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Abstract
Using an applied electrical field to drive fluid flows becomes desirable as channels become
smaller. Although most discussions of electroosmosis treat the case of thin Debye layers, here
electroosmotic flow (EOF) through a constricted cylinder is presented for arbitrary Debye lengths
(κ−1) using a long wavelength perturbation of the cylinder radius. The analysis uses the
approximation of small potentials. The varying diameter of the cylinder produces radially and
axially varying effective electric fields, as well as an induced pressure gradient. We predict the
existence of eddies for certain constricted geometries and propose the possibility of electrokinetic
trapping in these regions. We also present a leading-order criterion which predicts central eddies
in very narrow constrictions at the scale of the Debye length. Eddies can be found both in the
center of the channel and along the perimeter, and the presence of the eddies is a consequence of
the induced pressure gradient that accompanies electrically driven flow into a narrow constriction.

Many techniques for particle characterization involve passing a particle through a
constriction or aperture using various driving forces and detection methods. In the first
practical and successful modern instrument for counting and analyzing cells, the Coulter
Counter, a single aperture separates two reservoirs of ionic solution where the cells from one
reservoir are driven into a second reservoir by hydrostatic pressure or an electrical field; the
resulting change in the aperture’s electrical conductivity is used to count and analyze the
cells [1]. With fabrication technologies used in Micro-Electro-Mechanical-Systems,
miniaturization of such instruments into microfluidic devices is possible. Unlike traditional
fluidics in which volumes of fluids are usually driven through channels using pressure
gradients, in microfluidic (and increasingly nanofluidic) systems a new set of engineering
challenges arise for the integration and quantitative understanding of essential components
such as mixers, pumps, sensors, or reactors. To address some of these challenges, many have
pointed to microfluidic flows driven by electrokinetics, e.g., electroosmosis.

Electroosmotic flow (EOF), or the flow of solvent with respect to a charged surface in the
presence of an applied electric field, offers many advantages for microfluidic environments
and has been the subject of many investigations (e.g., see [2, 3]). In addition to the classical
discussions and applications in colloid and interface science [4], EOF has recently been
investigated for use as a microchannel mixer [5, 6], in binding enhancement between a
biological pore and a biological molecule [7], as an artificial synaptic transmitter [8], and as
an electrokinetic battery [9]. The revival of the study of EOF, a classic electrokinetic
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phenomenon, is directly related to the increasing importance of microfluidic devices through
which laminar low-Reynolds-number flows dominate [10].

The best known aspect of EOF is a uniform velocity distribution outside of the thin charged
layer adjacent to the channel boundary. While a uniform flow velocity profile throughout
most of the channel width is often advantageous, non-uniform velocity distributions are
needed for integrated fluidic devices and many have gone to great lengths to achieve
unusual EOF velocity profiles. It is known, for example, that surface charge variations can
give rise to recirculating flows [6, 11, 12, 13, 14, 15, 16, 17]. Non-uniform charge
distributions can be imposed by patterned adsorption of differently charged molecules [17],
or induced on polarizable (often metal) electrode surfaces by applying uniform or non-
uniform applied electric fields [18, 19, 20, 21]. It is also known theoretically that transverse
electroosmotic flows in slab geometries are possible [22] where an induced pressure
gradient along the direction normal to the applied electrical field leads to a transverse
recirculation of the fluid. In addition, recent studies have shown that recirculating flows can
be produced with AC fields near the surfaces of externally controlled electrode arrays ([23,
24]). Obviously, the controlled generation of eddies has been studied in many contexts.
Unlike these known cases of eddy formation that result from surface heterogeneities, we
show that an ordinary constriction in a homogeneous surface can, surprisingly, give rise to
eddies in EOF. Hence, a simply fabricated geometric variation can produce recirculating
eddies in a system that is characterized elsewhere by the uniform laminar flow usually seen
in EOF. Our work thus complements two other recent demonstrations of eddies in channel-
like configurations: Thamida and Chang [25] describe an “electrokinetic jet” in the
neighborhood of a sharp corner and Bazant and Squires [18] illustrate eddies due to induced-
charge electro-osmosis about a conducting cylinder in a confined channel. We also address
the increasingly important study of EOF in nanoscale fluidic devices, such as a nanopore
[26], with an EOF theory that can be applied to arbitrary Debye lengths. We provide an
explicit calculation that predicts eddies in the center and perimeter of a channel based on
variations of the wavelength and amplitude of channel radius and Debye length.

