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Purpose: A new model is introduced that individually resolves the delivery, transport, and phos-

phorylation steps of metabolism of glucose and its analogs in skeletal muscle by interpreting

dynamic positron emission tomography (PET) data.

Methods: The model uniquely utilizes information obtained from the competition between glucose

and its radiolabeled analogs. Importantly, the model avoids use of a lumped constant which may

depend on physiological state. Four basic physiologic quantities constitute our model parameters,

including the fraction of total tissue space occupied by interstitial space (fIS), a flow-extraction

product and interstitial (ISg) and intracellular (ICg) glucose concentrations. Using the values of

these parameters, cellular influx (CI) and efflux (CE) of glucose, glucose phosphorylation rate

(PR), and maximal transport (VG) and phosphorylation capacities (VH) can all be determined.

Herein, the theoretical derivation of our model is addressed and characterizes its properties via sim-

ulation. Specifically, the model performance is evaluated by simulation of basal and euglycemic

hyperinsulinemic (EH) conditions.

Results: In fitting the model-generated, synthetic data (including noise), mean estimates of all but

ICg of the parameter values are within 5% of their values for both conditions. In addition, mean

errors of CI, PR, and VG are less than 5% whereas those of VH and CE are not.

Conclusions: It is concluded that under the conditions tested, the novel model can provide accurate

parameter estimates and physiological quantities, except ICg and two quantities that are dependent

on ICg, namely CE and VH. However, the ability to estimate ICg seems to improve with increases

in intracellular glucose concentrations as evidenced by comparing ICg estimates under basal vs EH

conditions. VC 2011 American Association of Physicists in Medicine. [DOI: 10.1118/1.3599034]
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I. INTRODUCTION

In positron emission tomography (PET), the glucose analog

labeled with the radionuclide 18F, 2-fluoro-2-deoxy-D-

glucose ([18F]2FDG), is widely used to study glucose metab-

olism, especially in brain. It is well known that the uptake of

glucose and its analogs, such as [18F]2FDG, from plasma to

brain utilize glucose transporters, primarily GLUT1, to cross

the blood-brain barrier. Once inside the cell, [18F]2FDG

is phosphorylated by hexokinase forming [18F]FDG-6-

phosphate, which is trapped intracellularly. To probe these

processes, two-compartment models with three (3K model)

and four (4K model) rate constants were proposed by Sokol-

off et al.1 and Phelps et al.,2 respectively. Both models lump

extracellular and intracellular glucose into a single compart-

ment and therefore cannot resolve the transport step.

Herein, our emphasis is on glucose handling by skeletal

muscle which, because of its overall mass, is one of the

largest consumers of glucose in the body and is the target of

some pharmaceuticals used to treat diabetes. The application

of the above-mentioned 3K and 4K models to skeletal mus-

cle is controversial.3 Unlike brain, skeletal muscle does not

have a tight barrier between capillary and interstitial space.

In skeletal muscle, glucose diffuses into interstitial space

from plasma through pores and fenestrations between endo-

thelial cells in capillaries. Glucose then enters cells via facil-

itative glucose transporters, GLUT1 and GLUT4, with

GLUT4 being dominant in mediating the glucose transport

response to insulin. Once inside the cell, glucose phosphoryl-

ation is catalyzed by hexokinase. Since the 3K and 4K mod-

els lump extracellular and intracellular glucose into the same

compartment, these models cannot independently account

for glucose transport from plasma into cells. Consequently, a

three-compartment five-rate-constant model (5K model) was

proposed by Bertoldo et al.3 that resolves glucose metabo-

lism into three individual steps: delivery, transport, and
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phosphorylation. While the level of detail is an important

advantage of this 5K model, it is challenging to reliably

determine values for all of the model’s parameters.

To this end, Bertoldo and co-workers have used sequen-

tial injections of the nonphosphorylatable glucose analog
11C-labeled 3-O-methyl-D-glucose [11C]3OMG) and the

phosphorylatable analog [18F]2FDG to obtain more informa-

tion than can be obtained with only a single injection.4 They

endeavored to more reliably resolve the transport and phos-

phorylation steps. This approach seems appropriate, yet chal-

lenges remain: First, [11C]3OMG, a reference tracer for

glucose transport in PET has a limitation in its clinical use

due to the 20-min half-life of 11C. Second, a value for a

lumped constant (LC) must be assumed so that one may infer

the glucose metabolic rate from that of the analog, whereas

the value depends on plasma and tissue glucose concentra-

tions.5,6 Third, the 5K model3 has five parameters (i.e., five

rate constants), which make their reliable estimation diffi-

cult. Fourth, no direct estimation of the interstitial and intra-

cellular glucose concentrations is provided by this 5K or any

other published PET glucose model.

Herein, we address these challenges. We use a nonphos-

phorylatable analog 18F-labeled 6-fluoro-6-deoxy-D-glucose

[18F]6FDG), which has a 110-min half-life and has been

shown to be transported but not phosphorylated.7 We pro-

pose a novel model that resolves delivery, transport, and

phosphorylation steps and which explicitly accounts for

interactions between glucose and its analog thereby obviat-

ing the need for a lumped constant. Our proposed model

incorporates physiologic constraints and well-established ki-

netic laws and requires four independent parameters to be

estimated from the PET data.

We first introduce the theoretical derivation of our model

and present studies characterizing its ability to estimate parame-

ter values in computer simulations wherein the estimates can be

compared to the known true values. We then design a two-injec-

tion protocol for PET scanning. The experimental procedure

utilizes PET scanning upon injection of [18F]6FDG followed

by a subsequent injection of [18F]2FDG with continued scan-

ning. This two-injection simulation protocol is performed for

both basal (fasting) and euglycemic hyperinsulinemic (EH)

conditions.

II. METHODS AND MATERIALS

II.A. Kinetic modeling of glucose analogs in skeletal
muscle

Similar to the 5K model, our model has three compart-

ments with five rate constants. Molar concentrations of the

glucose analog in the arterial plasma, interstitial, and intra-

cellular spaces are denoted Pa, ISa, and ICa, respectively,

and the intracellular concentration of the phosphorylated

analog denoted IPa is assumed to be metabolically trapped

inside the cell. In this model, total tissue space (Vtotal) is

the sum of interstitial (VIS), intracellular (VIC), and blood

(Vb) spaces. From the molar balance, the following equa-

tions define the quantitative relationship for the kinetic

model:

VIS

d

dt
ISaðtÞ ¼ FE½PaðtÞ � ISaðtÞ�

� k3aVISISaðtÞ þ k4aVICICaðtÞ; (1)

VIC

d

dt
ICaðtÞ ¼ k3aVISISaðtÞ

� k4aVICICaðtÞ � k5aVICICaðtÞ; (2)

VIC

d

dt
IPaðtÞ ¼ k5aVICICaðtÞ: (3)

Based on the assumptions that the interstitial space is a well-

mixed compartment and that capillaries in the tissue are uni-

formly distributed, Johnson and Wilson8 showed that when

the intracapillary solute concentrations equilibrate rapidly

compared with the interstitial solute concentrations, the

flow-extraction product (FE, ml=min) can be used to

describe the transcapillary flux of solutes from plasma to in-

terstitial space. In addition, Renkin9 showed that when sol-

utes cross the capillary wall primarily by diffusion, the first

term of the right side of Eq. (1), i.e., FE[Pa(t)-ISa(t)], can be

used to quantify the exchange of solutes, e.g., glucose ana-

logs, between plasma and interstitial space. The rate con-

stants k3a and k4a denote transport of glucose analogs by

glucose transporters. Inside the cell, the rate constant k5a

describes the phosphorylation of glucose analogs catalyzed

by hexokinase.

