
Control of early stages in invariant natural killer T-cell development

Introduction

Natural Killer T (NKT) cells are a subset of ab T cells

that are not restricted by classical MHC molecules, and

that respond to antigen recognition with a ‘cytokine

storm’; the secretion, within hours, of large quantities of

T helper type 1 and type 2 cytokines and chemokines,

reminiscent of innate rather than adaptive functions. In

fact, the rapid and dual production, at a single cell level,

of interferon-c and interleukin-4 (IL-4) in response to

stimulation is a characteristic of many of these cells.1

Through this cytokine and chemokine production, NKT

cells influence the behaviour of many other cells in the

immune system, including NK cells, macrophages, other

ab T cells, dendritic cells and neutrophils (reviewed in

ref. 2), and have been implicated in multiple processes,

including microbial immunity and tumour rejection. Sim-

ilarly, they play a role in the pathogenesis of autoimmune

processes, atherosclerosis and allergy (reviewed in ref. 3).

Although there are different types of NKT cells (see

ref. 4 for a review), the most common, and better stud-

ied are type I NKT cells, also called invariant NKT cells

(iNKT). These cells are characterized by the expression

of an invariant T-cell receptor (TCR) a chain (Va14-

Ja18 in mice or Va24-Ja18 in humans) in combination

with certain TCR-b chains (using Vb8.2, Vb7 or Vb2 in

mice, or Vb11 in humans). The iNKT cells in mice can

be CD4+ or double-negative (DN; CD4) CD8)), gener-

ally have a ‘memory’ or ‘activated’ phenotype

(CD69+ CD62L) CD44hi IL-2Rbhi) and express markers

characteristic of NK cells, including NK1.1, NKG2D and

Ly49. They are found mainly in the liver and bone

marrow, but also in the thymus, spleen and blood. The

numbers of NKT cells are highly variable between

individuals and mouse strains.5–9 Given their role in

immunoregulation this may be relevant for the patho-

genesis of autoimmune diseases, and deficiencies in NKT

cell numbers have been identified in pathologies such as

systemic lupus erythematosus.10

Invariant NKT cells recognize the glycosphingolipid

a-galactosylceramide presented by CD1d, and are best

identified using a CD1d tetramer bound to this antigen.11

Other ligands for NKT cells have been identified, both

endogenous and derived from pathogens, but the nature
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Summary

Natural killer T (NKT) cells develop in the thymus from the same precur-

sors as conventional CD4+ and CD8+ ab T cells, CD4+ CD8+ double-posi-

tive cells. In contrast to conventional abT cells, which are selected by

MHC–peptide complexes presented by thymic epithelial cells, invariant

NKT cells are selected by lipid antigens presented by the non-polymor-

phic, MHC I-like molecule CD1d, present on the surface of other double-

positive thymocytes, and require additional signals from the signalling

lymphocytic–activation molecule (SLAM) family of receptors. In this

review, we provide a discussion of recent findings that have modified our

understanding of the NKT cell developmental programme, with an

emphasis on events that affect the early stages of this process. This

includes factors that control double-positive thymocyte lifespan, and

therefore the ability to generate the canonical Va rearrangements that

characterize this lineage, as well as the signal transduction pathways

engaged downstream of the T-cell receptor and SLAM molecules.
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of the ligand(s) that mediate positive selection of this

lineage in the thymus remains elusive.12,13

The iNKT cells develop in the thymus from the same

precursors as conventional CD4+ and CD8+ ab T cells,

CD4+ CD8+ double-positive (DP) cells.14 In contrast to

conventional ab T cells, which are selected by MHC–

peptide complexes presented by thymic epithelial cells,

iNKT are selected by lipid antigens presented by the

non-polymorphic, MHC I-like molecule CD1d, present

on the surface of other DP thymocytes (reviewed in refs

3,15,16).

