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Abstract
Evolution results from molecular-level changes in an organism, thereby producing novel
phenotypes and, eventually novel species. However, changes in a single gene can lead to
significant changes in biomolecular networks through the gain and loss of many molecular
interactions. Thus, significant insights into microbial evolution have been gained through the
analysis and comparison of reconstructed metabolic networks. However, challenges remain from
reconstruction incompleteness and the inability to experiment with evolution on the timescale
necessary for new species to arise. Despite these challenges, experimental laboratory evolution of
microbes has provided some insights into the cellular objectives underlying evolution, under the
constraints of nutrient availability and the use of mechanisms that protect from extreme
conditions.

Introduction
While evolution involves the change of genetic sequence over time, it more importantly
changes molecular interactions. Therefore, evolution often leads to modifications in
molecular-network topology and ultimately in the systems-level functions of an organism
(i.e., phenotype).

Metabolism, a complex network of chemical reactions, is an ideal system to study network-
level changes in evolution. First, it is the best characterized biomolecular network. The
underlying genes and proteins are well-characterized, and their interactions and
biochemistry have been studied comprehensively. Second, because metabolism is critical to
all cellular functions, many core reactions have ancient origins and are conserved across all
kingdoms of life[1]. While small differences exist in metabolic pathway topology within
different strains of one species (e.g., in Pseudomonas syringae[2]), examination of
conserved reactions across species nonetheless facilitates clear comparisons for evolutionary
insight.

Selective pressures resulting from cellular objectives help guide the expansion and pruning
of metabolic pathways through evolution (Figure 1). The cellular objectives underlying the
selective pressure can involve maximizing the nutritional potential of the environment and
surviving environmental stress. Here we review recent insights into metabolic pathway
evolution, which have been gained from both computational and experimental approaches.
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Theoretical advances in cellular objectives and pathway evolution
Over the past decade, numerous studies have identified topological properties of metabolic
networks that are shaped through evolution, such as their robustness, modularity, and scale-
free organization[3]. Recently, computational studies of metabolic network evolution have
extended beyond topology to assess the interaction of cellular objectives and selective
pressures in pathway evolution. The selective pressures affecting bacterial populations can
be divided into two categories: 1) nutrient availability and 2) environmental stress.

Nutrient availability guides the evolution of metabolic pathways, since the central role of
metabolism is the conversion of small molecules to biomass and energy (Figure 1.a). For
instance, catabolism is poorly conserved relative to anabolism because the presence or
absence of specific pathways is governed by an organism’s habitat and the access to
different nutrients[4]. Also, Escherichia coli central metabolism is structured as a minimal
number of enzymatic steps between nutrients and biomass precursors[5], thereby achieving
metabolic functionality with a minimal set of enzymes[6]. Since there seems to be a
selection for minimal metabolic pathways given the environmental conditions, the accessible
nutrients for a species may be inferred by analyzing the network topologies. The essential
sets of compounds for 478 species have been computed through a phylogenic analysis of
network topologies[7]. To account for the evolution of metabolic pathways according to
environmental conditions, the toolbox model of evolution was proposed. This model
suggests that prokaryotic genomes are shaped by horizontal gene transfer of co-regulated
metabolic pathways and prompt removal of redundant genes based on gain and loss of
environmental nutrients[8].

Living organisms can adapt to environments that impose extreme stresses, such as high
temperatures and oxidative conditions (Figure 1.b). Adaptation to different temperatures has
accompanied evolution since ancient forms of life endured high temperatures[9,10].
Interestingly, temperature changes correlate with structural differences in metabolic
networks[11]. As the optimal growth temperature increases amongst 113 prokaryotes, the
network edge density, clustering coefficient, and subgraph concentration all decrease. Also,
a strong selective constraint at high temperature tends to inhibit the emergence of shortcut
pathways[12]. Therefore, metabolic networks tend to transit from heterogeneous and highly-
modular structures at lower temperatures to homogeneous structures with low modularity
and fewer shortcuts in higher temperatures.