Now, we can normalize Eqs. (1)–(3) by total tissue space

(Vtotal).

fIS

d

dt
ISaðtÞ ¼ k1PaðtÞ � k2fISISaðtÞ

� k3afISISaðtÞ þ k4afICICaðtÞ; (4)

fIC

d

dt
ICaðtÞ¼ k3afISISaðtÞ � k4afICICaðtÞ

� k5afICICaðtÞ; (5)

fIC

d

dt
IPaðtÞ ¼ k5afICICaðtÞ; (6)

where fIS¼VIS=Vtotal, fIC¼VIC=Vtotal, k1¼FE=Vtotal, and

k2¼ k1=fIS. Herein, we assume that glucose and its analogs

have the same rate constant k1(¼ FE=Vtotal) because they are

carried by blood flow (F) and have similar extraction (E).

Since we define k2¼ k1=fIS, the rate constant k2 is the same

for glucose and its analogs. To derive the final model equa-

tions for parameter estimates, we define IS0a(t)¼ fISISa(t),

IC0a(t)¼ fICICa(t), and IP0a(t)¼ fICIPa(t). As a result, Eqs.

(4)–(6) can be written as

d

dt
IS0aðtÞ ¼ k1PaðtÞ � k2IS0aðtÞ � k3aIS0aðtÞ

þ k4aIC0aðtÞ; (7)

d

dt
IC0aðtÞ ¼ k3aIS0aðtÞ � k4aIC0aðtÞ � k5aIC0aðtÞ; (8)

d

dt
IP0aðtÞ ¼ k5aIC0aðtÞ: (9)

Now, as shown in Fig. 1, our model can be described by Eqs.

(7)–(9), which are the final model equations used for param-

eter estimates.
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PET images pixel values are calibrated to the total radio-

activity concentration, which is calculated by multiplying

molar concentration by specific activity and summing activ-

ities in all compartments:

CPET;i ¼
1

ti
e � ti

b

ðtie

ti
b

fA½IS0aðtÞ þ IC0aðtÞ þ IP0aðtÞ�

þ fb�BðtÞgdt: (10)

where B(t) is the decay-corrected whole blood activity, and

fb (¼Vb=Vtotal) is the fraction of total tissue space occupied

by blood space. Integration over time and division by frame

duration yields the time-averaged value between the begin-

ning ti
b and ending time ti

e of frame i. A is the specific activ-

ity in units of activity per quantity (lCi=pmol). According to

Eqs. (7)–(10), six model parameters are k1, fIS, k3a, k4a, k5a,

and fb. In Sec. II B, we would show that the rate constants

k3a, k4a, and k5a can be expressed in terms of k1, fIS, ISg, and

ICg and that the final model parameters to be estimated are

k1, fIS, ISg, and ICg.

II.B. Classic Michaelis–Menten kinetics

Using classic enzyme-substrate kinetics, a glucose analog

is modeled as a competitive inhibitor of glucose transport

and phosphorylation. Consequently, the reaction velocity

Va, of either process, for substrate (glucose analog) at

concentration Sa can be expressed as Va¼Vmax

� (Sa=Ka)=[1þSa=KaþSg=Kg], where Vmax is the maximum

velocity, Ka is the Michaelis constant for the analog, Kg is

the Michaelis constant for glucose, and Sg is the concentra-

tion of glucose.10 Generally speaking, the concentration of

radiolabeled glucose analog in a PET study is much less than

its Michaelis constant so that Sa=Ka is small compared to

one and may be neglected in the denominator. With this sim-

plification, substituting the appropriate interstitial or intracel-

lular concentration for substrate concentration Sa into this

velocity expression, and dividing by Sa, we obtain the effec-

tive rate “constants” k3a and k4a for transport and k5a for

phosphorylation of the glucose analog

k3a ¼
VG

a

fISðKG
a þISgKG

a =K
G
g Þ
; (11)

k4a ¼
VG

a

fICðKG
a þICgKG

a =K
G
g Þ
; (12)

k5a ¼
VH

a

fICðKH
a þICgKH

a =K
H
g Þ
: (13)

We use the symbols V to denote maximum velocities in units

of millimole per minute per milliliter tissue and K to denote

Michaelis constants. Superscripts G and H denote glucose

transporter and hexokinase, respectively. Subscripts a and g

denote glucose analog and glucose, respectively. ISg, (milli-

mole per milliliter interstitial space) and ICg (millimole per

milliliter intracellular space) are, respectively, the interstitial

and intracellular concentrations of glucose. Based on the

assumption that glucose transport is bidirectional and sym-

metric, Michaelis constants for the forward and reverse

transport are equal11 and the units of KG
a and KG

g are

millimoles per mililiter of distribution volume, which are in-

terstitial and intracellular spaces for influx and efflux,

respectively. In the right side of Eq. (11), the units in the nu-

merator are millimoles per minute per milliliter tissue, the

units within the parentheses in the denominator are milli-

moles per mililiter interstitial space, and the unit of fIS in the

denominator is milliliter interstitial space per milliliter tissue

so that k3a has the expected units of per minute. Analo-

gously, in the right sides of Eqs. (12) and (13) the units in

the numerators are millimoles per minute per milliliter tis-

sue, the units in the parentheses of the denominators are

millimoles per milliliter intracellular space, and fIC has units

of milliliter intracellular space per milliliter tissue so that k4a

and k5a have units of per minute. Note that the rate constant

k5a is only pertinent to glucose or its analogs that can be

phosphorylated. From Eqs. (11)–(13), it is clear that values

of k3a, k4a, and k5a depend on ISg and ICg and thus are not

actually constants. However, if PET studies are performed

when glucose concentrations are stable, k3a, k4a, and k5a may

be treated as constants during the studies. Michaelis con-

stants for glucose and its analogs are assumed to be fixed

values under most physiological conditions and will be

determined separately via transporter assays. Now, given

assumed Michaelis constants (i.e., KG
a , KH

a , KG
g , and KH

g ),

model parameters are k1, fIS, fIC, fb, VG
a , VH

a , ISg, and ICg.

As detailed below, physiologic constraints are applied so

that the final model parameters are k1, fIS, ISg, and ICg.

