to explain the experimentally-observed skin per-
meability enhancements by ultrasound-induced skin permeabilization. Ultrasound has
been shown to enhance the delivery of vaccines into skin (Tezel et al. 2005). Studies
performed in mice have shown that the immune response generated by ultrasonically
delivered vaccine was about 10-fold greater compared with SC injection per unit dose
of the vaccine that entered the skin (about 1% of the topically applied dose entered the
skin) (Tezel et al. 2005). Compared to simple topical administration, ultrasound
pretreatment showed increased vaccine delivery, thereby enabling sufficient vaccine
to enter the skin to activate the immune response. Furthermore, application of
ultrasound resulted in activation of Langerhans cells, the reasons behind which are not
clear. In another study, it was shown that application of tetanus toxoid to skin pre-
treated with ultrasound generated anti-tetanus toxoid IgG and neutralizing antibody
titers (Dahlan et al. 2009). Several parameters, including concentration of co-applied
sodium dodecyl sulfate and ultrasound duty cycle, impacted the magnitude of anti-
body titers. The authors concluded that the main mechanism of ultrasound-assisted
skin immunization involved factors in addition to enhancement of skin permeability
to topically applied antigen.

5.3 Electroporation

Electroporation involves the application of high-voltage, short-duration electric
pulses to transiently disrupt lipid barriers in the body. For vaccination, electro-
poration has been used to increase stratum corneum permeability and thereby
enable vaccine entry into the skin. Electroporation has also been used to per-
meabilize cells within the skin and thereby drive, for example, DNA vaccines into
epidermal and dermal cells (Fig. 4b). Electroporation has been well established as
a tool for delivering molecules across the stratum corneum (Prausnitz et al. 1993)
or across the cell membranes (Bilitewski et al. 2003). Many studies have focused
on the use of electroporation for DNA vaccination. This is not surprising given the
long history of use of electroporation for delivery of DNA into cells in vitro.
However, many electroporation studies involve insertion of electrode needles into
the skin. Some studies have demonstrated the use of electroporation for topical
vaccine delivery (Zhao et al. 2006). In one study, electroporation has been found to
stimulate the exodus of Langerhans cells from the skin, which is likely to have an
adjuvant-like effect (Zhao et al. 2006). In this study, the efficacy of peptide
delivery was found to be comparable to that of ID injected with Freund’s complete
adjuvant. Further, the peptide-specific CTL response to the vaccine delivered by
electroporation was equivalent to that delivered by ID injection.

Electroporation has been shown to induce an effective immune response after
delivery of DNA vaccines (Peachman et al. 2003; Foldvari et al. 2006; Medi and
Singh 2008; Vandermeulen et al. 2009). For example, studies in pigs have shown the
ability of electroporation to deliver HBsAg gene using a single-needle or a six-needle
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electrode (Babiuk et al. 2002). Studies have demonstrated that in vivo skin elec-
troporation may be used to increase transgene expression relative to naked DNA
injection (Drabick et al. 2001). Transfected cells were principally located in dermis
and included adipocytes, fibroblasts, endothelial cells, and numerous mononuclear
cells with dendritic processes in a porcine model. Transfected cells were also observed
in lymph nodes draining electropermeabilized sites. A HBsAg-coding plasmid was
used to test skin electroporation-mediated nucleic acid vaccination in a murine model.
Applications for these findings include modulation of immune responses to pathogens,
allergens, and tumor-associated antigens and the modification of tolerance. In another
study, in vivo electroporation has shown protection against avian influenza in non-
human primates (Laddy et al. 2009). A number of human clinical trials testing vac-
cination enhanced by electroporation are currently under way.

