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Summary
OBJECTIVES—Human population totals are used for generating burden of disease estimates at
global, continental and national scales to help guide priority setting in international health
financing. These exercises should be aware of the accuracy of the demographic information used.

METHODS—The analysis presented in this paper tests the accuracy of five large-area, public-
domain human population distribution data maps against high spatial resolution population census
data enumerated in Kenya in 1999. We illustrate the epidemiological significance, by assessing the
impact of using these different human population surfaces in determining populations at risk of
various levels of climate suitability for malaria transmission. We also describe how areal
weighting, pycnophylactic interpolation and accessibility potential interpolation techniques can be
used to generate novel human population distribution surfaces from local census information and
evaluate to what accuracy this can be achieved.

RESULTS—We demonstrate which human population distribution surface performed best and
which population interpolation techniques generated the most accurate bespoke distributions.
Despite various levels of modelling complexity, the accuracy achieved by the different surfaces
was primarily determined by the spatial resolution of the input population data. The simplest
technique of areal weighting performed best.

CONCLUSIONS—Differences in estimates of populations at risk of malaria in Kenya of over 1
million persons can be generated by the choice of surface, highlighting the importance of these
considerations in deriving per capita health metrics in public health. Despite focussing on Kenya
the results of these analyses have general application and are discussed in this wider context.
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Introduction
Accurate census enumeration combined with information on the spatial distribution of
administrative areas is a prerequisite for efficient governance in all nation states (UN 2001).
This information, transformed into human population distribution maps, forms an essential
population denominator required for many epidemiological studies and for rational public
health planning and healthcare provision. Accurate knowledge of human population
distribution is needed to define populations at risk of disease for example, to enable
exploration of the association of this risk with the environment, poverty and other diseases.
It is further necessary to investigate the effectiveness, efficiency and equity of the healthcare
system and thus to optimally target and cost interventions through the formal sector (Noor et
al. 2003, 2004).

The massive increase in the availability of rasterized (or gridded) imagery of Earth surface
conditions, derived primarily from remote sensing, has facilitated a renaissance in the
mapping of a range of vector-borne diseases at continental and global scales (Hay 2000; Hay
et al. 2000; Randolph 2000; Rogers 2000; Rogers & Randolph 2000; Rogers et al. 2002) and
a concomitant improvement in the spatial resolution at which disease risk can be
determined. Combinations of these vector-borne disease and demographic data, with
assumptions about attributable risk, can be used to generate burden of disease estimates
where primary health information system data are wanting (Snow et al. 1998, 1999, 2003,
2005; WHO/UNICEF 2003; Hay et al. 2004, 2005; WHO 2005). The error associated with
the population denominator in these calculations is usually ignored.

Similarly, international efforts to quantify the global burdens of a wider range of infectious
diseases (Murray & Lopez 1996, 1997; Walker et al. 2002; Williams et al. 2002; Black et al.
2003; Kosek et al. 2003; Morris et al. 2003; de Silva et al. 2003; Zaidi et al. 2004) have
traditionally relied on attribution of detailed local information to population data aggregated
over large areas; often the national level (Mathers et al. 2003; Murray et al. 2003). Risk is
assumed to be equally spatially partitioned among homogenously distributed human
populations. It is unlikely that this assumption will be valid for the leading causes of under-
five mortality globally; including diarrhoea, pneumonia, malaria (Craig et al. 1999; Hay et
al. 2004) and HIV/AIDS (Black et al. 2003; Morris et al. 2003). It is further unlikely that
geographical homogeneity is to be found in all of the major underlying risk factors for these
causes (Ezzati et al. 2002, 2004), which at the very least will show large urban-rural
mortality differentials (Hinrichsen et al. 2002; Dyson 2003; Tatem & Hay 2004; Hay et al.
2005). As techniques for defining disease burdens are moved to sub-national scales to
support strategic assessments of progress towards international health and development
targets (UNDP 2003), evaluating the fidelity of the associated human population distribution
data used will become increasingly important.