PET studies are performed with steady glucose concentra-

tions. Accordingly, the left sides of differential equations for

glucose—analogous to Eqs. (4) and (5) with replacement of

subscripts a by g in all symbols to denote glucose—equate to

zero and the differential equations simplify to algebraic

equations

fIS

d

dt
ISgðtÞ¼ 0¼ k1½Pg� ISg��k3gfISISgþk

4g
fICICg; (14)

fIC

d

dt
ICgðtÞ¼ 0¼ k3gfISISg�k4gfICICg�k5gfICICg; (15)

In addition, plasma (Pg), interstitial (ISg), and intracellular

(ICg) glucose concentrations are assumed to be constant over

the time-course of PET studies. The rate constant expres-

sions k3g, k4g, and k5g for glucose are obtained from those of

its analog Eqs. (11)–(13) by replacing the values of maxi-

mum velocities and Michaelis constants of the analog with

those of glucose. Thus, rate constant k3g, k4g, and k5g can be

written as

k3g ¼
VG

g

fISðKG
gþISgÞ

; (16)

FIG. 1. Kinetic model for glucose analogs.
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k4g ¼
VG

g

fICðKG
gþICgÞ

; (17)

k5g ¼
VH

g

fICðKH
gþICgÞ

: (18)

After substituting Eqs. (16)–(18) into the steady-state equa-

tions for glucose Eqs. (14) and (15), one has

k1ðPg � ISgÞ �
VG

g

ðKG
gþISgÞ

ISg þ
VG

g

ðKG
gþICgÞ

ICg ¼ 0; (19)

VG
g

ðKG
gþISgÞ

ISg�
VG

g

ðKG
gþICgÞ

ICg�
VH

g

ðKH
gþICgÞ

ICg¼0: (20)

Solving Eq. (19) for VG
g , one has

VG
g ¼

k1ðPg � ISgÞ
½ISg=ðKG

gþISgÞ � ICg=ðKG
gþICgÞ�

: (21)

According to Eq. (19), we know that k1(Pg-ISg)¼VG
g

ISg=(KG
g þ ISg)-VG

g ICg=( KG
g þ ICg) and then Eq. (20) can be

written as

k1ðPg � ISgÞ �
VH

g

ðKH
gþICgÞ

ICg ¼ 0: (22)

Solving Eq. (22) for VH
g , one has

VH
g ¼

k1ðPg � ISgÞ
ICg=ðKH

g þ ICgÞ
: (23)

Since glucose and its analogs have similar molecular weights

and chemical properties and are acted upon by the same

transporter, we assume that VG
a ¼ VG

g as have others for

GLUT1.12–14 We assume the case to be analogous for

GLUT4. Thus, for simplicity, we denote VG
a and VG

g as VG.

The analogous assumption, i.e. VH
a ¼ VH

g , is applied for hex-

okinase so we, likewise, denote VH
a and VH

g by VH. After

substituting Eqs. (21) and (23) into Eqs. (11)–(13), the rate

constants k3a, k4a, and k5a are

k3a ¼
1

fISðKG
a þ ISgKG

a =KG
g Þ

� k1ðPg � ISgÞ
½ISg=ðK

G
gþISgÞ � ICg=ðKG

gþICgÞ�
; (24)

k4a ¼
1

fICðKG
a þ ICgKG

a =KG
g Þ

� k1ðPg � ISgÞ
½ISg=ðK

G
gþISgÞ � ICg=ðKG

gþICgÞ�
; (25)

k5a ¼
1

fICðKH
a þ ICgKH

a =KH
g Þ
� k1ðPg � ISgÞ

ICg=ðKH
gþICgÞ

: (26)

Since blood space (Vb) in skeletal muscle is relatively small

as compared to VIS and VIC,15 we assume that Vtotal �
VISþVIC. As a result, fIC¼VIC=Vtotal � 1-fIS, for skeletal

muscle. Thus, given measured Pg and assumed Michaelis

constants, the rate constants k3a, k4a, and k5a can be

expressed in terms of k1,fIS,ISg, and ICg. The assumption

also indicates that fb�B(t) in Eq. (10) may be ignored. At

the end of Sec. II A, six parameters to be estimated are k1,

fIS, k3a, k4a, k5a, and fb. With these simplifications, the final

model parameters are k1, fIS, ISg, and ICg. These are a priori
locally identifiable (see Appendix A).16

II.C. Classic Simulations of PET data in rat skeletal
muscle

PET simulations were performed using COMKAT.17,18 Using

Eq. (10), synthetic data without including radioactive decay were

generated with a plasma input (Pa) function defined as

PaðtÞ ¼ ðA1t� A2 � A3Þe�L1t þ A2e�L2t þ A3e�L3t: (27)

with A1¼ 800, A2¼ 3, A3¼ 2 pmol=ml; L1¼ 20, L2¼ 0.6,

and L3¼ 0.01 min�1 for 6FDG and A1¼ 1500, A2¼ 24,

A3¼ 6 pmol=ml; L1¼ 16, L2¼ 1.2, and L3¼ 0.03 min�1 for

2FDG under basal conditions.19 (Note that in [18F]2FDG and

[18F]6FDG prepared for PET studies, the amount of labeled

analog is negligible as compared to amount of unlabeled

2FDG and 6FDG, respectively.) In practice, EH conditions

would have lower concentration of 2FDG (or 6FDG) in

plasma than basal conditions because the muscular uptake of

glucose and its analog is increased by insulin. Thus, we

increase the values of L1, L2, and L3 of 2FDG and 6FDG by

25% for EH conditions.

Based on the published data,3,15 the fraction of the total tis-

sue space occupied by the blood space (fb¼Vb=Vtotal) is negli-

gible in rat skeletal muscle. Thus, we assume that skeletal

muscle has 75% intracellular space (fIC), 25% interstitial space

(fIS) and neglect fb. The value of the Michaelis constant for

glucose transport KG
g is set to 3.5 mM (Ref. 20) and that of

phosphorylation by hexokinase KH
g is set to 0.13 mM.21 As the

Michaelis constant for 6FDG transport (KG
6FDG) has not yet

been determined, we made a preliminary estimate of 10 mM

based on published22 and unpublished experimental data.

Also, we assume that the Michaelis constant of 2FDG trans-

port (KG
2FDG) is 8 mM based on unpublished experimental data

and that of phosphorylation by hexokinase KH
2FDG equals

0.17 mM.21

For both basal and EH conditions, plasma glucose concen-

tration (Pg) was set to 6 mM, consistent with our prior experi-

mental data in the rat.22 ISg was specified as 85% of Pg (¼5.1

mM) and 50% of Pg (¼3 mM) for basal and EH conditions,

respectively.19 From the skeletal muscle blood flow in rats,23

we assume k1¼ 0.04 min�1 for basal conditions. In rat skele-

tal muscle, fasting intracellular free glucose concentration

(ICg) is close to zero20 so that ICg is set to 0.05 mM for basal

conditions. Given these values, we solved Eqs. (21) and (23)

to obtain values of VG (¼0.06 mmol=min=ml tissue) and VH

(¼0.13 mmol=min=ml tissue). For EH conditions, wherein

insulin brings transporters to the plasma membrane and stim-

ulates phosphorylation, we increased the number of trans-

porters (VG) 5-fold24 and hexokinase activity (VH) 2-fold25

and set ISg¼ 3 mM. Given these values, we solved Eqs. (21)

and (23) to obtain values for k1 and ICg. Interestingly, this

indicates a 1.1-fold increase in k1. Physiologically, this could

be interpreted as an increase in blood flow.26,27 Table I is the

summary of values of parameters used for both conditions.
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With parameter values assigned above, we generated

model output and treated it as simulated, noiseless PET data.

