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Bacterial transcription mediated by 
RNA polymerase (RNAP) is a highly 

regulated process and RNAP action is 
modulated during the different phases of 
initiation, elongation and termination by 
proteins such as the Escherichia coli Nus 
transcription-factors. Here we discuss the 
structural interplay and the mechanistic 
role of the Nus-factors that are directly 
involved in the processivity of elonga-
tion, transcription:translation coupling 
and termination, as well as the varying 
effects of these proteins on transcription 
under the influence of additional signals.

The Nus transcription-factors were 
originally identified as part of the E. coli 
phage λ N-protein-controlled antitermi-
nation system; hence, they were termed 
N-utilization substances.1 NusA, B, E 
and G are important for different levels 
of regulation within transcription and 
transcription:translation coupling. Their 
regulatory effect is often antithetic and 
depends on different external signals.

NusA

NusA is a highly conserved elongation 
factor identified in bacteria and archaea,2 
which in E. coli consists of 495 amino 
acids (55 kDa) arranged in 6 domains 
(Fig. 1A). The amino-terminal domain 
(NTD; amino-acids 1–137) interacts with 
the RNAP close to the RNA exit chan-
nel.3 NusA-NTD is linked via a flexible 
helix to three RNA-binding subdomains, 
S1 (138–201), KH1 (202–276) and KH2 
(277–344), forming the central SKK 

The role of E. coli Nus-factors in transcription regulation  
and transcription:translation coupling
From structure to mechanism

Björn M. Burmann†,* and Paul Rösch
Lehrstuhl Biopolymere und Forschungszentrum für Bio-Makromoleküle; Universität Bayreuth; Bayreuth, Germany
†Current address: Biozentrum; University of Basel; Basel, Switzerland

domain that binds single stranded RNA 
of the nascent transcript.4,5 C-terminal 
to this SKK domain follow the so-called 
acidic repeats 1 and 2 [AR1 (345–426), 
AR2 (427–495)], which so far could only 
be identified in E. coli.6 Although the lat-
ter domains share the same structural 
topology, they exhibit different functions. 
The only role for AR1 identified thus far 
in vitro is binding the λ protein N7 and 
the λN:AR1 complex may well be part 
of the λ antitermination complex in vivo; 
nevertheless, this could not be shown 
so far. AR2 has at least two distinct but 
interrelated functions: It masks the cen-
tral SKK domain of NusA by forming an 
intramolecular interdomain complex, thus 
autoinhibiting RNA interaction of this 
domain;8,9 AR2 forms a complex with the 
C-terminal domain CTD of the α-subunit 
of RNAP (αCTD), which supposedly 
hinders this regulatory RNAP subunit 
from re-attaching to the UP-element 
(upstream promoter).8 Primarily, NusA 
supports intrinsic termination due to its 
interaction with the hairpin structures of 
pause and termination signals3,10 and it 
modulates p-dependent termination.11,12 
In concert with the other Nus-factors, 
NusA enables the formation of stable ECs 
(elongation complexes), which leads to 
processive transcription and read-through 
of termination sites.13

NusB

NusB (15.7 kDa) mainly acts as an aux-
iliary protein within transcriptional regu-
lation, which consists of an all-helical 
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NusG

NusG is an essential bacterial regulator 
of the RNAP with a size of 20.5 kDa. 
Proteins homologous to NusG can be 
found in archaea21 and eukaryotes.22 With 
its two domain structure and a flexible 
linker between the transiently interacting 
domains,23 NusG is able to interact with 
different partners and therefore is pre-
destined to function as a linker protein 
(Fig. 1C).24 The NusG-NTD, residues 
1–116, consists of four central β-strands 
forming an anti-parallel β-sheet sur-
rounded by three α-helices and is linked 
to the CTD, residues 123–181, which 
itself forms a β-barrel composed of five 
anti-parallel β-strands.24 The NusG-
NTD is supposed to directly interact 
with the RNAP through a hydrophobic 
patch on its surface25 and NusG-CTD is 
able to bind either to NusE20 to enable 

helix α
1
 and irregular strand β

2
 bridge the 

two helical bundles of NusB and form a 
protein interaction surface of ~1,700 Å2 
without any evident structural rearrange-
ment.17 In this heterodimer, NusE is the 
functionally active partner, which could 
be shown by its N-protein antitermina-
tion activity in the absence of NusB.17 
In addition to its role in transcription, 
NusE is involved in translation as part of 
the 30S subunit of the ribosome, where 
it exhibits virtually the identical structure 
as in its NusB complex. NusE belongs 
to those proteins that finish ribosomal 
assembly.19 Binding to NusB ascertains 
a stable fold of NusE,17 and NusB is able 
to direct the heterodimer to the EC,17,20 
where it becomes a central part of the EC. 
Whether NusB is important for the intro-
duction of NusE into the ribosome and 
how this is achieved will be questions for 
future studies.