Population data is primarily gathered through national census enumeration within country
specific administrative boundaries. Methods used to interpolate census polygon data into
continuous surfaces are varied and briefly outlined. They include areal weighting,
pycnophylactic (mass-preserving) interpolation, dasymetric mapping (density measuring)
and various forms of ‘smart’ interpolation (Deichmann 1996; Deichmann et al. 2001) and
their use in several public-domain large-area human population distribution maps is also
summarized (Table 1, Figure 1).

Areal weighting simply overlays a regular grid (raster surface) on administrative unit
(polygon) data and assigns population according to the proportion of the polygon area in the
raster grid cell (Mennis 2003). For example, imagine an administrative unit x is a perfect
square of 3 × 3 km. To turn this into a gridded population map at 1 × 1 km spatial resolution,
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the population of x/9 would be assigned to each square in the raster grid. Areal weighting
was used to generate the Gridded Population of the World version 2.0 (GPW2.0)
(Deichmann et al. 2001) and GPW3.0 (CIESIN/CIAT 2004) and while it has the advantage
of simplicity it is confounded by the assumption that human populations distribute
themselves uniformly in space.

Pycnophylactic interpolation starts identically to areal weighting and then smoothes these
raster values iteratively with the weighted average of nearest neighbours; at each iteration
the total is adjusted to maintain the population count of the original polygon hence ‘mass-
preserving’ (Tobler 1979). The number of nearest neighbours used and iterations applied is
subjective and determines the overall level of smoothing required in the output raster
surface. Pycnophylactic interpolation is an elegant solution to the problem of generating a
continuous surface from discontinuous data and was used to generate GPW 1.0 as part of the
Global Demography Project (Tobler et al. 1995, 1997). It unrealistically assumes, however,
that no sharp boundaries exist in the distribution of human population (Tobler 1979).

Dasymetric mapping uses ancillary information (often land-use derived from satellite
imagery) at higher spatial resolution than the population polygon data to help allocate
population (i.e. from forested to urban) who are assumed to differentially inhabit land-use
types (Wright 1936; Langford & Unwin 1994; Mennis 2003). Dasymetric mapping again
has the merit of relative simplicity and requires little extra data but can be difficult to
implement because of the problems of defining the relative weights of the land-use classes.
The GPW3.0 with urban-rural reallocation (GPW3.0UR) is an example of dasymetric
mapping. GPW3.0UR uses the same global input census data as GPW3.0 but also uses
remote sensing [night-time lights (Sutton et al. 2001) and Landsat (Mika 1997)] and other
geographic data [Digital Chart of the World (DCW) populated places (Danko 1992)] to
define urban extents. Weights are then applied to reallocate urban and rural populations to 1
× 1 km grids, based on the census data and published city population data (Balk & Yetman
2004; CIESIN/IPFRI/CIAT 2004).

Smart interpolation is technically more sophisticated than dasymetric mapping and uses a
wide variety of ancillary data to help disaggregate population polygons as humans are
known to distribute themselves non-randomly in the environment (Stewart & Warntz 1958;
Langford & Unwin 1994; Cohen & Small 1998). For example, people are more likely to be
living near roads and navigable rivers than in lakes or at the top of mountains (Tatem & Hay
2004). Weights can therefore be derived from ancillary data to inform the interpolation
process to a raster grid. Smart interpolation tries to incorporate geography explicitly into the
population distribution process and can vary in complexity from techniques informed
predominantly by transport networks and settlement size, such as the accessibility potential
interpolation used in UNEP (Deichmann 1996), to those that use a plethora of ancillary data
to define occupation probabilities for all pixels in a raster grid, for example the smart
interpolation used in Landscan (Dobson et al. 2000, 2003; Openshaw & Turner 2001).
Uncertainty regarding the derivation of such weights and their geographical homogeneity
are the primary complications for the implementation of smart interpolation (Openshaw &
Turner 2001).