To this we added simulated noise according to

D̂i ¼ Di þ Nð0; r2
i Þ; (28)

where D̂i and Di are, respectively, the noisy and the noiseless

data at the ith frame. Nð0; r2
i Þ indicates deviates from a nor-

mal distribution with zero mean and variance r2
i . Standard

deviation (SD) was set as

ri ¼ a½Di=ðti
e � tibÞ�

0:5; (29)

where a is the noise level.28 Parameter values were estimated

by minimizing the weighted least squares objective function

OWLSðpÞ ¼
1

2

Xn

i¼1

wi½CPET;iðpÞ � D̂i�2; (30)

where p is the parameter vector (k1, fIS, ISg, and ICg), wi is

the weight for frame i, and CPET,i is the model output in

frame i. In this simulation, we used the known SD to deter-

mine the weights wi (¼ 1=r2
i ) for fitting data. With the exper-

imental data, we would use either the iteratively reweighted

least squares or extended least squares methods to estimate

the noise and to determine weights.28 The data-fitting algo-

rithm was performed with COMKAT’s fit function that cur-

rently uses MATLAB 2010 b (The Mathworks, Inc., Natick,

MA) function ‘‘lsqcurvefit,’’ a trust-region-reflective

method.29 In addition, data from both injections were consid-

ered as a single large set that was fit contemporaneously. In

particular, model output [i.e., Eq. (10)] was calculated by

summing the radioactivity from the two radiopharmaceuti-

cals. We repeated this minimization 500 times producing 500

sets of parameter estimates, one set for each of 500 simu-

lated, noisy data sets. This entire process was performed

twice: during basal and EH conditions. For both basal and

EH conditions, initial guesses for k1, ISg, ICg, and fIS were

0.1 min�1, 4.0 mM, 0.1 mM, and 0.15, and the bounds were

set as 0.001 � k1 � 0.5 min�1, 2 � ISg � 6 mM, 0.001 �
ICg � 0.5 mM and 0.1 � fIS � 0.5. Means and standard devi-

ations (SD) of the parameter estimates were calculated from

estimates obtained by fitting the 500 data sets. Also, bias and

precision were summarized using mean 6SD of estimation

errors [estimation error¼ (estimated value� true value)=true

value� 100%]. Cellular influx (CI), efflux (CE), and phos-

phorylation rate (PR) of glucose can be determined as

CI ¼ fIS � k3g � ISg ¼ VG � ISg=ðKG
gþISgÞ; (31)

CE ¼ fIC � k4g � ICg ¼ VG � ICg=ðKG
gþICgÞ; (32)

PR ¼ fIC � k5g � ICg ¼ VH � ICg=ðKH
gþICgÞ; (33)

In skeletal muscle, upon cellular entry glucose is phosphoryl-

ated by hexokinase and further metabolized. Since muscle

lacks glucose-6-phosphatase, glucose-6-phosphate cannot be

dephosphorylated and exit the cells. Consequently, PR is

equal to glucose metabolic rate,30 the usual outcome measure-

ment of the 3K and 4K models used with [18F]2FDG data.

The simulated experimental protocol included a 1-h PET

scan beginning with a bolus injection of [18F]6FDG (t¼ 0

min) and then continued with another hour of PET scanning

after a bolus injection of [18F]2FDG at t¼ 60 min. As a

result, the total simulated imaging time of this two-injection

protocol was fixed to 2 h. To emulate the time-sampling in-

herent with PET we binned the data into a sequence of 2-s

(n¼ 6) frames followed by sequences of 6-s (n¼ 8), 15-s

(n¼ 16), 60-s (n¼ 5) and finally 300-s (n¼ 10) frames. To

visualize parameter estimates in terms of bias and precision,

we use box plots. A gray bar shows the central 50 percentile

and the horizontal black line within the box designates

the median. Circles indicate outliers defined as estimates that

are below the lower quartile or above the upper quartile by

more than 1.5 times the difference between the upper and

lower quartile.

III. RESULTS

III.A. Model behaviors under basal and EH conditions

Noise-free time-activity curves (TACs) under both condi-

tions are shown in Fig. 2. As compared to basal conditions,

EH conditions cause an increase in the later tissue radioac-

tivity for [18F]6FDG, which is consistent with our previous

TABLE I. Summary of parameters used in basal and EH conditions.

Symbol Description Value for basal conditions Value for EH conditions Unit

k1 Rate constant of diffusion of glucose and its analogs from

plasma to interstitial space

0.040 0.044 ml=ml per min

ISg Interstitial glucose concentration 5.1 3.0 mmol=ml IS space

ICg Intracellular glucose concentration 0.050 0.135 mmol=ml IC space

VG Maximal transport capacity 0.06 0.31 mmol=min=ml tissue

VH Maximal phosphorylation capacity 0.13 0.26 mmol=min=ml tissue

KG
g Michaelis constant for glucose transport by GLUT4 3.5 3.5 mM

KG
2FDG Michaelis constant for 2FDG transport by GLUT4 8 8 mM

KG
6FDG Michaelis constant for 6FDG transport by GLUT4 10 10 mM

KH
g Michaelis constant for phosphorylation of glucose 0.13 0.13 mM

KH
2FDG Michaelis constant for phosphorylation of 2FDG 0.17 0.17 mM

CI Cellular influx 0.0369 0.1435 mmol=min=ml tissue

CE Cellular efflux 0.0009 0.0115 mmol=min=ml tissue

PR Phosphorylation rate 0.0360 0.1320 mmol=min=ml tissue
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[18F]6FDG studies.22 For [18F]2FDG, the later tissue radio-

activity increases with time under EH conditions, but

decreases under basal conditions. To explain the different

curve shapes of these two conditions, we plot the model-

predicted radioactivity for each compartment in Fig. 3. In

contrast to basal conditions, EH conditions have lower

interstitial [18F]6FDG (IS6FDG) but higher intracellular

[18F]6FDG (IC6FDG), which is attributed to an insulin-stimu-

lated increase in the number of glucose transporters. Thus,

EH conditions show higher tissue radioactivities for [18F]6FDG.

Also, similar effects are observed for [18F]2FDG. But the dif-

ference is greater since once [18F]2FDG enters the cell, it is

rapidly phosphorylated. Upon entry, intracellular [18F]2FDG

(IC2FDG) is immediately phosphorylated into [18F]2FDG-6-P

(IP2FDG-6-P) by hexokinase and trapped inside cells. This

causes rapid accumulation of IP2FDG-6-P under EH conditions

compared to basal conditions, as expected. As a result, the

tissue radioactivities after the injection of [18F]2FDG keeps

increasing under EH conditions, but promptly decreases

under basal conditions.

