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STAT proteins are obligate promoters 
of T helper cell differentiation and 

initial studies suggested that activation 
of a single STAT protein resulted in a 
particular phenotype. More recent work 
has supported a more complex paradigm 
wherein the activation of several STAT 
proteins is required for differentiation to 
a single effector lineage.

Signal Transducer and Activator of 
Transcription (STAT) proteins are 
phosphorylated by Janus (JAK) tyro-
sine kinases following stimulation of a 
cell with cytokines or growth factors. 
Phosphorylation of specific tyrosine resi-
dues converts latent cytoplasmic STATs 
into dimers that move to the nucleus, 
bind DNA and activate transcription. 
Cytokines or growth factors activate spe-
cific members of the seven member STAT 
family generating one component of speci-
ficity in responses to extracellular signals.

The differentiation of CD4+ T helper 
(Th) cells into effector subsets that secrete 
specific cytokines is largely dependent 
upon the cytokine environment pres-
ent when naïve T cells are activated by 
antigen from pathogens, foreign proteins 
such as allergens, or self-antigens in the 
case of autoimmunity (Fig. 1). An envi-
ronment containing IL-12 promotes the 
STAT4-dependent development of IFNγ-
secreting Th1 cells.1,2 IL-4 induces the 
STAT6-dependent differentiation of Th2 
cells.3-5 Similarly, several cytokines includ-
ing IL-6, IL-21 and IL-23 promote the 
STAT3-dependent development of Th17 
cells that secrete IL-17 and other cyto-
kines.6-8 STAT5, activated in response to 
IL-2, contributes to inducible regulatory 
T cell development.9,10 Each of the STATs 
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binds to hundreds of loci that contribute 
to the effector phenotype.11-14 All of these 
data supported a paradigm wherein acti-
vation of a particular STAT protein in 
T cells would result in the activation of 
a specific effector phenotype. However, 
continuing investigations revealed that a 
one STAT-one phenotype paradigm was 
too simple to define the complex responses 
of differentiating T cells to a diverse cyto-
kine milieu.

The first evidence that more than one 
STAT was involved in a particular differ-
entiation pathway was observed following 
the identification of T-bet, a T-box tran-
scription factor that promotes the Th1 
phenotype.15 Although both STAT4 and 
T-bet promote Th1 development, efforts 
to place these factors in a linear pathway 
failed because IFNγ-activated STAT1, 
rather than IL-12-activated STAT4, 
resulted in increased T-bet expression.16,17 
More recent work suggested that IFNγ 
activates T-bet expression early, and IL-12 
activates it later in differentiation, sup-
porting parallel pathways where both 
STAT4 and T-bet are required for separate 
and overlapping aspects of the Th1 genetic 
program.18,19

A similar parallel requirement was 
observed for STAT5 in Th2 development 
(Fig. 2). Based on the observations that 
IL-2 increased the development of Th2 
cells, more detailed studies demonstrated 
that STAT5 promoted Th2 cytokine pro-
duction through a parallel pathway that 
involved accessibility of Th2 cytokine 
loci.20 STAT5 also contributed to allergic 
inflammation in vivo, demonstrating that 
both STAT5 and STAT6 proteins collabo-
rated on the induction of Th2-mediated 
inflammation.21 These examples added 
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activation of downstream STATs recurs 
in several instances during T helper cell 
differentiation, including regulation of 
IL-2R, IL-4R and IL-12R.27,29