The analyses presented here investigate the accuracy of five public-domain, large-area
population surfaces with reference to the 1999 Kenya population and housing census. The
performance of areal weighting, pycnophylactic interpolation and accessibility potential
interpolation techniques at generating new raster population surfaces for Kenya from the
1999 census data are also investigated, as relevant national agencies and affiliated
researchers may have access to higher spatial resolution census data than those used in
deriving global raster population surfaces. The resolution of the input census polygon data
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used in creating large area raster representations of human population distribution is also
tested as the spatial resolution of available data is highly variable between countries and has
rarely been evaluated outside of high-income nations (Fisher & Langford 1995; Martin
1996; Martin et al. 2000). From the outset we have the reservation that the raster population
datasets used were often designed and implemented at global and continental scales and
were not necessarily conceived for the applications for which they were tested. This paper is
not positioned to favour any implementation or technique but to help evaluate the merits and
demerits of these sources of human population distribution data used in epidemiology and
public health and thereby help identify priority areas for their refinement. The importance of
these considerations in epidemiology is highlighted by quantifying the differences in
population at different levels of climate suitability for malaria risk obtained when extracting
from the different human population distribution maps available for Kenya.

Materials and methods
The Kenyan Government’s Central Bureau of Statistics implemented a complete population
and housing census in 1999 (CBS 2001). It was of the de facto type, so that all persons were
enumerated where encountered at the time of census in their homes. Kenya’s administrative
unit hierarchy (Figure 2) and population data are available in public-domain to the fifth
administrative unit or sub-location (CBS 2001). The number, area (mean, minimum and
maximum) and average spatial resolution (ASR; the square root of country area/number of
admin units) (Deichmann 1996), of each administrative level are detailed (Table 2).

Public-domain population surfaces
Five public-domain raster datasets of human population distribution for which complete
coverages of Kenya could be derived were obtained: UNEP (Deichmann 1996), GPW2.0
(Deichmann et al. 2001), GPW3.0 (Balk & Yetman 2004), GPW3.0UR (Balk & Yetman
2004; CIESIN/IPFRI/CIAT 2004) and LandScan (Dobson et al. 2000, 2003). Hereafter the
five human population distribution surfaces are referred to as UNEP99, GPW299, GPW399,
GPW3UR99 and LS99. The main characteristics of each of these population surfaces are
detailed (Table 1) and the surfaces extracted and displayed for Kenya (Figure 1).

The date for which the human population distribution surfaces were generated and their
spatial resolution varied so that two further modifications were required to enable inter-
comparison. The first was a correction for enumeration year. An estimate of population in
1999 was produced for each raster population distribution using the following equation;
P1999 = Pxert where P1999 is the required 1999 population within a pixel, Px is the population
within the same pixel at year x, t is the number of years between year x and 1999, and r is
the average growth rate (Deichmann 1996). Annual growth rates were determined from
provincial intercensal population growth rates (Nairobi 4.8%, Central 1.8%, Coast 3.1%,
Eastern 2.1%, North Eastern 9.5%, Nyanza 2.3%, Rift Valley 3.5% and Western 2.5%)
(CBS 2001) and applied at the district level to generate population distribution maps for
1999. These changes were implemented with Idrisi Kilimanjaro (Clark Labs, Clark
University, Worcester, MA, USA). The spatial resolution of the administrative boundaries
and hence census information was often significantly finer than the spatial resolution of the
raster data (Figure 1, Table 2). A second modification was therefore required to increase the
spatial resolution of the raster surfaces to 100 × 100 m using areal weighting to allow
reliable population extractions at the highest order administrative levels. This was
particularly important in the urban areas of highest population density. These population
surfaces were generated and subsequent extractions performed with ArcView 3.2
(Environmental Systems Research Institute Inc., Redlands, CA, USA).

Hay et al. Page 4

Trop Med Int Health. Author manuscript; available in PMC 2011 September 15.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



The co-registration of the raster population and census data was checked by shifting each
raster image by one 100 × 100 m picture element (pixel) in all orientations (N, W, S, E). In
each case the correlation between the human population distribution maps and the census
data decreased, showing they were optimally co-registered (aligned); results not shown. The
error attributed to using a non-equal-area latitude and longitude reference system for Kenya
is minimal as the country straddles the equator and is less than that would be generated by
re-sampling the population surfaces to an alternative projection (Bugayevskiy & Snyder
1995). All the population surfaces were therefore analysed in the projection in which they
were supplied.