With corresponding parameters specified above, we

determined CI, CE, and PR of glucose under basal and EH

conditions, Table I. At the basal state, CI is almost the

same with PR but CE is much lower than CI and PR indi-

cating that virtually all the glucose that enters the cell is

phosphorylated and then further metabolized. In the insu-

lin-stimulated state, the increases over basal conditions are

CI: 0.1435, CE: 0.0115, and PR: 0.1320 mmol=min=ml tis-

sue. This shows that synthetic data set exhibits reasonable

physiologic behavior: at the basal state, the transport step

is rate-limiting and hexokinase phosphorylates glucose

essentially as fast as it is transported into cells whereas

with insulin stimulation the phosphorylation step becomes

more rate-determining.31,32

III.B. Summary of model fits and parameter estimates

Figure 4 shows TACs at different noise levels (a¼ 0.01,

0.05, and 0.1) under basal conditions. The noise level

a¼ 0.05 best agreed with our prior experimental data (see

FIG. 2. Noise-free tissue TACs after injecting a bolus of [18F]6FDG and

[18F]2FDG at 0 and 60 min, respectively, under basal and EH conditions.

FIG. 3. Resolution of tissue radioactivities in each of three compartments after injection a bolus of [18F]6FDG and [18F]2FDG at 0 and 60 min, respectively,

under basal (left) and EH (right) conditions.

FIG. 4. Model-predicted [18F]6FDG (i.e., 0–60 min) and [18F]2FDG (i.e.,

60–120 min) time-activity curves during basal conditions at noise levels of

0.01, 0.05, and 0.1.
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Appendix B).22 Example fits (noise level a¼ 0.05) are

shown in Fig. 5 for basal (left) and EH (right) conditions.

Our model appears to fit the synthetic data well for both con-

ditions noting the expected high variability in the data in

early frames due to their short duration. In particular, the

model parameters can generally be estimated. When the

noise level a¼ 0.05 was used for simulations, the results

showed that in both basal and EH conditions, mean errors

(i.e., biases) of the parameter values were �5% with SD

(i.e., precision) <10% for k1, ISg, fIS, VG, CI, and PR. How-

ever, under basal conditions, ICg (163 6 322%), CE

(159 6 312%) and VH (271 6 757%) show poor estimates

(mean errors 6 SD). Except VH: 645 6 1559%, the other two

parameters were better determined in the EH condition, ICg:

37 6 115% and CE: 41 6 119%, than in the basal condition.

To investigate the identifiability of each model parameter,

the sensitivity functions, which are derivatives of model out-

put with respect to the change of each parameter, for basal

and EH conditions were evaluated in Fig. 6. In terms of

curve shape, the sensitivity functions are different for differ-

ent parameters. For a given parameter, the curve shapes are

similar both in basal and EH conditions. From the magni-

tude, the value of the sensitivity function for ICg is much

less than that of the other parameters, which indicates that

the data are relatively insensitive to ICg. Thus, the estimates

of ICg with high bias and low precision are not surprising.

The distributions of parameter estimates of 500 trials

obtained from both conditions at different noise levels

(a¼ 0.01, 0.05, and 0.1) were shown graphically in box

plots, Fig. 7. Means and standard deviations of model param-

eters and individual rate constants for basal and EH condi-

tions are tabulated in Tables SI and SII (see Appendix C),

respectively. In addition, the summary of bias and precision

of all parameters (Table SIII) for both basal and EH condi-

tions is included in Appendix C. As noise levels are

decreased, parameter estimates improve, especially for ICg,

CE, and VH. For EH conditions, the number of outliers for

VH decreases as the noise level reduces to 0.01. For basal

conditions, the box plot of VH shows many outliers at each

noise level, but PR which relates to VH shows good precision

with few outliers. At the highest noise level, the bias of ICg,

CE, and VH exceeds 100% of its true value, but other param-

eters are estimated with a bias of less than 6%, indicating

much less sensitivity to noise.

IV. DISCUSSION

IV.A. Model properties

Because of our physiologic-based assumptions, our model

has fewer independent parameters that need to be estimated

compared to other PET models that are used to assess glu-

cose kinetics. Unique features of our model are that intersti-

tial and intracellular glucose concentrations can be estimated

directly and that the model does not use a lumped constant

to relate kinetics of glucose to that of its labeled analog. We

thereby avoid vagaries of using a possibly incorrect value of

the lumped constant which might depend on dietary state,

FIG. 5. Simulation data set (noise levels¼ 0.05) and model fit during basal (left) and EH (right) conditions.

FIG. 6. Sensitivity functions under basal and hyperinsulinemic conditions.

For both conditions, the magnitude of dCPET=(dICg) is low. This means that

ICg is insensitive to measured data.
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hormonal changes, and specifics of the tissue.5,6 However, in

this study, we have difficulties in estimates of ICg and its

related quantities: CE and VH. In addition, the proposed

model requires a priori knowledge of five Michaelis con-

stants (see Table I) which can be determined experimentally

by in vitro assays. When the values of Michaelis constants

derived from in vitro assays are used for in vivo studies, we

may consider the effect of in vivo versus in vitro values on

parameter estimates.

Our proposed model estimates transport and phosphoryla-

tion rates of glucose, and offers a direct way to quantify the

rates of the individual steps of glucose metabolism in vivo.

Because the method could be applied to human experiments,

it can provide details about glucose metabolism on a regional

or organ level in ways that heretofore have not been avail-

able. Consequently, our model could potentially provide

unique insight to the evolution of diabetes, insulin resistance,

and treatment of such diseases.

IV.B. Model prediction

The novel model presented herein predicts responses of

glucose and its analogs under various conditions. Since

[18F]6FDG is not phosphorylated, a priori, we expected in-

sulin stimulation to impact the rate at which it achieves

steady state between interstitial and intracellular spaces but

not to impact the steady state concentration. Importantly, the

model offers a mechanistic explanation for the increase of

tissue radioactivity during EH conditions that was observed

with nonphosphorylated analogs both in our own prior data21

using [18F]6FDG and those of Bertoldo et al.4 using

[11C]3OMG. It is well known that insulin increases the num-

ber of functional GLUT4 transporters at the plasma mem-

brane. The capacity for glucose to enter the cell may then

exceed the phosphorylation rate while the intracellular con-

centration increases sufficiently until mass-action increases

the phosphorylation rate to balance the influx.33,34 The

increased intracellular glucose concentration increases trans-

port competition between glucose and its radiolabeled analog

for cellular efflux. Under the increased transport competition,

the efflux of intracellular radiolabeled analog decreases so

that tissue radioactivity increases during EH conditions.

IV.C. Parameter estimates and limitations

In comparing all parameters, both conditions have rela-

tively poor precision and high bias in estimates of ICg, CE,

and VH. This may be an intrinsic limitation as physiologi-

cally ICg is too low to provide measurable competition with

the analog for efflux. However, the increase of ICg from 0.05

to 0.135 mM (from basal to EH conditions) reduces mean

errors from 163 to 37%. This indicates that our model would

be able to obtain more accurate estimate for higher ICg. In

addition, the expected improvements of parameter estimates

with decreases in noise levels are evident in Fig. 7. This

behavior provides evidence that the software code is being

implemented correctly.

Unlike other PET models, our model does not require a

LC and therefore avoids the potential for incorrect values of

the LC which depends on dietary state. However, our model

requires Michaelis constants of glucose and its analogs.

These constants can be determined experimentally in trans-

porter assays. Based on our analysis (see Appendix B), for

example, 20% bias in KG
g slightly increases bias for ISg, (by

3 and 9% for basal and EH conditions, respectively) but has

no significant effect on k1 and fIS. Incorrect values for

Michaelis constants have no effect on ICg, which has high

bias and low precision estimates.