Experimental evolution in studying pathway evolution
Metabolic network analysis provides insight into microbial evolution and suggestions for the
evolutionary objectives. However, all of these studies are retrospective analyses, in which
traits within current species are compared to get insights into evolution. Since the species
analyzed in retrospective studies often diverged millions of years ago, it is difficult to
rigorously test these evolutionary theories. Fortunately, some theories may be
experimentally tested through adaptive laboratory evolution (ALE). ALE has successfully
demonstrated changes to the transcriptional regulatory network and the metabolic network
topology. These changes provide further support that pathway evolution is shaped in part by
the interaction between cellular objectives and selective pressures, such as biomass
production subject to nutrient availability and cellular protection under harsh environmental
conditions.

Pathways adapt to optimize metabolism subject to nutrient availability
Exponentially growing bacteria often have growth phenotypes (e.g., substrate uptake rate,
secretion products, etc.) consistent with the predictions of flux balance analysis using
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genome-scale models of metabolism[13]. Strains that fail to grow according to model
predictions can evolve toward the model-predicted optimal phenotypes, as demonstrated on
sub-optimal media conditions with E. coli[14] and Lactobacillus plantarum[15] and with
several E. coli mutants[16]. The improved growth rates and biomass yields for exponentially
growing E. coli are accompanied by improved use of the model-predicted optimal metabolic
pathways[17]. Through ALE, many essential genes and the optimal pathways are up-
regulated, while genes and proteins associated with reactions that could not carry flux were
all significantly down-regulated (Figure 1.c). Thus, in short-term evolution, we see a
tendency to tune protein expression levels[18], to prune out pathways that are not necessary,
and to enhance expression of essential metabolic pathways[17]. This optimization of
pathway usage in ALE is often driven by regulatory genes mutations that improve fitness for
that specific environment[19–22].

Moreover, metabolic pathways can be extended by to utilize novel nutrients. After ~33,127
generations of growth on glucose-poor/citrate-rich minimal media, E. coli evolved the
capability to aerobically use citrate as its sole carbon source[23] (Figure 2.a). This capability
does not solely result from the activation of a latent citrate transporter, since it depends on a
genetic background containing additional mutations, obtained over thousands of generations.
In another example, wild-type E. coli K12 evolved the ability to grow on L-1,2-propanediol
(L-1,2-PDO) and 1,2-ethanediol (ethylene glycol). It evolved the ability to metabolize L-1,2-
PDO when glycerol minimal media was slowly replaced with L-1,2-PDO minimal
media[24]. Further mutagenesis allowed for the isolation of E. coli K12 strains that
metabolize ethylene glycol[25]. These functions require the constitutive expression and
mutation of fucO, and ethylene glycol metabolism required a mutation in lactaldehyde
dehydrogenase (aldA) (Figure 2.b). Thus, the acquisition of a new metabolic function
required mutations that induced expression of a latent pathway, and mutations that changed
substrate specificity to catabolize the metabolites. Therefore, prokaryotes will evolve to a
metabolic phenotype consistent with an efficient use of the metabolic network as
constrained by nutrient availability.

Pathways adapt to protect the microbe
The optimization of metabolic efficiency is seen in exponentially-growing cells. However,
some enzymes that do not contribute to biomass are used to protect cells from harmful
metabolites. For example, the product of the E. coli dut gene, which dephosphorylates
dUTP, is predicted in silico to waste resources; however, in exponentially growing E. coli,
the dut mRNA and protein are up-regulated following ALE[17]. This is because its
metabolic role in vivo maintains genome integrity by precluding dUTP from integrating into
the genome during replication, and its absence decreases the growth rate in E. coli[26].

The role of protection is further apparent when E. coli is evolved to grow with toxic levels
of isobutanol or ethanol. In isobutanol, the evolved strain increases the expression of an
enzyme needed for the synthesis of glucosamine-6-phosphate, which enhances cell
membrane synthesis[27]. In ethanol, expression increases for genes related to glycine and
betaine synthesis, which both serve as protective osmolites[28]. In another study, ALE on
ethanol resulted in strains that concurrently metabolize ethanol, even when ample glucose is
provided, thereby potentially reducing the ethanol concentration in the cellular
microenvironment[29]. All of these metabolic changes improve fitness under toxic
conditions, presumably by protecting the integrity of the genome, macromolecules, and
membrane.