The differentiation of iNKT cells in the thymus has

been divided into a series of stages, based on phenotypic

markers, and sensitivity to different mutations (reviewed

in refs 11,16–18) (Fig. 1). Once a DP thymocyte expresses

the invariant TCR and receives signals through the signal-

ling lymphocytic–activation molecule (SLAM)/SLAM-

associated protein (SAP) and TCR (Control Point 1) it

starts down-regulating Heat Stable Antigen (HSA)

(CD24) and up-regulating first CD44, and later DX5.

These cells are small, NK1.1) and not cycling. Some of

these cells can exit the thymus and mature to NK1.1+

iNKT cells in the periphery, while others mature in the

thymus. The transition from NK1.1) immature iNKT

cells to NK1.1+ iNKT is accompanied by a proliferative

burst (Control Point 2). Mature iNKT cells can be CD4+

or CD4) (i.e. DN), and these subsets are functionally dif-

ferent, at least in humans. CD4+ iNKT cells have a T

helper type 0 cytokine profile while DN iNKT cells are

more T helper type 1 biased. The relationship between

these two subsets is unclear, although some genetic

manipulations, like the deletion of GATA-3 at the DP

stage, affect them differentially.19 Recent data suggest that

some of the NK1.1) iNKT cells found in the periphery

are a distinct mature population.20 There is also some

evidence21,22 for a process of negative selection, induced

by high-affinity ligands, although it has not been well

characterized. In the periphery, iNKT cells are long-lived,

have a slow turnover, are dependent on IL-15, and do

not seem to require low-affinity interactions of their TCR

with CD1d for survival.23

Numerous recent reviews have addressed the mecha-

nisms that control NKT cell development and func-

tion.4,11,16,18,24–26 Here, we will focus on recent findings

that impact our understanding of the early stages of iNKT

development (Control Point 1).

Figure 1. Stages of invariant natural killer T (iNKT) cell development. The NKT cells develop in the thymus from CD4+ CD8+ double-positive

(DP) thymocytes. Thymocytes that express a T-cell receptor (TCR) that interacts with CD1d bound to self glycolipid, expressed by other DP thy-

mocytes, enter the NKT-cell lineage. Signals from the signalling lymphocytic–activation molecule (SLAM) co-receptors are also required. Once

selected, NKT-cell precursors undergo a series of differentiation steps that ultimately result in the NKT-cell pool. The initial selection event is

called Control Point 1. Four distinct stages of differentiation have been defined through differential expression of CD24, CD44 and DX5. The

NKT cells then undergo an actively regulated maturation step, which ultimately results in a range of functional and phenotypic changes, includ-

ing expression of NK1.1. This maturation step is called Control Point 2. Many NKT emigrate from the thymus as immature cells and undergo

final differentiation in the periphery. Some mature thymic NKT cells also migrate to the periphery, but many remain as long-term thymus-resi-

dent cells. Both immature and mature NKT cells include CD4+ and CD4) (DN) subsets.
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Control of DP thymocyte lifespan

The first prerequisite for the generation of iNKT cells is

the stochastic rearrangement of the invariant Va14-Ja18

TCR-a chain. Given the orderly sequence of rearrange-

ments in the TCR-a locus (proximal to distal), and the

distal position of Ja18 in the Ja region, Va14-Ja18 rear-

rangements are always secondary.27 Therefore an extended

DP lifespan is necessary for the development of NKT

cells, as first evidenced by the defects in NKT develop-

ment observed in RAR-related orphan receptor cT

(RORcT) -deficient and Bcl-xL-deficient mice.28–30 In con-

trast with this model, it has also been proposed that some

early ab T-cell precursors are pre-committed to the iNKT

lineage at the DN stage.31 It is unclear how these results

can be reconciled with multiple lines of evidence that sug-

gest that a long DP lifespan is a requirement for iNKT

cell development.

Double-positive thymocytes have a short average life-

span (3–4 days).32–34 The mechanisms that regulate this

defined lifespan are not completely understood. Although

DP thymocytes are exquisitely sensitive to elevations in

glucocorticoid levels, as those induced by stress,35,36 the

role of normal levels of glucocorticoids in determining

DP thymocyte lifespan is controversial.37–39 RORcT, a ret-

inoid-related orphan nuclear receptor, was shown to con-

trol DP lifespan,40 and analysis of RORcT-deficient

knockouts provided the first evidence for the requirement

of long DP lifespans for iNKT generation. The RORcT

affects DP survival through the regulation of Bcl-xL, an

anti-apoptotic member of the Bcl-2 family. Although this

basic relationship has been known for a number of years,

a number of other factors that also contribute to DP sur-

vival have been recently identified.