IV.D. Application of the new model

Insulin resistance manifested as impaired glucose trans-

port in response to insulin is one of the hallmarks of type 2

diabetes and obesity.35 To assess insulin sensitivity,

FIG. 7. The distribution of the parameter estimates is summarized by box

plots for different noise levels (a¼ 0.01, 0.05, and 0.1) under EH conditions.

The gray bars denote the central 50 percentile, the black lines denote the me-

dian, the circles denote outliers, and the horizontal dashed lines denote the

true values. The parameter estimates are well-behaved in that they converge

toward the true value with diminishing noise level.
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hyperinsulinemic euglycemic glucose clamp methodology

has been widely used in clinical studies.36 However, this

method indicates total body insulin sensitivity;37 no regional

or tissue-specific information is provided. Fortunately, some

earlier studies37,38 showed that the potential of dynamic in
vivo PET imaging combined with kinetic models could pro-

vide valuable information about impaired glucose metabo-

lism in skeletal muscle. In type 2 diabetic patients, many

studies35,39 showed that the impairment of glucose phospho-

rylation was greater than that of glucose transport under eu-

glycemic hyperinsulinemic glucose clamp; hence, ICg would

be higher than in normal subjects. In this case, our model

would perform even better than predicted herein because the

poor precision was attributed to low ICg. Further studies are

needed to investigate the performance of our model in condi-

tions of impaired glucose metabolism vs normal controls.

In addition to its use in characterizing glucose transport in

striated muscle by GLUT4 and GLUT1, our model could be

extended to evaluate renal (or intestinal) handling of glu-

cose, which is transported into the cells by sodium-glucose

cotransporters (SGLTs). Glucose transport in the kidney

is a two-step process with SGLTs facilitating the first step

at the luminal surface of proximal tubular cells and GLUT2

facilitating the second at the basolateral surface. For

this, our model would be modified to include an additional

transport step. This would be particularly promising with

6FDG because it is well-transported by both GLUTs and

SGLTs.7

V. CONCLUSIONS

We have proposed and mathematically demonstrated

local identifiability properties of a new model for describing

transport and phosphorylation of glucose and its analogs in

skeletal muscle. Except for intracellular glucose concentra-

tion, parameter estimates generally appear to be very accu-

rate (unbiased) under various conditions. Unlike other PET

models, our model has fewer model parameters to be esti-

mated and obviates the use of lumped constant. Another

unique feature of our model is that it provides direct esti-

mates of interstitial and intracellular glucose concentrations

(ISg and ICg, respectively, in the model). Moreover, we sim-

ulate the effect of insulin action by increasing maximal

velocities for glucose transport and phosphorylation (i.e., VG

and VH). In our model, this causes increases in cellular influx

and efflux of glucose and glucose phosphorylation rate.

These changes are consistent with the known physiological

response to insulin stimulation. With these results, we expect

that conditions associated with impaired glucose transport

and abnormal glucose metabolism can be detected and eval-

uated by our model.
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APPENDIX A: IDENTIFIABILITY ANALYSIS

To analyze a priori identifiability of the final model pa-

rameters using the transfer function method,40 we start with

the model equations shown in Eqs. (7)–(9).

d IS0aðtÞ
dt

¼ k1PaðtÞ � k2IS0aðtÞ � k3aIS0aðtÞ þ k4aIC0aðtÞ

(A1)

d IC0aðtÞ
dt

¼ k3aIS0aðtÞ � k4aIC0aðtÞ � k5aIC0aðtÞ (A2)

dIP0aðtÞ
dt

¼ k5aIC0aðtÞ (A3)

In addition, the model output can be written as:

CPETðtÞ ¼ IS0aðtÞ þ IC0aðtÞ þ IP0aðtÞ þ fb � BðtÞ (A4)

By taking Laplace transform of Eqs. (Al)–(A3), one has

sIS0aðsÞ ¼ k1PaðsÞ � k2IS0aðsÞ � k3aIS0aðsÞ þ k4aIC0aðsÞ
(A5)

sIC0aðsÞ ¼ k3aIS0aðsÞ � k4aIC0aðsÞ � k5aIC0aðsÞ (A6)

sIP0aðsÞ ¼ k5aIC0aðsÞ (A7)

Solving for IS0aðsÞ, IC0aðsÞ and IS0aðsÞ one has

IS0aðsÞ ¼ k1

sþ k4a þ k5a

ðsþ k2 þ k3aÞðsþ k4a þ k5aÞ � k3ak4a

PaðsÞ

(A8)

IC0aðsÞ ¼ k1

k3a

ðsþ k2 þ k3aÞðsþ k4a þ k5aÞ � k3ak4a

PaðsÞ

(A9)

IP0aðsÞ ¼ k1

k3ak5a

s½ðsþ k2 þ k3aÞðsþ k4a þ k5aÞ � k3ak4a�
PaðsÞ

(A10)

Thus, the Laplace transform of CPET(t) can be written as

CPETðsÞ ¼ k1

s2þsðk3aþ k4a þ k5aÞ þ k3ak5a

s3 þ s2ðk2 þ k3a þ k4a þ k5aÞ þ sðk2k4a þ k2k5aþk3ak5aÞ
PaðsÞ þ fb � BðsÞ (A11)

As a result, the six known observational parameters are

U1 ¼ k1 (A12)

U2 ¼ k1ðk3a þ k4a þ k5aÞ (A13)

U3 ¼ k1k3ak5a (A14)

U4 ¼ k2 þ k3a þ k4a þ k5a (A15)
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U5 ¼ k2k4a þ k2k5a þ k3ak5a (A16)

U6 ¼ f6 (A17)

Thus, these six observational parameters are a priori

uniquely identifiable. To assess the identifiability of the

model parameters k1, k2, k3a, k4a, k5a and fb, we solve for

them in terms of the observational parameters

k1 ¼ U1 (A18)

k2 ¼
U1U4 � U2

U1

(A19)

k3a ¼
U2ðU1U4 � U2Þ � U1ðU1U5 � U3Þ

U1ðU1U4 � U2Þ
(A20)

k4a ¼
U1U5 � U3

U1U4 � U2

� U3ðU1U4 � U2Þ
U2ðU1U4 � U2Þ � U1ðU1U5 � U3Þ

(A21)

k5a ¼
U3ðU1U4 � U2Þ

U2ðU1U4 � U2Þ � U1ðU1U5 � U3Þ
(A22)

fb ¼ U6 (A23)

The unique solutions indicate these six parameters are a priori

uniquely identifiable. To test whether fIS, fIC, ISg and ICg are a

priori uniquely identifiable, we solve for these in terms of the

observational parameters. For fIS, we substitute k2¼k1=fIS, into

Eq. (A19) to obtain

fIS ¼
U1U1

U1U4 � U2

(A24)

indicating it is a priori uniquely identifiable. The analyses

for k1, fIS, fIC, ISg, and ICg are more complex. As we

described in Sec. II B, given known Michaelis constants and

Pg, the rate constants k3a, k4a and k5a can expressed in terms

of k1, fIS, fIC, ISg, and ICg,

k3a ¼
1

fISðKG
a þ ISgKG

a =KG
g Þ

� k1ðPg � ISgÞ
½ISg=ðKG

g þ ISgÞ � ICg=ðKG
g þ ICgÞ�

(A25)

k4a ¼
1

fICðKG
a þ ICgKG

a =KG
g Þ

� k1ðPg � ISgÞ
½ISg=ðKG

g þ ISgÞ � ICg=ðKG
g þ ICgÞ�

(A26)

k5a ¼
1

fICðKH
a þ ICgKH

a =KH
g Þ
� k1ðPg � ISgÞ

ICg=ðKH
g þ ICgÞ�

(A27)

Substituting Eqs. (A25)–(A27) into Eqs. (A20)–(A22), we

can solve for fIC, ISg and ICg in terms of known parameters,

Pg, KG
a , KH

a , KG
g , KH

g , U1, U2, U3, U4 and U5.