Furthermore, microbes can evolve novel metabolic functions to protect the cell through the
mutation of extant enzymes[30]. Glutathione (GSH) is essential under stress-inducing
conditions such as oxidizing conditions[31]. When gshA, a gene in the GSH synthesis
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pathway, was deleted from E. coli, the mutant strain was unable to produce GSH, thereby
reducing its tolerance to AsO4

3−. The mutant strain was evolved, and mutations in the
proline synthesis genes proB and proA restored AsO4

3− tolerance and GSH production. The
proB mutation affected its metabolic regulation, while the proA mutation changed the
regulatory and catalytic capabilities of the enzyme. Wild type ProA normally catalyzes the
conversion of γ-glutamyl phosphate to glutamic acid 5-semialdehyde. However, ProA in the
evolved strain instead metabolizes γ-glutamyl phosphate to form γ-glutamyl cysteine, a
precursor to GSH. Together these mutations changed the functions of extant enzymes from
proline biosynthesis to GSH synthesis (Figure 2.c).

Future directions
Computational and experimental approaches have increased insight into how cellular
objectives and selective pressure guide pathway evolution. Two models by which these
pathways are believed to evolve are the retrograde and patchwork hypotheses[32,33] (Figure
3). The arrival of novel metabolic functions from enzyme mutations in ALE (Figure 2)
provides support for the patchwork evolution hypothesis, as novel pathways are built with
enzymes recruited from other pathways (Figure 3.b). However, many more analyses are
needed to gain further understanding into pathway evolution. Two areas of research that
may provide additional insight into how pathways change include: 1) the investigation into
plasticity of promiscuous enzymatic activities and 2) the evaluation of how protein
structures fit in the pathway context.

In case of promiscuous enzymatic activities, recent studies support the idea that novel
metabolic functions may arise in a patchwork manner through refinement of promiscuous
enzymatic functions[34,35]. Moreover, another recent study demonstrated the ability of
artificial protein sequences to rescue 27 E. coli auxotrophs[36]. Thus, there is a wide range
of potential metabolic functions that can be gained through the refinement of promiscuous
activities of proteins within a cell or gained through horizontal gene transfer[37].

The incorporation of protein structure into pathway analyses will allow an additional
dimension of insight into pathway evolution. For example, an assessment of protein folds
across a functional metabolic network model of Thermotoga maritima demonstrated that
enzymes catalyzing similar reactions tended to share folds more frequently than enzymes
that are connected in the same pathways, thereby providing stronger support for the
patchwork model[38].

Thus, the integration of genome-scale science, experimental evolution, and network
modeling will advance our understanding about the molecular mechanisms of evolution and
how they are molded by cellular objectives and selective pressures. This will accelerate as
novel experimental approaches develop and as systems biology evolves to incorporate more
biochemical knowledge and to better reflect biological reality.
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Figure 1. Cellular objectives and selective pressures guiding pathway evolution
Theoretical (a,b) and experimental (c,d) approaches have been used to gain insight into how
the interactions between cellular objectives and selective pressures guide the evolution of
metabolic pathways. Specifically, these efforts have shown how (a) microbes gain and lose
pathways with an objective to gain biomass under the pressure of limited nutritional
resources, and that (c) the metabolic pathways used are consistent with the in silico-
predicted optimal pathways. In addition, cells also have an indirect objective of self-
protection against a selective pressure of stressful environmental conditions. Consistent with
this, (b) adaptation to different temperatures correlates with topological changes in
metabolic pathways, and (d) microbes evolve mechanisms to metabolize or protect against
toxic environmental conditions.
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Figure 2. Extension of metabolic pathways through laboratory evolution
Laboratory evolution under a defined selective pressure has identified a few cases in which a
new metabolic function arose. Three of these examples include the ability that E. coli gained
to (a) transport citrate after 33,000 generations, (b) metabolize L-1,2-propanediol and
ethylene glycol, and (c) synthesize glutathione when a key enzyme in its synthesis was
deleted.
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Figure 3. Two models of pathway evolution
(a) The retrograde model suggests that duplication events of neighboring genes extends
pathways from a key metabolite. (b) The patchwork model assumes novel pathways arise as
broad-specificity enzymes are acquired or duplicated and mutated, thus forming a new
pathway. Dashed grey arrows represent duplication events and mutation.
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