In most theoretical approaches to EOF, the Debye screening length κ−1 is assumed to be
much smaller than the mean tube radius a0, and there is an effective slip velocity, μEE along
the surface, where μE is the electroosmotic mobility, which is proportional to the surface
charge density σ or the zeta (ζ) potential, and E is the applied external electric field. If there
is no applied pressure, and the solution and surface properties are uniform and constant (e.g.,
μE = constant), then it can be shown that the fluid velocity at any position x is everywhere
proportional to the electric field, i.e., u(x) = μEE(x). The pressure distribution then remains
constant and unaffected by E since both fields (u and E) are incompressible. Nevertheless,
there are situations in which this collinearity of u and E no longer holds. For example, when
the electroosmotic mobility μE is no longer constant, as is the case when the surface charge
density varies, then we expect that the pressure distribution is affected by the applied field
[11]. Also, the influence of finite permittivity of the channel boundaries, which gives rise to
a small normal component of the electric field at the wall, has been argued to produce
pressure gradients in EOF that lead to eddies [20].

It might be expected then that perturbations such as a radial shape variation or a finite, non-
negligible Debye layer thickness may disrupt the perfect alignment of u and E. Here, we
analyze EOF in an axisymmetric, constricted geometry, e.g., a bottleneck or hourglass shape
for arbitrary Debye lengths. We assume that there is a constant surface charge density along
the channel. Even in the absence of an applied pressure difference, there is an induced
pressure gradient that arises in this constricted geometry when an external electric field E is
applied. This induced pressure gradient is a combination of resistive and osmotic pressure
effects. The resistive pressure gradient is due to the physical constriction opposing the fluid
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flow. The osmotic component arises because both the equilibrium surface electrostatic
potential, and an “excess” electric potential due to EOF, maintain an ion concentration
gradient normal to the surface. As a consequence of this induced pressure gradient, we find
eddies in certain constricted geometries without any variation of surface charge densities.
We utilize a perturbation expansion method in the field strength and go beyond the usual
lubrication approximation to more fully represent the effects of the geometric variations.

Theory
We consider cylindrical geometries and so utilize a cylindrical (r, z) coordinate system as
defined in Fig. 1. We assume a constant surface charge density σ along the channel and a
constant applied potential difference V across a distance L representative of the constriction
(see Fig. 1). The radius of the channel which varies along the z-axis, is denoted a(z), and the
invariant radius or the channel, away from the constricted region, is a0. The usual discussion
of electroosmosis assumes that the equilibrium ion distribution is unperturbed by the applied
electric field E and, conversely, that the applied electric field is unperturbed by the ion
distribution. For infinitely thin double layers, the slip velocity is then proportional to the
electric field. But for arbitrary double layer thickness in a cylinder with radial shape
variations, however, the changes in the applied field can significantly perturb the charge
distribution, as we calculate below. At steady state, we can write the mass conservation
equation for the ith ion species as [27]

(1)

where ωi denotes the ion mobility, ezi is the charge on an ion, ni the number density of the

ith ionic species ( ), and φ is the total electric potential. The first term on the
left-hand side is due to the ion convection with the fluid velocity v, and the second and third
terms are relative motion of the ions due to thermal diffusion and electric forces,
respectively.