ISg ¼
�b6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ac
p

2a

a ¼ k3ak5afISKH
a

k1k4aKH
g

þ k3afISKG
a

k1KG
g

þ k3ak5afISKH
a

k1k4aKH
g

 !
k3afISKG

a

k1KG
g

 !

b ¼ ðKG
g � PgÞ

k3ak5afISKH
a

k1k4aKH
g

þ k3afISKG
a

k1KG
g

" #

þ KG
g

k3ak5afISKH
a

k1k4aKH
g

 !
k3afISKG

a

k1KG
g

 !

c ¼ �PgKG
g

k3ak5afISKH
a

k1k4aKH
g

þ k3afISKG
a

k1KG
g

 !
(A28)

ICg¼
KG

g ðPg� ISgÞ
ðk3ak5afISKH

a ÞðKK
g þ ISgÞ=ðk1k4aKH

g Þ�Pgþ ISg

(A29)

fIC ¼ fIS

k3að1þ ISg=KG
g Þ

k4að1þ ICg=KG
g Þ

(A30)

According to Eq. (A28), since b2�4ac�0, ISg may have two

real solutions. This shows the model, in terms of our final

parameterization, can have at most two solutions. Accord-

ingly, all six model parameters, k1, fIS, fIC, fb, ISg and ICg

are a priori locally identifiable.

The identifiability of the proposed model derived above is

for a phosphorylated glucose analog (i.e., 2FDG). For a non-

phosphorylated glucose analog (i.e., 6FDG), we still have

six model parameters, k1 fIS, fIC, fb, ISg and ICg. The Laplace

transform of CPET(t) can be simply obtained by setting the

rate constant k5a of Eq. (A11) to zero. As a result, there are

five known observational parameters and six unknown

model parameters, indicating that these six model parameters

are non-identifiable. However, since we assume for skeletal

muscle fbþ fISþ fIC¼l (i.e., fIC¼l�fIS� fb), the number of

unknown model parameters is reduced from six to five.

Again, we can solve for ISg and ICg in terms of known pa-

rameters, Pg, KG
a , KG

g and five observational parameters.

Analogously, ISg may have two real solutions. Accordingly,

all five model parameters, k1, fIS, fb, ISg and ICg are a priori

locally identifiable.

In the case of a two-injection study, as we propose, which

uses 6FDG followed by 2FDG, the information content of

the combined data set is at least as great as that obtained

with either 2FDG or 6FDG used alone. Consequently, the

two-injection study is a priori locally identifiable.40

APPENDIX B: ANALYSIS OF NOISE LEVELS

In the figure shown below, we compare the tissue time-

activity curves (TACs) for rat skeletal muscle during
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[18F]6FDG PET scans obtained from a preliminary study to

those from the simulation. We observe that the noise level

(a¼0.05) used in simulation is in the range of that obtained

from animal studies. To quantitatively estimate the noise

level (a), we fit the noisy TAC ((bDi, shown below) using the

5K model and treat the model fit as noise-free data (Di).

Then, the noise level would be estimated by calculating the

standard deviation of ðbDi � DiÞ=½Di=ðti
e � tibÞ�

0:5
. As a result,

the estimated noise level is 0.03 which shows that the value

of a¼ 0.05 might be a bit pessimistic indicating we have

taken a conservative approach of testing conditions that may

be a little more challenging than reality.

APPENDIX C: ADDITIONAL SIMULATION RESULTS

TABLE SI. Summary of parameter estimates for basal conditions.

Noise levels 0.01 0.05 0.1

Parameters True 500 sets of estimates (mean 6 SD)

k1 (mL=mL min�1) 0.04 0.04 6 0.00 0.04 6 0.00 0.04 6 0.00

ISg (mM) 5.10 5.10 6 0.01 5.12 6 0.04 5.13 6 0.07

ICg (mM) 0.05 0.06 6 0.05 0.13 6 0.16 0.16 6 0.20

fIS (unitless) 0.25 0.25 6 0.00 0.25 6 0.00 0.25 6 0.01

VG (mmol=min=mL tissue) 0.06 0.06 6 0.00 0.06 6 0.00 0.06 6 0.00

VH (mmol=min=mL tissue) 0.13 0.39 6 0.82 0.48 6 0.98 0.65 6 1.20

CI (mmol=min=mL tissue) 0.0369 0.0370 6 0.0005 0.0377 6 0.0017 0.0377 6 0.0028

CE (mmol=min=mL tissue) 0.0009 0.0009 6 0.0008 0.0023 6 0.0027 0.0028 6 0.0033

PR (mmol=min=mL tissue) 0.0360 0.0360 6 0.0004 0.0354 6 0.0018 0.0349 6 0.0027

k2 (min�1) 0.16 0.16 6 0.00 0.16 6 0.01 0.16 6 0.01

k3_6FDG (min�1) 0.0101 0.0102 6 0.0001 0.0104 6 0.0001 0.0103 6 0.0011

k4_6FDG(min�1) 0.0082 0.0082 6 0.0001 0.0081 6 0.0002 0.0081 6 0.0004

k3_2FDG(min�1) 0.0127 0.0127 6 0.0002 0.0130 6 0.0007 0.0129 6 0.0013

k4_2FDG(min�1) 0.0102 0.0102 6 0.0001 0.0102 6 0.0003 0.0101 6 0.0005

k5_2FDG(min�1) 0.7341 2.79 6 6.43 3.49 6 7.68 4.83 6 9.40

TABLE SII. Summary of parameter estimates for EH conditions.