Population interpolation approaches
Human population distribution surfaces at 100 × 100 m were also independently generated
from these census data for Kenya using areal weighting, pycnophylactic interpolation and
accessibility potential interpolation approaches. Each rubric was performed using census
data at the national through to sub-location administrative level. Areal weighting was
implemented with the zonal attributes extension of ArcView 3.2 (Environmental Systems
Research Institute Inc.). Pycnophylactic interpolation was implemented with C code
supplied by Uwe Deichmann and a smoothing factor iterated for 100 times or until no
further changes in the cell adjustments were observed (Tobler 1979; Tobler et al. 1995). The
accessibility potential interpolation technique was also implemented with C code written by
and a methodology devised by Uwe Deichmann and Tom Cova (Deichmann 1998). The
ancillary data required for accessibility potential interpolation, the human settlement
database, river, road, railway networks and gazetted areas and water-bodies were assembled
as follows.

Africover data at full spatial resolution (1:100 000) were requested and downloaded (URL:
http://www.africover.org). The Africover roads and rivers themes were produced from
visual interpretation of digitally enhanced Landsat Thematic Mapper images (bands 4, 3, 2)
acquired mainly in 1995. The land-cover classes using the FAO/UNEP international
standard land cover classification system (Di Gregorio & Jansen 1998), were similarly
derived from visual interpretation of Landsat Thematic Mapper images but using scenes
acquired more recently in 1999, the same year as the Kenya national census (CBS 2001). All
landcover polygons classified as an urban area, rural settlement and refugee camp were
compared with the sub-location data and aggregated to make them coherent administrative
groupings (244 from 327 polygons). For example, the cluster of 12 polygons of urban areas
in and around Mombasa were aggregated to one. The centroids of these aggregated polygons
were assigned names and population counts using the database of municipalities, town
councils and other urban centres from the 1999 population and housing census (CBS 2001)
(133 of 244 polygons). Localities that were in the census list but not represented by
Africover polygons (n = 144) were added as points using geo-referencing information
obtained from Microsoft Encarta 2003 (Microsoft Corporation, Seattle, WA, USA). We
were able to locate all of Kenya’s 9 996 991 urban classified population (CBS 2001) in this
manner. Finally, we took the population and name of the parent sub-location for all
remaining Africover polygons (n = 111) resulting in a total urban associated population of
10 766 874 in 388 localities. The river network was used as supplied by Africover. The
newer Africover road network (0.040 km/km2 road density for Kenya) was supplemented
with the higher density road network supplied with the DCW (Danko 1992) (0.094 km/km2

road density for Kenya). A buffer of 600 m around the Africover roads was used to erase
duplicate roads in the DCW network and the resulting coverages merged in ArcGIS 8.3
(Environmental Systems Research Institute Inc.) and manually checked and corrected. This
resulted in a hybrid road network (0.074 km/km2 road density for Kenya) optimizing the
more contemporary Africover and more comprehensive DCW. Railway data was used as
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supplied by DCW as this has not changed since digitization (Danko 1992). Finally, many
irregularities were found in the gazetted area polygons for Kenya and their provenance could
not be reliably determined. The polygons over land (n = 45) were checked against all
ancillary data and manually corrected if their boundaries did not reconcile (i.e. if a gazetted
area boundary followed an administrative border, road or river boundary inaccurately it was
corrected). These polygons were augmented (n = 21) with all sub-locations that contained
National Park, National Reserve or Forest in any of the administrative hierarchy names and
had a population density <20 people/km2. They were all then classified as gazetted parks (n
= 46) or gazetted forests (n = 20).

The road, river and rail layers were merged to create a single transportation network and
each component assigned travel speeds as outlined in previous work (Deichmann 1998). The
data on settlement size and location were then linked to the transport network by assigning
each settlement to the nearest network node. This information was used by the accessibility
potential interpolation model to compute a simple accessibility measure for each node in the
transport network. This measure is the sum of the population of settlements in the vicinity of
each node weighted by a function of network distance. The computed accessibility estimates
were then interpolated to a 100 m spatial resolution surface. The water body, gazetted forest
and gazetted park polygons were, in turn, used to adjust the accessibility surface to 0%, 50%
and 20% of their original value (Deichmann 1998). Finally, the sub-location population
totals were distributed in proportion to the accessibility index measured for each pixel.