fold with two perpendicular three-helix 
bundles.14 NusB is able to bind single 
stranded RNA.15,16 Additionally, NusB 
forms a stable complex with NusE  
(Fig. 1B),15 that, however, leads only to 
a slight rearrangement of its helix-bun-
dles.17 This heterodimerization enhances 
significantly the affinity to RNA,16,18 
because both proteins form an extended 
mosaic RNA-binding interface.17 Results 
of combined biophysical, mutational and 
genetic investigations indicate that this 
interaction is fine-tuned within the func-
tional EC.16

NusE

NusE is an 11.7 kDa protein, which dou-
bles as ribosomal protein S10 and exhibits 
a four-stranded antiparallel β-sheet that 
is backed by two α-helices on one side.17 
Upon complex formation with NusB, 

Figure 1. (A) Crystal-Structure of Thermotoga maritima NusA and solution NMR-structures of the two AR-domains of E. coli NusA. The NusA-NTD of  
T. maritima (green) is linked via a connecting helix (grey) to the central RNA-binding domains S1 (red), KH1 (blue) and KH2 (aquamarine) of NusA (PDB-
ID: 1HH2).4 Additionally shown are the solution NMR-structures of AR1 (brown; PDB-ID: 1WCL) and AR2 (yellow; PDB-ID: 1WCH) domains,6 which so far 
could only been identified within E. coli. (B) Crystal-Structure of the E. coli NusB:NusE complex. NusE (green) and NusB (purple) form a tight complex 
(PDB-ID: 3D3B).17 The single sphere within NusE denotes Ser46, which replaces the ribosome binding loop 46–67 in the crystallized construct (see 
details in reference 17). (C) Solution NMR-Structure of NusG (NusG-NTD; PDB-ID: 2K06; NusG-CTD; PDB-ID: 2JVV).24
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complex is formed that induces bend-
ing and unwinding of the DNA to form 
a transcription bubble.29 During RNA 
synthesis, several transcription regula-
tors bind to the RNAP to ensure a stable 
and processive EC. NusA is among the 
first proteins to interact with RNAP after 
initiation.30 The NusA NTD binds close 
to the RNA exit channel of RNAP3 and 
forms a stable RNAP complex via NusA-
AR2:αCTD-RNAP domain interaction.9 
The AR2:αCTD complex in all likeli-
hood prevents αCTD from reattaching 
to DNA,8 a process that would lead to 
a stalled transcription complex. Recent 

Elongation Complexes

E. coli core RNAP consists of five subunits 
(α

2
, β’, β and ω) of roughly 400 kDa  

molecular mass (Fig. 2).28 The β and 
β’-subunits form the active site, whereas 
the NTDs of the two α subunits ascertain 
correct RNAP assembly. The ω subunit 
supports this assembly, but is not essen-
tial for RNAP functionality.28 To enable 
DNA binding, a σ-factor has to associ-
ate to form the holo-RNAP, which is 
able to move along the double-stranded 
DNA to recognize promoter sequences.28 
Once bound to these, an open initiation 

transcription:translation coupling or to 
the ρ-factor20 to support ρ-dependent 
termination. NusG versatile role within 
transcription regulation is reflected by 
its ability to modulate the EC in differ-
ent ways: NusG is able to enhance the 
elongation rate, an effect probably due 
to its ability to suppress transcriptional 
pausing,26 in turn attributable to its pro-
motion of forward translocation of the 
RNAP;27 NusG is also important for 
activation of ρ in vivo and in vitro for 
most ρ-dependent termination events in 
order to maintain transcriptional bound-
aries within the bacterial genome.12

Figure 2. The different ECs within a transcription cycle consisting of RNAP (grey), β’ clamp helices (red), σ70 (yellow), DNA (black), Rho-hexamer (light-
blue), NusA (dark-green), RNA (red), NusG (dark-blue), NusB (purple), NusE (light-green), 50S ribosomal subunit (sand) and 30S ribosomal subunit 
(brown).
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on transcription—do ribosomes just load 
onto RNAP and push it along the DNA, 
or do ribosomes induce structural changes 
in the RNAP and thus act antitermina-
tion factor-like to prevent transcriptional 
pausing, as proposed by Roberts?37 Taken 
together, the model for the different states 
of transcription will undergo significant 
refinement as future work addressing these 
important questions leads to more detailed 
understanding of transcription regulation 
and transcription:translation coupling.
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