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Abstract
Herein we report an enantioselective synthesis of complex cyclopentanones using aliphatic
aldehydes and activated enones. With the combination of a chiral secondary amine and a chiral
triazolium catalyst, high diastereoselectivity and excellent enantioselectivity can be achieved. We
present evidence of a clear cooperative effect when these two catalysts are present simultaneously
in the system.

Introduction
The incorporation of multiple catalytic cycles in a single procedure allows for complex
compounds to be easily accessed, a concept that has been termed cascade catalysis.1–3 By
eliminating the need for isolation and purification of intermediates, both time and resources
are saved. This is especially important if these intermediates prove unstable upon isolation.
While attractive, cascade catalysis provides unique challenges. With the possibility of
multiple catalysts present simultaneously, the need for reaction selectivity is important. A
solution to this problem is to use catalysts of orthogonal reactivity. Our group has previously
reported that secondary amine and N-heterocyclic carbene (NHC) catalysts initiate cascade
reactions of enals and β-dicarbonyls to form α-hydroxycyclopentanones (Fig 1, a).4 This
reaction proceeds via iminium activation of the enal to induce a conjugate addition by the
dicarbonyl followed by an intramolecular benzoin. Importantly the two catalysts work
cooperatively, providing higher yields and enantioselectivities compared to a two-step
process. Herein, we report the secondary amine/NHC catalyzed cascade reaction of aliphatic
aldehydes and activated Michael acceptors to form complex cyclopentanones with a
complementary substitution pattern.

Whereas our previous work employed iminium catalysis, we sought to explore the use of
enamine catalysis in combination with NHC’s in a cascade reaction. Ma has reported a
highly diastereo- and enantioselective Michael addition of aliphatic aldehydes into activated
enones with the use of a secondary amine catalyst (3).5 We speculated that the aldehyde
intermediate formed could undergo an intramolecular benzoin reaction when exposed to an
N-heterocyclic carbene catalyst (Fig 1, b). This would provide a cyclopentanone product in
what may be considered a formal [3+2] cycloaddition. This approach provides
complimentary and inaccessible substitution patterns from our previous work.
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Results and Discussion
Reaction Development

The reaction conditions developed by the Ma group were repeated using the Jorgensen-
Hayashi catalyst 37 in methanol at room temperature. After observing the consumption of
starting material, achiral triazolium salt 58 and sodium acetate were added to catalyze the
benzoin cyclization. These conditions provide no desired product (Table 1, entry 1). When
methanol is replaced with chloroform, the desired product is formed in 29% yield and 96%
ee but with a 3:1:<1:<1 dr (Table 1, entry 2).9 Employing a one-step protocol with all
reagents present from the outset results in an increase in yield to 35% (entry 3). Increasing
the temperature from 23 °C to 60 °C improves the yield to 89% while maintaining high
enantioselectivity (96% ee) and a 5:1:<1:<1 diastereomeric ratio. The diastereoselectivity is
further improved to 290:15:6:1 when the chiral aminoindanol based triazolium 610,11 is used
(entry 5). The use of the antipode of this catalyst, 6′, results in lower diastereoselectivity
(4:1:<1:<1). This is likely a result of a match/mismatch relationship.

Synthetic Scope
With suitable conditions established, a variety of substrates were screened to explore the
scope of this new cascade. Aliphatic aldehydes provide the desired products in good yield
and high enantio- and diastereoselectivity (Chart 1, 4b–c). Isovaleraldehyde competitively
forms the Stetter product12 in a 1:1 ratio with cyclopentanone 4d under standard conditions.
This side product can be avoided when the introduction of the triazolium is delayed until
after complete formation of the intermediate. Larger aldehydes are also viable but routinely
require prolonged reaction times (Chart 1, 4f–g).

Variation in the enone component was then explored (Chart 2). Esters and tertiary amides
are viable under these conditions (Chart 2, 4h–k).13 Substitution at the ketone position is
also tolerated. N-Alkyl ketones provide products in excellent yields while maintaining high
stereoselectivity. The isopropyl ketone failed to cyclize under standard conditions. By
substituting the bulky triazolium 6 with the smaller achiral catalyst 5, the intramolecular
benzoin was accomplished albeit with a curiously low enantioselectivity (4o). Phenyl ketone
can also be employed, with diminished diastereoselectivity (4n). Diketones may also be
used to form products (4p–q) with good selectivity despite diminished yield.

With high complexity already built into the cyclopentanone products, functionalization
should allow rapid access to even more elaborate products. The addition of sodium
triacetoxyborohydride at the end of the reaction permits a diastereoselective reduction of the
ketone to 1,2-diol 7. This action effectively permits the formation of a fourth stereocenter in
one pot (Eqn 1).

(1)

Mechanistic Insights
We then explored if there is an advantage between this onestep protocol versus a two-step
reaction. Aldehyde 8 was prepared by exposing butyraldehyde and enone 2a to catalyst 3,
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catalytic acetic acid, and chloroform at room temperature (Scheme 1). After purification, the
aldehyde intermediate was isolated in moderate yield with a 2:1 diastereomeric ratio.

Exposure of this intermediate to benzoin conditions provides the cyclized product in
comparable yield and enantioselectivity, but with a low diastereomeric ratio (4:1:1:<1). This
diastereoselectivity can be improved when the benzoin cyclization is performed with the
addition of chiral amine catalyst 3(10:1:<1:<1 dr).

In our previous work, it was discovered that the amine catalyst is responsible for a retro-
Michael reaction, which eroded enantioselectivity in the two-pot reaction. Crossover
experiments indicate that this pathway is non-operative in this system.14 Instead, we propose
that the secondary amine catalyst is capable of epimerizing the α-position of the
intermediate aldehyde to form an equilibrium between 8 and 8′. The chiral triazolium 6
prefers cyclization with only one of these diastereomers, and this adduct continues on to the
final product. The amine catalyst thus aids in converting the less reactive diastereomerinto
its epimer.15 This hypothesis explains how the amine catalyst can convert aldehyde 8 with
low diastereoselectivity to a diastereomerically enriched product.

To support this mechanism, the benzoin cyclization was monitored over time by NMR
spectroscopy. When intermediate aldehyde 8 is exposed to catalyst 6, we see complete
consumption of one diastereomer in preference over the other (Fig. 3). When amine catalyst
3 is included in this reaction, consumption of both diastereomers occurs over the course of
the reaction, consistent with the hypothesis that amine catalyst 3 serves to interconvert the
two diastereomers of 8.16,17

Conclusion
In summary, a one-pot stereoeselective Michael-Benzoin cascade reaction has been
developed for the synthesis of complex cyclopentanones. The presence of both the
secondary amine and triazolium catalysts is essential for excellent results, indicating a
cooperative relationship between the catalysts. This provides a unique and useful method to
form complicated cyclopentanes from simple starting materials.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig 1.
Secondary amine/NHC cascade reactions6
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Fig 2.
Proposed Mechanism
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Figure 3.
NMR experiments
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Scheme 1.
Two-Pot Reactions
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Chart 1.
Aldehyde Scopea
aSee Table 1. bCatalyst 6 was added after consumption of starting material. cDiastereomeric
ratio determined by 1H NMR

Ozboya and Rovis Page 10

Chem Sci. Author manuscript; available in PMC 2012 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Chart 2.
Keto-ester Scopea
aSee Table 1. bCatalyst 5 was used in place of 6.
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