Accuracy assessment and malaria burden implications
Descriptive statistics (Sokal & Rohlf 1997b) for each administrative level were computed
from administrative zone totals and accuracy comparisons between census and human
population distribution data determined using the population adjusted coefficient of
determination (adjusted r2) (Sokal & Rohlf 1997a) and root mean square error (RMSE)
(ASPRS 1989). The RMSE is the square root of the mean of the sum of the squares of the
error residuals;

where n is the number of observations and d1 to dn the residual values and is essentially a
normalized confidence interval on the predicted values. In addition, we derived estimates of
the kurtosis and skewness of the census and transformed human population distribution for
the areal weighting, pycnophylactic interpolation and accessibility potential interpolation
data extractions at each administrative level (Sokal & Rohlf 1997c) to show the influence of
the processing on the distribution of the human population distribution data. Kurtosis
characterizes the relative ‘peakedness’ or ‘flatness’ of a distribution compared with the
normal distribution. ‘Skewness’ is the degree of asymmetry of a distribution around its mean
(Sokal & Rohlf 1997c).

The map of climate suitability for malaria transmission (Craig et al. 1999) was partitioned
into established classes of malaria risk (Snow et al. 2003) (Figure 3). Populations exposed to
different levels of risk were calculated by overlaying the five human population distribution
surfaces on a Kenya subset of a map (Figure 3). Populations at risk were also determined
directly from the census data by assigning population in direct proportion to the area of each
sub-location occupied by a transmission intensity class (i.e. equivalent to areal weighting at
sub-location). The results are summarized for the national level (Table 5).
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Results
Public-domain population surfaces

The five public-domain raster human population distribution surfaces predicted accurately
populations at the provincial (mean adjusted r2 = 0.988, range 0.961–0.999), district (mean
adjusted r2 = 0.923, range 0.808–0.998) and divisional levels (mean adjusted r2 = 0.803,
range 0.665–0.992) (Table 3, Figure 4). The mean RMSEs, when expressed as a percentage
of the mean population size of the administrative level (RMSE%), were correspondingly
small at 9.8 (range 7.2–12.6) 19.1 (range 8.9–32.7) and 37.9 (range 11.2–54.7) for province,
district and division respectively (Table 3, Figure 4). Moving down the administrative
hierarchy, predictive skill decreased; at the location (mean adjusted r2 = 0.498, range 0.212–
0.948) and sub-location (mean adjusted r2 = 0.397, range 0.090–0.904) level (Table 3,
Figure 4). The mean RMSE%s were higher at 81.3 (range 23.4–111.4) and 107.5 (range
35.6–150.2) for location and sub-location respectively (Table 3, Figure 4).

GPW3UR maintained the lowest RMSE% (35.6) and highest correlation (r2 = 0.904) to the
census data at the sub-location level followed by GPW399 (82.5, r2 = 0.539). There was
little difference between the poorer performing surfaces, all showing RMSEs larger than the
average population size of a sub-location (Table 3, Figure 4). All human population
distribution surfaces showed an increase in RMSE with population size of the sub-location
and performed badly in sub-locations of very low population (Figure 5).

Population interpolation approaches
The accessibility potential interpolation technique showed more skill at predicting human
population distribution at provincial and district admin levels but performed worse than
areal weighting or pycnophylactic interpolation at division, location and sub-location levels
(Table 4, Figure 6), although these differences are small, and at sub-location level due
principally to the rasterization process. The areal weighting technique was most accurate at
the admin 3 level and above. Pycnophylactic interpolation had only cosmetic effects on the
human population distribution maps and always decreased accuracy over areal weighting.
The population data were highly skewed (Table 4, as people tend to aggregate spatially) but
implementing areal weighting, pycnophylactic interpolation and accessibility potential
interpolation increased skewness; this effect was most apparent at the divisional level.

The average number of people at risk of malaria in Kenya was 22 808 235 (range 21 439
951–24 070 422) (Table 5). Large discrepancies were also found in each of the classes of
categorical risk: the class 2 marginal risk average was 10 033 869 (range 9 390 026–10 429
831), the class 3 acute seasonal transmission risk average was 7 605 795 (range 6 709 852–8
855 830) and the class 4 stable endemic transmission risk average was 5 168 571 (range 4
337 786–5 823 280) (Table 5).