HEB, a member of the E-box family of transcription fac-

tors, is required for iNKT cell development because of its

effect on controlling expression of RORcT and, therefore,

Bcl-xL.41 Similarly, DP-specific deletion of the transcrip-

tion factor c-Myb results in a decrease in DP thymocyte

lifespan,42 and a blockade of iNKT cell development.43

The alteration in DP lifespan is the result of its effect on

Bcl-xL expression, but, in contrast with HEB, this effect is

independent of RORcT expression. The effect on Bcl-xL

does not seem to be direct, or, at least, c-Myb cannot be

detected by ChiP on three predicted c-Myb binding sites

present in the Bcl-xL promoter.42 Furthermore, although

expression of Bcl-xL rescues DP lifespan, and distal Va-Ja
rearrangements, this is not sufficient to rescue NKT cell

development in c-Myb-deficient thymocytes43 (see below).

Other pathways that regulate of DP lifespan through con-

trol of Bcl-xL levels include the Wnt-b-catenin-TCF-1

pathway,44–46 and the energy sensor LKB1, through activa-

tion of AMP-activated protein kinase.47

Another genetic alteration that results in decreased DP

thymocyte survival, and biased TCR-a rearrangements, is

the deletion of the transcriptional repressor histone

deacetylase 7 (HDAC-7).48 Presumably this mutation

should also block NKT development, although this was

not tested. In this case the effect is apparently indepen-

dent of alterations in RORcT or Bcl-xL, because their

expression is not altered in HDAC-7-deficient thymo-

cytes. The relationships between all these different path-

ways, and how they cooperate to maintain homeostasis of

the DP population, are subjects of interest that will

require additional experiments in the future (see Fig. 2).

Signals that regulate Control Point 1

It is thought that selection by DP cells imparts the unique

developmental programme of iNKT cells, and other

‘innate-like’ ab T cells such as T-CD4 T cells,49,50 by the

cooperative engagement of the TCR and at least two

members of the SLAM family (SLAMF1 and SLAMF6),51

although it is unclear if this cooperative engagement alters

the signal that a positively selected DP thymocyte receives

from its TCR, or whether the SLAM/SAP-derived signals

are required to block negative selection induced by strong

TCR-derived signals.52 Below we discuss the known con-

tributions of different signal transduction pathways

downstream of the TCR and the SLAM axis. In some

Figure 2. Control of double-positive (DP) thymocyte lifespan.

CD4+ CD8+ DP thymocytes have a short lifespan, and in the absence

of signals from the T-cell receptor (TCR) die in 3–4 days. Factors

that shorten this lifespan dramatically affect development of invari-

ant natural killer T cells, because the Va14-Ja18 TCR-a rearrange-

ment that characterizes them is always secondary. In this diagram we

illustrate some of the known factors that influence DP lifespan, and

their interactions.
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cases, most notably the nuclear factor-jB (NF-jB) path-

way, both inputs are able to activate the same pathway

(see Fig. 3).

Signals from the TCR

Selection of conventional ab T cells from DP thymocytes

requires TCR-mediated signals, which induce numerous

intracellular events including activation of the Ras/mito-

gen-activated protein kinase (MAPK) cascade,53 increased

intracellular calcium levels and subsequent activation of

calcineurin54 and activation of itk family kinases.55,56 A

number of recent papers has explored the contribution of

these pathways to the selection of iNKT cells.