However, we observed normal expres-
sion of IL-4R and normal activation of 
STAT6 in the absence of STAT3. Despite 
this, STAT6 was not bound appropri-
ately to target loci.25 The lack of STAT6 
binding suggests either that STAT3 and 
STAT6 cooperate in binding, or that 
STAT3 mediates accessibility of the loci 
to facilitate binding of STAT6. Indeed, 
we observed decreased accessibility at 
several Th2 transcription factor loci in 
the absence of STAT3. It is still possible 
that STAT3 and STAT6 might physically 
interact to mediate binding to target loci. 
Several STAT proteins can form hetero- as 
well as homodimers. STAT6 is thought to 
function mostly as a homodimer, but it is 
possible these factors might heterodimer-
ize. STAT proteins can also “tetramer-
ize” through interactions of N-terminal 
domains that facilitate cooperative bind-
ing to non-consensus DNA elements, and 
though these interactions are thought to 
be homotypic, occurring only among 
dimers of like STATs, it is conceivable that 

of transcription factors required for Th2 
development, and altered histone modifi-
cation patterns at the loci encoding those 
transcription factors. STAT3 is bound to 
the promoters of loci encoding transcrip-
tion factors expressed in Th2 cells in 
both naïve and differentiated Th2 cells  
(Fig. 2). Importantly, STAT3 was 
not required for normal activation of 
STAT6, but was required for the develop-
ment of Th2 cells in vivo, as well as the 
development of Th2-mediated allergic 
inflammation.

How the cell integrates signals from 
multiple STATs is still unclear, and sev-
eral mechanisms might be involved. Data 
suggest that the STAT1-STAT4 interplay 
has a temporal basis, each STAT acting 
on common loci at different times,18 likely 
due to changes in the expression of recep-
tors for the requisite activating cytokines. 
STAT5 also works with STAT4 by bind-
ing to gene loci important for Th1 devel-
opment.26,27 In Th2 development, STAT5 
and STAT6 appear to work separately, 
although STAT5 regulates receptors for 
the STAT6-activating cytokine IL-4.20,28 
The theme of regulating the receptor 
for another cytokine and altering the 

to the complexity of the role of STATs 
in Th development. They demonstrated 
that although one cytokine might be the 
predominant initiator of a differentiation 
pathway, the developing effector T cell 
responds to additional cytokines in the 
environment, and those cytokines acti-
vate additional STAT proteins. Thus, the  
T cell is able to integrate multiple signals 
in the process of differentiation. Our 
recent work adds to the more complex 
paradigm by demonstrating that STAT3 
is required for Th2 development.

As mentioned above, a number of cyto-
kines that activate STAT3 are present in 
the developing Th2 environment from 
autocrine or paracrine sources, including 
IL-6, IL-21 and IL-2, all of which might 
contribute to the activation of specific com-
ponents of the Th2 genetic program.22-24 
We demonstrated that STAT3 is activated 
throughout Th2 development, and that 
neutralization of all of the cytokines listed 
above was required to decrease phosphory-
lated STAT3 within developing Th2 cells, 
suggesting that there is some redundancy 
in their function.25 Moreover, STAT3-
deficient T cells had diminished produc-
tion of Th2 cytokines, reduced expression 

Figure 1. T helper (Th) cell phenotypes. Cytokine environments, and the downstream STAT proteins that are subsequently activated (adjacent to 
arrows from naïve T helper precursors (Thp) to each effector subset) promote the development of various Th cell effector phenotypes. The hallmark 
transcription factor for each phenotype is indicated within brackets in each cell type, and the cytokines produced by each subset are shown. Th, T 
helper; Treg, regulatory T cell; Tfh, T follicular helper cell.
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Conclusions