Discussion
It should be pointed out that while Kenya has a large diversity in human population
distribution from the intensively urban centres of Nairobi and Mombasa to the rural coastal,
lakeside and pastoralist communities, the analyses discussed here arise from one country.
While illustrative, it is clear that further evaluation of these human population distribution
surfaces in countries of different size and experiencing different levels of urbanization and
population aggregation are desirable. Nevertheless, as a result of these simple comparisons,
certain characteristics that are helpful for evaluating population surfaces for use in
epidemiological and public health applications are apparent. All the human population
distribution surfaces tested showed a sharp transition in predictive accuracy when evaluated
below the level of the input census data regardless of the interpolation method used. This
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can be seen by examining the number of admin units available for interpolation (Table 1)
and the point at which accuracy metrics rapidly decrease (Table 3). UNEP99, GPW299 and
LS99 use 258 units which correspond to division level data (admin3) from the 1989 Kenya
census. GPW3UR and GPW399 are the exceptions that prove the rule, as they have no
precipitous decline in accuracy at the divisional level and input data at the sub-location
level. The fact that all RMSEs exceeded the size of the average population of administrative
unit at any spatial resolution division finer than the input census data underscores the
importance of investigating the local ASR metric (Table 2) no matter how beguiling the
spatial resolution of the gridded surface appears (Figure 1) or the sophistication of the
modelling used.

It is important to emphasize therefore that knowledge of local resolution of input polygon
data is essential when using population surfaces especially when conducting studies at
regional, continental and global scales. For example GPW399 has 25 times more population
administrative units for Kenya than any of the other surfaces and more administrative units
for Africa than LS99 uses for the entire world (Table 1). In addition, all population surfaces
will have some countries and regions that will have input data no better than a national
average (admin0) and that they may rely on very old census information (URL: http://
www.census.gov). The ability to determine the spatial and temporal fidelity of products is
therefore highly desirable and the metadata that are distributed with UNEP99 (Deichmann
1996), GPW299 (Deichmann et al. 2001), GPW399 (Balk & Yetman 2004) and
GPW3UR99 (Balk et al. 2004; CIESIN/IPFRI/CIAT 2004) may be extremely useful in this
regard. Dissemination of such metadata, as well as information including the details of
ancillary data used and weights applied in modelling are also prerequisites for interpreting
human population distribution surfaces. The information distributed with Landscan, for
example, remains limited in this respect. The provision of details of ancillary data used in
such smart interpolation procedures is of importance in avoiding the introduction of bias
when these population layers are compared with other information sources based on the
same data. Such additional knowledge has never been utilized when deriving burden of
disease estimates and part of our future work is directed at using these surfaces to define
spatial variation in the confidence of population-based health metrics derived across
countries, regions and the globe.

It is clear that the current accuracy of GPW3UR and GPW399 for Kenya is largely due to
access to admin5 data. It is also surprising, that despite the difference in complexity between
the methods used, and types and ages of data available to generate UNEP99, GPW299 and
LS99, the RMSE differences between them are relatively small (Table 3, Figures 4 and 5).
Moreover, these differences relate more to how accurately the various maps had defined the
national park and forest areas of Kenya in their interpolation processes, than to the
techniques used (Figure 5). It is evident therefore that these human population distribution
surfaces could be improved simply by using more accurate and contemporary vector files of
gazetted locations, although the gains in accuracy due to better ancillary data are
insignificant when compared with gains in accuracy due to higher resolution input
population data. To a lesser extent the same arguments can be applied to the resolution of
the national boundary and coastlines used.

The comparison of simple interpolation techniques through the administrative hierarchy was
also illuminating. The accessibility potential interpolation method offered some increased
skill at the provincial level but failed to exceed the precision achieved by areal weighting or
pycnophylactic interpolation at the lower administrative levels. Pycnophylactic interpolation
always decreased accuracy over areal weighting and can thus only be justified on aesthetic
grounds. Given the ease of implementation of areal weighting it remains the default
technique where the ASR of the population data exceeds that of the ancillary GIS data. The
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results do point to a role for smart interpolation techniques but that these are going to be
strongly influenced by the spatial resolution of the ancillary GIS data used. Smart
interpolation procedures are based currently on heuristic rules relating population
distribution to socioeconomic factors, without a solid evidence-base for such rules. Finding
the balance between the accuracy gained for the increased complexity of smart interpolation,
based on reality using high spatial resolution remotely sensed data is the subject of on-going
work (Tatem & Hay 2004; Tatem et al. 2004).