Activation of the Ca2+/calcineurin pathway is required

for iNKT cell development. Deletion of calcineurin B1 in

DP thymocytes produced a significant loss in both thymic

and peripheral iNKT cell numbers.57 In the same work,

the authors identified Egr2 as an important mediator of

this pathway. Egr2-deficient fetal liver chimeras showed

impaired development of iNKT cells, starting at the earliest

stages of positive selection (Control Point 1). Although the

evidence presented in this work suggested that neither

Egr1, nor Egr3, played a role in iNKT cell development,

more recent experiments, using competitive mixed bone

marrow chimeras, and double Egr1-Egr2 knockouts, have

shown that both Egr1 and Egr2 play a role in NKT cell

development.58 Contrary to the situation in conventional

ab T-cell development, where Egr1 and Egr2 play a quan-

titatively similar role,59,60 during iNKT cell development

Egr2 seems to play a much more central role. The mecha-

nism that underlies these functional differences is not yet

characterized. Another molecule induced by calcium sig-

nals, the high-mobility group box transcription factor

TOX was also recently shown to be essential for iNKT cell

development.61 The specific stage of iNKT development

affected by TOX-deficiency was not determined, but the

dramatic decrease in the percentage of CD1d-tet+ cells

observed in these mice suggests an early block.

Although the Ras/MAPK cascade plays a central role in

positive selection of conventional ab T cells62,63 its

involvement in iNKT cell development has not been stud-

ied in detail until recently, in part because an early report

suggested that the number of NK1.1+ cells in the thymus

of mice over-expressing dominant negative Ras and Mek-

1 was normal.64 This result, together with data showing

that cross-linking of SLAMF1 resulted in recruitment of

RasGAP,65 resulted in a model where the role of the

SLAM-derived signal would be to limit Ras/MAPK activa-

tion (see refs 4,24,25,66). However, a recent re-examina-

tion of iNKT populations in dnRas transgenic mice shows

that inhibition of this pathway profoundly perturbs iNKT

cell development, with a blockade at the early stages of

positive selection (Control Point 1).58 Therefore, as with

conventional ab T cells the Ras/MAPK pathway plays a

critical role during positive selection of iNKT cells. The

Itk family kinases, which are important for the selection

of conventional ab T cells (reviewed in refs 55,56), also

seem to play a role in iNKT cell development,67 but this

effect seems to be evident first at later stages than those

from mice defective in Ras or Egr.

The contribution of the NF-jB pathway to positive

and negative selection of conventional ab T cells is a

controversial topic. In peripheral T cells, TCR triggering

Figure 3. Signals that drive Control Point 1. Positive selection of invariant natural killer T (iNKT) cells from double-positive (DP) thymocytes

requires signals from the T-cell receptor (TCR) and the signalling lymphocytic–activation molecule (SLAM) co-receptors. This diagram shows

some of the signal transduction pathways involved in this early stage of iNKT cell development, as well as some transcription factors that are

required for further development.
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results in NF-jB activation mediated by protein kinase