Because we allow for the coupling between the electric field E and the ion distribution, the
ensuing governing equations become prohibitively complicated. To tackle this complication,
we will follow the formalism of Saville [27] and Sherwood and Stone [28] and write a
perturbation expansion — of the fluid velocity v, electric potential φ, the number density of
the ith ion species ni, and therefore the charge density ρe — in the dimensionless field
strength β = eV/kBT. It is most common to study the low-field limit, i.e., β < 1, i.e., we
assume

(2)

where we have used the set notation and each variable can be written out independently,
e.g., φ = φ0 + βφ1 + ···. The subscript 0 refers to an equilibrium quantity in the absence of
the applied field, and the subscript 1 refers to a perturbation due to the applied field from
that quantity. We recognize at the outset that the applied electric field, though often small in
uniform sections, can be large in constrictions, and so the approximation of β < 1 cannot be
quantitatively accurate in all cases, but we believe that it captures the most essential
qualitative features, as shown below.
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Using the continuity equation for the fluid motion (∇ · v = 0), and assuming small
equilibrium electric potentials and small Péclet numbers (i.e., ion convection negligible
compared to thermal motion, Pe = uca0/(ωikBT) ≪ 1 where uc is a characteristic speed of the
motion), Eq. 1 can be written

(3)

This equilibrium result provides a Boltzmann distribution of ions, ,
and via Gauss’s law (∇ · E = ρe/ε, where ε is the dielectric constant of the solution) leads to
the usual Poisson-Boltzmann equation, or the Debye-Hückel equation with the
approximation of small equilibrium electrostatic potentials [4], i.e., |eziφ0/kBT| ≪ 1 so that

∇2φ0 = κ2φ0, where . As usual, κ−1 represents the Debye screening
length and ρ0 = −εκ2φ0. With an applied electric field, i.e., taking terms of order of the
dimensionless field strength ( (β)), the ion-transport equation (Eq. 1) in the small Péclet
number limit becomes

(4)

We note that the Péclet number is proportional to the transverse dimension of the channel
and so the small Péclet number approximation becomes even better as the channel
dimensions are reduced (as is common in lubrication calculations, a refined analysis would
introduce a further aspect ratio, a0/L, where a0 is the tube radius and L is a typical axial
dimension, in an improved definition of the Péclet number). Consistent with the small
equilibrium potential approximation, the second term on the right-hand side of Eq. 4 can be
neglected relative to the third term. So we multiply Eq. 4 by ezi/kBT and sum over i to obtain

(5)

or ∇2χ = 0, where χ = φ1 + ρ1/(κ2ε) now plays the role of the effective applied electric
potential.

Using the above results, the total electrical body force on the fluid ρeE = −ρe∇φ can be
expanded to give

(6)

This result can be substituted into the Navier-Stokes equation (−∇p + η∇2v+ ρeE = 0, where
η is the fluid viscosity) which describes the momentum transport in the fluid. Writing only
the terms of order β, i.e., only the terms that arise due to EOF, we obtain

(7)
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where the total pressure p = p0 + βΠ + … and  is the equilibrium osmotic
pressure that results in the absence of hydrostatic pressure.

The above equation can be made dimensionless and we specifically consider the case with
radius a(z) and the radius at the invariant portion of channel a0. Thus we define the
dimensionless radius A(Z) = a(z)/a0, radial coordinate R = r/a0, axial coordinate Z = z/L,
induced pressure Π̂ = Π/(κσV), electrostatic potential φ ̂0 = εκφ0/σ, effective applied electric

potential χ̂ = χ/V, and axial velocity . The volume flux  is

made dimensionless according to . We next wish to treat explicitly
geometric variations in shape and so introduce the aspect ratio δ ≡ a0/L, which represents
the magnitude of the assumed slow variations, |da/dz| ≪ 1. The applied electric potential has
boundary condition, χ̂ → 0 at Z → 0 and χ̂ → 1 at Z → 1, the pressure boundary condition,
Π ̂ → 0 at Z → 0, 1, and the radial velocity UR → 0 at Z → 0, 1. With Eq. 7, the fluid
continuity equation ∇ · u = 0, and the above boundary conditions, Π̂, UR, and UZ can be
determined using the lubrication (or the long wavelength, i.e., δ ≪ 1) approximation, e.g.,
[14, 22], though here we retain more of the geometric complexity by working beyond the
leading-order terms.