5.4 Chemical Enhancers

Several chemicals are known to interact with the skin and disrupt the highly ordered
lipid bilayer structure in the stratum corneum. This observation led to the study of
chemical agents to enhance transport across skin. More than 300 chemicals have
been studied for their ability to increase skin permeability (Karande et al. 2004).
Chemical permeation enhancers are relatively inexpensive and easy to formulate,
they offer flexibility in their design, are simple in application and allow the freedom
of self-administration to the patient. Chemical enhancers comprise a wide variety of
different chemical functional groups and facilitate drug transport across the skin by
a variety of complex mechanisms. They can directly exert their effect on skin
structure by acting on intercellular lipids or corneocytes. Chemical enhancers can
extract lipids from the skin thereby creating diffusion pathways for transdermal
permeation. Alternatively, they can partition themselves into the lipid bilayers
thereby disrupting the highly ordered lipid lamellae and causing their fluidization.
Chemical enhancers can also significantly increase skin transport of a drug by
enhancing its thermodynamic activity in the formulation (Karande et al. 2005).
Recently, chemical enhancers have been shown to possess the ability to deliver
antigens and generate immune responses. This was achieved by designing for-
mulations that possess the ability to enhance skin permeability as well as exhibit
high adjuvanticity. The rational design of such multi-functional formulations from
first principles requires in-depth knowledge of interactions between chemical
enhancers and skin, which exist for a very limited pool of chemicals. Hence,
combinatorial libraries of chemical mixtures were screened. Studies have shown
that in a randomly selected population of chemical formulations, certain binary
mixtures of chemicals are far more potent in permeabilizing the skin as compared
to single chemicals (Karande et al. 2004). In vaccination studies, a third chemical
was added with the goal of enhancing the ability to offer adjuvanticity. The lead
chemical formulations were tested in mice using the model antigen ovalbumin.
The formulations that exhibited high permeation and adjuvanticity potential in
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in vitro screening also induced high IgG titers in mice (Karande et al. 2009). In
another study, penetration enhancers and immunomodulators oleic acid and reti-
noic acid were used to enhance transcutaneous immunization with inactivated
influenza virus across tape-stripped skin (Skountzou et al. 2006). Pretreatment of
mouse skin with oleic acid elicited increased levels of influenza virus-specific
binding and neutralizing antibodies to levels equivalent to those induced by intra-
nasal immunization with inactivated influenza virus. Oleic acid and retinoic acid
treatments differentially affected the pattern of cytokine production upon stimu-
lation with influenza viral antigen and provided enhanced protection.

5.5 Thermal Ablation

Thermal poration of skin has been used to deliver vaccines into skin. Micropo-
ration systems are designed to porate the skin and are being developed by a
number of companies. In this method, an array of micropores is created in the skin
by removal of stratum corneum by the application of focused thermal energy based
on resistive heating via the contact of electrically heated small-diameter wires to
the skin surface (Bramson et al. 2003) (Fig. 4c) or other methods based on
radiofrequency or laser-based approaches. In this study, the microporation tip was
comprised of a set of 80 um diameter tungsten wires with control circuitry
allowing for precise control of the electrical current pulses that were passed
through each wire. The software user interface was designed to enable the control
of various microporation parameters including micropore density, resistive ele-
ment temperature, current pulse width, number of pulses, pulses pacing, and
contact pressure. The temperature of the tip that was placed in contact with the
skin was calibrated by an optical calibrator device. The study showed that mi-
croporation significantly increased the penetration of topically delivered vaccine.
Microporation enhanced expression of luciferase upon placement of adenovirus
vectors by 100-300-fold. The same procedure led to increased CTL response and
increased IFN-y secreting cells. In a related study, the same technology has been
shown to deliver influenza vaccine into mouse skin. Eighty micropores were
created in 1 cm? area and the vaccine was placed on the porated skin. This pro-
cedure generated adequate protective response in mice (Garg et al. 2007).

6 Discussion
6.1 Immunologic Advantages of Intradermal Vaccination

ID vaccination offers potential immunologic advantages to public health. The skin
is known to be a site rich in antigen-presenting cells, some of which are specific
to the skin, including epidermal Langerhans cells and dermal dendritic cells
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(Glenn and Kenney 2006). In addition, antigen may be taken up directly by
lymphatic vessels for transport to antigen-presenting cells in the lymph nodes. At a
minimum, the ID route of vaccination appears to follow different pathways to
immunity compared to IM or SC routes. However, there is evidence that the ID
route is not only different, but is also beneficial (Glenn and Kenney 2006; Lambert
and Laurent 2008; Nicolas and Guy 2008).