C-h, Bcl10 CARMA-1 and Malt1, but gene knockout of

these components does not alter positive selection of con-

ventional ab T cells.68–70 However, other alterations fur-

ther downstream from this pathway result in changes in

T-cell development.71 In contrast, activation of the NF-jB

pathway seems to be more important for the NKT cell

lineage, because positive selection of NKT, but not con-

ventional ab T cells, is blocked in mice with a T-cell-

specific deletion of IKK2.72,73 However, mice deficient in

CARMA-1 and Bcl10 have normal NKT development.73,74

Protein kinase C-h)/) mice show a partial defect in thy-

mic development, with accumulation at immature stages,

but almost normal populations in the periphery.73,75

SLAM/SAP and NKT cell development

The SLAM family consists of a number of related proteins

including (Slamf1), CD48 (Slamf2), 2B4 (Slamf4), Ly9

(CD229, Slamf3), CD84 (Slamf5), NTB-A (Slamf6), Cracc

(Slamf7), BLAME (Slamf8) and SF2001 (Slamf9). These

receptors are expressed on the surface of a wide variety of

haematopoietic cells, have diverse functions, including

roles in regulating co-stimulation, T-cell cytokine produc-

tion, adhesion between haematopoietic cells, the develop-

ment of innate T lymphocytes (SLAM and Ly108) and

others (see refs 76,77 for recent reviews on this family of

receptors). Although DP thymocytes express high levels of

SLAMF1, 2, 3, 5 and 6, and lower levels of SLAMF4, 7, 8

and 9,43,77,78 the only SLAM family members that seem to

play a role in iNKT cell development are SLAMF1 and

SLAMF6. Interestingly their function is redundant. Single

knockouts have a partial phenotype,79,80 but a series of

elegant mixed bone marrow chimeras clearly demon-

strated that the combined lack of SLAMF1 and SLAMF6

causes a dramatic decrease in NKT cell numbers.51 This

finding fits nicely with data obtained from NOD mice, a

mouse strain that has been used as a model for autoim-

mune diabetes.The NOD mice have decreased levels of

NKT cells.81 This phenotype was mapped to the SLAM

locus,82 and a comparison of the expression pattern of

SLAM family members in DP thymocytes showed a

decrease in expression of SLAMF1 and SLAMF6, but no

other SLAM family members.78 Recently, we found that

the transcription factor c-Myb plays a role in NKT cell

development in part by modulating expression of

SLAMF1 and SLAMF6.43 Interestingly, the SLAM family

expression patterns in DP thymocytes from mice carrying

the NOD SLAM locus and in mice defective in c-Myb are

very similar,78 suggesting that the defective expression of

SLAM1 and SLAM6 may be the result of alterations in

c-Myb binding.

It is well established that SLAM engagement recruits

the adaptor SLAM-associated protein (SAP) and the Src

kinase Fyn, both of which are essential for the selection

of the iNKT cell lineage,83–87 but the signal transduction

pathways engaged downstream from the SLAM/SAP/FYN

module that are relevant for NKT cell development are

not well defined.

In a T-cell line SLAMF1 cross-linking induces recruit-

ment and phosphorylation of of SHIP, Dok1, Dok2 and

Ras-GTPase-activating protein (Ras-GAP)65 and this evi-

dence has been used to propose a model where the

SLAM-derived signals would inhibit activation of the

Ras/MAPK cascade induced by the TCR.66 As discussed

above,58 recent results argue against this model. SLAM-

SAP triggering induces other signal transduction path-

ways. SLAM cross-linking on CD4 T cells results in

AKT activation88 and prolongs protein kinase C-h
recruitment to the site of antigen-presenting cell contact,

as well as influences Bcl-10 phosphorylation and patterns

of NF-jB activation.89 It is unclear whether this effect

on NF-jB activation by SLAM/SAP is important for

NKT cell development. Activation of this pathway is

important, as shown by the almost complete block in

NKT cell development observed in IKK2)/) mice,73 and

in mice expressing a degradation-resistant Ij-Ba,90,91 but

the contribution of different upstream activators is not

clear.

Whether SLAM/SAP and TCR-derived signals cooperate

to activate NF-jB during positive selection of DP thymo-

cytes is unclear, although they do in mature CD4 T

cells.89 Over-expression of a constitutively active IKKb
kinase in SAP)/) mice fails to rescue NKT cell develop-

ment,92 suggesting that additional pathways downstream

of SLAM/SAP are required. In over-expression studies,

SAP also bound to PAK-interacting exchange factor

(PIX), leading to synergistic NFAT (nuclear factor of acti-

vated T cells) activation in conjunction with ionomycin

in Jurkat T cells93 and to NCK1 (non-catalytic region of

tyrosine kinase 1).94 The possible contribution of these

pathways to NKT cell development has not been

explored.

Many factors important for the initial stages of NKT

cell development have been recently identified. However,

we still do not understand the specific contribution of the

SLAM/SAP signal to this process, and how it comple-

ments TCR-derived signals. The DP-specific knockouts of

other transcription factors such as Runx1,29 Fra-195or Elf-

196 also result in alterations at early stages in NKT cell

development, but it is unclear whether signals from the

TCR or SLAM affect the activity or expression of these

transcription factors in this process, or how all these sig-

nals cooperate to set in motion the NKT-specific develop-

mental programme.
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