Noise levels 0.01 0.05 0.1

Parameters True 500 sets of estimates (mean 6 SD)

k1 (mL=mL min�1) 0.044 0.04 6 0.00 0.04 6 0.00 0.05 6 0.00

ISg (mM) 3.00 3.00 6 0.04 3.04 6 0.13 3.08 6 0.20

ICg (mM) 0.13 0.14 6 0.04 0.19 6 0.15 0.22 6 0.20

fIS (unitless) 0.25 0.25 6 0.00 0.24 6 0.02 0.24 6 0.02

VG (mmol=min=mL tissue) 0.31 0.31 6 0.00 0.32 6 0.02 0.32 6 0.03

VH (mmol=min=mL tissue) 0.26 0.26 6 0.06 1.93 6 4.04 3.04 6 5.07

CI (mmol=min=mL tissue) 0.1435 0.1441 6 0.0029 0.1477 6 0.0124 0.1511 6 0.0166

CE (mmol=min=mL tissue) 0.0115 0.0123 6 0.0032 0.0162 6 0.0138 0.0198 6 0.0183

PR (mmol=min=mL tissue) 0.1320 0.1380 6 0.0005 0.1315 6 0.0024 0.1313 6 0.0183

k2 (min�1) 0.176 0.177 6 0.004 0.183 6 0.020 0.019 6 0.033

k3_6FDG (min�1) 0.0670 0.0673 6 0.0017 0.0699 6 0.0077 0.0719 6 0.0109

k4_6FDG(min�1) 0.0399 0.0399 6 0.0001 0.0399 6 0.0004 0.0399 6 0.0008

k3_2FDG(min�1) 0.0837 0.0842 6 0.0021 0.0874 6 0.0096 0.0898 6 0.0136

k4_2FDG(min�1) 0.0499 0.0499 6 0.0001 0.0499 6 0.0005 0.0499 6 0.0010

k5_2FDG(min�1) 0.9977 1.0330 6 0.4488 14.31 6 32.14 23.08 6 40.27
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TABLE SIII. Summary of bias and precision for both basal and EH conditions at different noise levels.

500 sets of parameter estimates

Conditions Basal EH

Noise levels 0.01 0.05 0.1 0.01 0.05 0.1

Parameters Error %(mean 6 SD)

k1 0.27 6 0.60 0.32 6 2.81 0.30 6 5.90 �0.02 6 0.96 1.05 6 4.48 2.79 6 8.36

ISg 0.05 6 0.22 0.34 6 0.86 0.57 6 1.30 0.13 6 1.04 1.24 6 4.41 2.74 6 6.81

ICg 16 6 90 163 6 322 228 6 391 6 6 28 37 6 114 66 6 152

fIS 0.03 6 0.38 �0.43 6 1.76 �0.07 6 3.33 �0.28 6 1.47 �2.05 6 6.31 �3.34 6 9.38

VG 0.30 6 1.20 2.03 6 4.51 1.91 6 7.59 0.29 6 1.53 2.17 6 6.45 3.67 6 8.63

VH 202 6 632 271 6 757 402 6 926 1.63 6 21.81 645 6 1559 1082 6 1956

CI 0.32 6 1.26 2.17 6 4.65 2.14 6 7.63 0.36 6 2.04 2.92 6 8.62 5.27 6 11.59

CE 16 6 90 159 6 312 219 6 379 6 6 28 40 6 119 72 6 159

PR 0.03 6 1.22 �1.61 6 4.97 �3.11 6 7.40 �0.15 6 0.38 �0.38 6 1.84 �0.55 6 3.26

k2 0.31 6 0.85 0.82 6 4.01 0.59 6 8.28 0.29 6 2.34 3.85 6 11.06 8.00 6 18.53

k3_6FDG 0.30 6 1.47 2.36 6 5.99 1.97 6 10.60 0.54 6 2.53 4.36 6 11.50 7.30 6 16.27

K4_6FDG 0.07 6 0.63 �0.37 6 3.01 �1.26 6 5.48 �0.03 6 0.22 0.01 6 1.06 �0.05 6 2.09

K3_2FDG 0.30 6 1.47 2.36 6 5.99 1.97 6 10.60 0.54 6 2.53 4.36 6 11.50 7.30 6 16.27

k4_2FDG 0.07 6 0.63 �0.37 6 3.01 �1.26 6 5.48 �0.03 6 0.22 0.01 6 1.06 �0.05 6 2.09

ks_2FDG 280 6 875 375 6 1046 557 6 1281 3.54 6 44.99 1334 6 3221 2214 6 4036

TABLE SIV. Summary of parameter estimates using different Michaelis constants for basal conditions.

500 sets of parameter estimates (mean 6 SD)

Basal conditions True Assumed k1 (mL=mL min�1) ISg (mM) ICg (mM) fIS

True Michaelis constants 0.040 6 0.001 5.12 6 0.04 0.13 6 0.16 0.25 6 0.00

KG
g ðmMÞ 3.5 2.8 0.040 6 0.001 4.94 6 0.06 0.15 6 0.17 0.25 6 0.00

3.5 4.5 0.040 6 0.001 5.25 6 0.03 0.12 6 0.16 0.25 6 0.00

KH
g ðmMÞ 0.13 0.104 0.040 6 0.001 5.11 6 0.04 0.12 6 0.15 0.25 6 0.00

0.13 0.156 0.040 6 0.001 5.12 6 0.04 0.12 6 0.16 0.25 6 0.02

KG
6FDGðmMÞ 10 8 0.040 6 0.001 5.11 6 0.03 0.01 6 0.02 0.24 6 0.00

10 12 0.040 6 0.001 5.15 6 0.04 0.36 6 0.16 0.25 6 0.00

KG
2FDGðmMÞ 8 6.4 0.040 6 0.001 5.29 6 0.03 0.37 6 0.15 0.25 6 0.00

8 9.6 0.040 6 0.001 4.96 6 0.03 0.02 6 0.04 0.24 6 0.00

KH
2FDGðmMÞ 0.17 0.136 0.040 6 0.001 5.12 6 0.05 0.12 6 0.15 0.25 6 0.00

0.17 0.204 0.040 6 0.001 5.12 6 0.04 0.12 6 0.15 0.25 6 0.00

TABLE SV. Summary of parameter estimates using different Michaelis constants for EH conditions.

500 sets of parameter estimates (mean 6 SD)

EH conditions True Assumed k1 (mL=mL min�1) ISg (mM) ICg (mM) fIS

True Michaelis constants 0.045 6 0.002 3.04 6 0.13 0.19 6 0.15 0.24 6 0.02

KG
g ðmMÞ 3.5 2.8 0.045 6 0.002 2.77 6 0.14 0.27 6 0.14 0.24 6 0.01

3.5 4.5 0.044 6 0.002 3.27 6 0.10 0.10 6 0.12 0.25 6 0.01

KH
g ðmMÞ 0.13 0.104 0.045 6 0.002 3.01 6 0.11 0.16 6 0.14 0.24 6 0.02

0.13 0.156 0.045 6 0.002 3.07 6 0.15 0.21 6 0.17 0.25 6 0.02

KG
6FDGðmMÞ 10 8 0.046 6 0.002 3.01 6 0.08 0.01 6 0.03 0.23 6 0.01

10 12 0.043 6 0.002 3.06 6 0.11 0.36 6 0.13 0.26 6 0.01

KG
2FDGðmMÞ 8 6.4 0.043 6 0.002 3.33 6 0.08 0.41 6 0.09 0.26 6 0.01

8 9.6 0.047 6 0.002 2.77 6 0.07 0.01 6 0.03 0.23 6 0.01

KH
2FDGðmMÞ 0.17 0.136 0.045 6 0.002 3.08 6 0.16 0.22 6 0.18 0.25 6 0.02

0.17 0.204 0.044 6 0.002 3.01 6 0.12 0.16 6 0.14 0.25 6 0.02
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