The influence of these respective human population surfaces was illustrated dramatically by
showing the difference in population at malaria risk for a nation such as Kenya that can be
generated simply by the choice of population surface. Differences between the extreme
extractions, expressed as a percentage of the average extracted for total population at risk
was 10% but reached 28% in the highest endemicity class. Such margins would have very
dramatic effects on any disease burden and commodity needs estimation that might use these
numbers. It is clear that the assumption of a uniformly distributed human population would
generate wildly inaccurate numbers.

We have tested the precision of existing continuous human population distribution surfaces
for Kenya and demonstrated the accuracy with which novel human population distribution
maps can be generated using a range of available and simple interpolation techniques. The
paramount importance of the ASR of the input census data has been highlighted and its
consideration when utilizing such data emphasized. Obviously, these results argue primarily
for the free distribution of high ASR census data globally but in the real world this will not
always be possible. We have therefore further highlighted the issues involved and accuracy
that can be obtained using simple interpolation techniques at different administrative levels
where these might be locally available. However, a corollary to these findings is that as the
ASR of input data for human population distribution surfaces increases with periodic
updates, the rationale for modelling human population distribution will decrease. The critical
importance of metadata and background information that describes the methodology and
data sources used in the construction of the human population distribution, that help the user
evaluate the local fidelity of the data, was also laboured. Finally, this is illustrated with the
range of population at malaria risk estimates that can be derived from using these various
public domain human population distribution maps. The suite of epidemiological application
and public health interventions that use human population distribution maps should therefore
start to be aware of some the limitations and opportunities we have documented.
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Figure 1.
Raster population maps for Kenya. From top left to bottom right: UNEP99, GPW299,
GPW399, GPW3UR99, LS99 and AW99 (areal weighted 1999). To compare population
data which is highly skewed (Table 4) it is convenient to express values as standard
deviations from the mean value for the entire image. The highest values in each image are 3
standard deviations from the mean allowing inter-comparison. Colours and shading are
added to accentuate these differences.
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Figure 2.
Administrative boundaries for Kenya 1999. From top left to bottom right: country
(administrative level 0); province (administrative level 1); district (administrative level 2);
division (administrative level 3); location (administrative level 4); sub location
(administrative level 5). A further finer level of stratification, ‘enumeration area’ is used for
census counting and is not shown. North is to the top of the page and Kenya is 1126 km
from its most northerly to southerly extent.
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Figure 3.
Model of endemic malaria distribution (Craig et al. 1999) showing fuzzy climate suitability
(FCS) for P. falciparum malaria transmission. FCS values vary between zero (totally
unsuitable) and 1 (totally suitable) in an average year. The data are grouped (Snow et al.
2003) into class 1 zero risk □ (FCS = 0), class 2 marginal risk  (FCS >0–<0.25), class 3
acute seasonal transmission  (FCS >0.25 to <0.75) and class 4 stable endemic transmission

 (FCS > 0.75). The red boundary is national and the blue provincial (see Figure 2).
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Figure 4.
Graph of error structure by administrative level for the five large area public-domain human
population distribution surfaces. RMSE% = the root mean square error (see Methods)
expressed as a percentage of the mean population size of the administrative level.
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Figure 5.
Accuracy of raster population maps for Kenya by sub-location. From top left to bottom
right: UNEP99, GPW299, GPW399, GPW3UR99 and LS99. The graphs show population
number (y-axis) by sub-location ordered from lowest to highest population (x-axis). The
thick black line are the census counts (CBS 2001). The dots and error bars are the mean and
root mean square error, respectively, averaged for sequential blocks of 50 sub-locations for
clarity.
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Figure 6.
Graph of error structure by administrative level for the three modelled human population
distribution surfaces. RMSE% = the root mean square error (see Methods) expressed as a
percentage of the mean population size of the administrative level.
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