STAT protein activation is the first 
response of a differentiating T cell to the 
cytokine milieu and represents a necessary 
step in establishing an effector phenotype. 
Although one STAT protein might be the 
predominant factor required for the devel-
opment of each phenotype, additional 
STAT proteins also impact differentia-
tion. The requirement for multiple signal 
inputs likely reflects a necessity for a com-
plex inflammatory cytokine environment 
to allow the development of Th subsets 
that potently enhance the inflammatory 
process. The balance of signals, not only 
pro- versus anti-inflammatory, but also 
in the integration of multiple potentially 
opposing pro-inflammatory signals, leads 
to changes in the phenotype of the dif-
ferentiating cell. Changes in the balance 
could result in modest or significant shifts 
in the type of inflammation that develops 
to allow the fine-tuning of the immune 
response required to mediate pathogen 
immunity, but avoid damaging inflamma-
tory disease.
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promoting Th2 development (Fig. 2B). 
When STAT6 is activated, STAT3 dem-
onstrates reduced binding to Il17a/f 
genes, and induces the expression of 
Th2, rather than Th17, transcription fac-
tors.25 Moreover, multiple cytokine signals 
decrease binding of STAT5 to the Foxp3 
locus as they decrease iTreg generation.37 
Thus, signals from multiple STATs may 
integrate at a genome-wide level of resolu-
tion by altering the binding of one STAT 
when more than one STAT is activated.

Importantly, binding of STAT3 in 
Th2 cells is not entirely dissimilar to 
binding in Th17 cells. Although binding 
to Il17 genes is decreased, there is over-
lap in the binding of STAT3 to genes 
that are required for both Th17 and Th2 
cells, including Irf4, Maf and Batf.25 In 
support of this concept, we have recently 
shown that STAT3 is required for IL-21 
production in multiple T helper subsets.42 
Similar targeting of STATs among com-
monly expressed genes might also provide 
a basis for some of the flexibility of pro-
gramming in Th subsets.43 For example, 
we have shown that polarized Th17 cells 
will repress IL-17 production and induce 
IL-4 production when cultured under 
conditions that promote Th2 develop-
ment.44 Thus, plasticity might result from 
an ability to integrate multiple signals and 
establish epigenetic modifications at the 
relevant loci that are poised to respond 
to additional changes in the cytokine 
environment.45

there could be higher-order interactions in 
an enhanceosome complex. STAT3 might 
also separately contribute to recruitment 
of factors to a STAT6-dependent enhan-
ceosome.30 All of these functions could 
occur in parallel to the direct effect of 
STAT3 on additional documented targets 
including Maf and Socs1.31,32

STAT3 and STAT5 are mutually 
antagonistic as they respectively promote 
Th17 and Treg generation (Fig. 2A). Th17 
cells develop when STAT3 is activated 
in the presence of TGFβ or IL-1 and a 
combination of IL-6 and IL-23,33-36 and 
a constitutively active STAT3 can pro-
mote IL-17 production in several culture 
conditions.6,7 In the absence of STAT3, 
IL-6 does not inhibit iTreg develop-
ment.7,10,37 However, STAT3 is required 
for the IL-10-induced function of Tregs in 
controlling Th17-mediated inflammatory 
disease.38,39 Conversely, an active STAT5 
promotes expression of the Treg transcrip-
tion factor Foxp3, and in the absence of 
STAT5, IL-2 neither promotes Treg devel-
opment nor inhibits Th17 development.40 
At the level of cytokine regulation, STAT3 
and STAT5 bind to overlapping sites at 
the Il17a/f loci but have opposing effects 
on transcription from the loci.41

Despite opposing functions of STAT3 
and STAT5 when they are activated in 
the presence of TGFβ-induced signals, in 
the absence of TGFβ, and in the presence 
of IL-4 and STAT6 activation, STAT3 
and STAT5 cooperate with STAT6 in 

Figure 2. Opposing and cooperative STAT pathways. (A) During Treg development, STAT5 promotes the expression of Foxp3 and Il2ra, while repress-
ing Th17 development by binding to the Il17a/f locus, and potentially other loci. Conversely, STAT3 binds to multiple gene loci that comprise a Th17 
genetic program, while inhibiting the expression of Foxp3. (B) In developing Th2 cells, STAT6 binds to multiple loci associated with the Th2 genetic 
program. STAT5 works in concert by binding to the Il4r locus, and the Il4 locus. STAT3 binds to loci expressing transcription factors that contribute to 
the Th2 phenotype. The loci indicated are only a subset of potential binding sites for each factor.
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