The possibility of dose sparing enabled by ID vaccination has been suggested
by previous preclinical and clinical studies; however, the successful application of
this approach has yet to be definitively confirmed for many vaccines (Glenn and
Kenney 2006; Lambert and Laurent 2008; Nicolas and Guy 2008). Although the
conclusions vary between different studies and different vaccines, there is an
indication that dose sparing may be possible. However, it is not currently clear
under what conditions the skin’s unique immune environment can be harnessed for
optimal effect. In addition to dose sparing, there is preclinical study evidence of
other beneficial differences of ID vaccination. Studies with microneedles showed
improved influenza virus clearance from the lungs and enhanced memory
responses compared to IM vaccination (Kim et al. 2011). Studies with EPI
showed a specific role for Langerhans cells to generate robust antibody responses
(Chen et al. 2004). Studies with ultrasound-mediated vaccination suggested an
adjuvant effect on the skin (Dahlan et al. 2009).

6.2 Logistical Advantages of Intradermal Vaccination

ID vaccination offers potential value to public health also in terms of possible
logistical advantages. For comparison, IM and SC vaccination can only be carried
out by hypodermic needle injection with few other options beside jet injection.
ID vaccination opens the door to many other technologies because the skin is
readily accessible at the surface of the body. As a result, ID injection may enable
vaccination methods that generate no biohazardous sharp waste, can be adminis-
tered by personnel with minimal training, and simplify transportation and storage
logistics (Table 1).

Mantoux technique injection requires specialized training by clinical personnel.
Microneedle systems and patch-based delivery (accompanied by skin permeabi-
lization technologies) offer the promise of simplified vaccination methods that
require minimal training and may permit self-vaccination by patients in certain
scenarios. This not only benefits routine vaccination scenarios, but is especially
important to mass vaccination campaigns associated with disease eradication
programs or pandemic emergencies. In contrast, some of the novel ID delivery
methods, such as projectile delivery and tattoo guns, introduce new, sophisticated
devices that require additional training of clinical personnel. Assuming the injec-
tion is done properly, the Mantoux technique can administer essentially all of the
vaccine into the skin. Hollow microneedles and projectile delivery can be similarly
efficient. However, solid microneedles typically retain some vaccine on the device
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Table 1 Capabilities of intradermal vaccination systems

ID delivery Ease  Vaccine Biohazardous Technology  Vaccine Device

method of use® utilization® sharp waste®  development® reformulation® cost’

Mantoux ++ +++ + +++ ++ +++
injection

Single hollow ++ +++ ++ ++ ++ ++
microneedle

Array of hollow ++ +++ ++ ++ ++ ++
microneedles

Jet injection + +++ +++ +++ ++ +

Powder/gene gun + +++ +++ ++ + +

Bifurcated ++  + + +++ ++ +++
needle

Coated +++ ++ ++ + + Tt
microneedles

Dissolving +++ ++ +++ + + T+
microneedles

Pretreatment +++ o+ ++ + + T+
with
microneedles

Tattoo gun + + + + ++ +

Skin abrasion +++ + +++ ++ + +++

Ultrasound + + +++ + + +

Electroporation  + + +++ + + +

Chemical ++ o+ +++ + + +++
enhancer

Thermal ablation +++ + +++ + + ++

? +++ requires little or no personnel training, ++ requires personnel training, + requires personnel

training and maintenance of a dedicated device
® 44+ almost 100% in skin, ++ >50% in skin, + <50% in skin

+++ no biohazardous sharp waste, ++ microscopic biohazardous sharp waste, + macroscopic
biohazardous sharp waste
4 44+ in widespread clinical practice, ++ published vaccination data in humans, + preclinical
+++ no reformulation required, ++ possible new liquid formulation required, + reformulation
required to produce solid-state vaccine

+++ inexpensive disposable device, ++ specialty disposable device, + reusable device. Per-
injection cost of reusable devices will depend on the number of times the device can be used and
the cost of any disposable components

e

and patch-based skin permeabilization methods are extremely inefficient, such that
most vaccine typically remains on the skin surface. The efficiency of vaccine
utilization will be of critical importance for new, costly vaccines, as well as in
developing countries where vaccine cost can be a significant barrier to access.
Eliminating the hypodermic needle from vaccination is a major objective of
public health, given that close to one million people die each year from disease
transmission from contaminated needles (Miller and Pisani 1999; Kermode 2004).
Microneedles are a step in the right direction, but still generate biohazardous sharp
waste, with the exception of dissolving microneedles. Projectile delivery and patch-
based methods eliminate needles and therefore offer an improved safety profile.
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However, some ID delivery methods can cause added tissue trauma to the skin
(Bremseth and Pass 2001). Most of the new methods of ID vaccination require
significant technology development. While jet injection is already in widespread
clinical use, many other technologies are only in the preclinical stage of develop-
ment for vaccination. That being said, many of those technologies are in much later
stage of development or use for non-vaccine applications, which will facilitate their
adaptation to ID vaccination.

Most of the new ID vaccination technologies also require vaccine reformulation.
Hollow microneedle, jet and tattoo-based methods may use standard, currently
available liquid formulation, but in some cases will need to be concentrated or
otherwise modified. The other methods mostly use a solid-state vaccine formula-
tion, which offers likely advantages in terms of vaccine stability during storage,
but, however, requires significant reformulation, with associated research, regula-
tory, and manufacturing hurdles. Finally, device cost is a significant consideration,
given that a hypodermic needle and syringe are extremely inexpensive, disposable
devices. Microneedle systems and some of the patch-based methods are expected to
have low manufacturing cost in mass production. However, many of the other
technologies require multiple device components, which may be engineered into
disposable devices with added cost or reusable devices with disposable components
that require an initial investment that can be amortized over many patients.

6.3 Future Outlook

ID vaccination has already made significant impact on public health as the primary
means of immunization during smallpox eradication and continues to play a role in
BCG and rabies vaccination in current clinical practice (Plotkin et al. 2008). However,
as discussed in this article, there are many more opportunities for ID vaccination to
potentially improve immunogenicity and simplify logistics of the administration of
other vaccines. A number of new ID vaccination technologies have been successful in
human clinical trials. ID vaccination using the BD hollow microneedle was approved
in Europe in 2009 for ID administration of the Sanofi Pasteur seasonal influenza
vaccine and was introduced in Australia and New Zealand during the 2010 influenza
season (Holland et al. 2008; Beran et al. 2009). This microneedle device may be
adapted for use to administer other vaccines as well. Jet injectors have a long history
of use for vaccination and are receiving renewed attention for ID delivery of vaccines
in clinical trials, especially to address developing countries’ needs, through support
from WHO and US Centers for Disease Control and Prevention (see Sect. 3.1.2.). Skin
abrasion as a pretreatment before applying a vaccine patch is also in clinical trials for
prevention of influenza and traveler’s diarrhea (Frech et al. 2005; Frech et al. 2008).
Projectile based delivery by EPI and PMED have been studied in a number of human
clinical trials for both DNA and protein-based vaccines (Dean and Chen 2004; Jones
et al. 2009), although it is unclear as to what extent this technology is under continued
commercial development.
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Other ID delivery devices are under advanced preclinical study. Solid coated
microneedles have been the subject of numerous vaccination studies in mice and
larger animals to administer influenza and other vaccines (see Sect. 5.2), and have
been used in a Phase II clinical trial of a drug, parathyroid hormone (Cosman et al.
2009). Likewise, skin electroporation, in some cases in combination with micro-
needles, has been studied in animals for skin vaccination. As evidence for clinical
feasibility, electroporation of skin for targeted delivery of chemotherapeutic agents
to skin tumors is approved and used in Europe (Gehl 2008). Tattooing is of course
in widespread human use, and its application to vaccination has been studied
preclinically. Other methods to increase skin permeability, such as ultrasound,
chemical enhancers and heat, are also in clinical use or trials for transdermal drug
delivery applications (Prausnitz and Langer 2008), which compliment preclinical
studies of their use for vaccination. Given the large number of technologies for ID
vaccination under development, and the advanced clinical status of many of them,
the future outlook for bringing ID vaccination into more widespread clinical
practice appears encouraging. The optimal delivery method will depend on the
specific application and other factors, such as immunologic response, logistical
needs, and financial constraints.
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