We can expand the variables, defined above, perturbatively in δ,

(8)

where we have again used the set notation. Note that odd-powered terms in δ disappear and
only the even-powered terms remain.

We first find the electrical components, φ ̂0 and χ̂, which can be determined from the Debye-
Hückel equation and boundary conditions, and then solve for the dimensionless velocity
field U. The Debye-Hückel equation for φ ̂0(R, Z; δ),

(9)

where k ≡ κa0, can also be written as an expansion in δ2. The constant surface charge

density boundary condition states that  and , where n is the unit
outward normal to the surface, for which the solution to (δ2) is

(10)

where, through Eq. 9 and the boundary conditions, B1 and B2 are found to be

(11a)
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(11b)

From Eq. 5, i.e., ∇2χ̂ = 0, and the condition that the surface is impermeable to the ions, i.e., n
· χ̂ = 0, the effective electric field in the Z-direction is then

(12)

where A′ = dA/dZ, A″ = d2A/dZ2, and b0 is a constant.

In order to complete the solution, we find it convenient to work in terms of average
quantities. For example, the average potential difference is,

(13)

which, using Eq. 12, defines the integration constant , which involves the
entire shape variations.

We can substitute Eqs. 10 and 12 into the Navier-Stokes equation (Eq. 7) and separate the R-
and Z-components:

(14)

(15)

which can be further separated into terms of the same order in δ2.

The leading-order term in Eq. 14 implies an R-independent Π̂0, and therefore the leading-
order term in Eq. 15 can be integrated with respect to R (and the integration constant is
determined by imposing the no-slip condition) to yield

(16)

where A(Z) brings in the shape variation and k ≡ κa0. Eq. 16 is the solution to the usual
pressure- and electrically-driven flow in a locally cylindrically geometry [2], though here it
is applicable at leading order in A(Z).
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With the pressure boundary condition imposed in the form , where

, the volume flux, and the induced pressure gradient can be
calculated

(17)

(18)

The above equations are substituted into Eq. 16 to obtain the axial velocity distribution,
which for R = 0, reduces to

(19)

In the next section we will show that the leading-order velocity field (Eq. 16) can change
sign and that reversal in sign of the velocity at R = 0, UZ,0(0, Z), is indicative of eddies in the
center of the channel.

To proceed to higher order in the shape variations, the (δ2) term in Eq. 14 can be
integrated using the continuity equation ([∂(RUR,0)/∂R] = −R(∂UZ,0/∂Z)). The Z-derivative
of the result can be substituted into Eq. 15 along with the boundary condition UZ,2(R = A) =
0, and the pressure boundary condition is then used to obtain UZ,2. The details are
straightforward but laborious and are not reported here, but are used in the calculations
below. We expect the perturbation expansion, which is in powers of δ2, to be a good
representation of the physical situation since retaining just two terms has errors of (δ4).

Results and Discussion
To illustrate the basic effect of a geometric constriction in EOF, we take a cylinder that has a
sinusoidal perturbation in channel radius (see Fig. 1), i.e.,

(20)

where α is the amplitude (0 ≤ α < 1/2) and 0 ≤ Z ≤ 1. The geometry is thus characterized by
a dimensionless wavenumber (or aspect ratio) δ and amplitude α. The axial velocity UZ, the
induced pressure gradient (∂Π ̂/∂Z), and the electrical body force, which in dimensionless
terms is φ ̂0(∂χ̂/∂Z), can be calculated analytically. We expect that as the amplitude α and the
wavenumber δ change, both the induced pressure gradient and the effective electrical body
force, as well as the velocity distribution, will be affected. The magnitudes of each will
depend on the dimensionless Debye parameter k ≡ κa0. Note that below we consider values
of δ as large as 0.4–0.5, which may be considered large for the lubrication approximation,
but the expansion is developed in powers of δ2 with an error (δ4) which is then expected to
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be 2.5–6.3%. In this long wavelength approximation, the amplitude α of the constriction can
have any value.

There are two effects that arise from the presence of the constriction in the channel. One is
that there is an induced pressure gradient due to the geometric resistance to flow at the
constriction. This resistance decreases the flow rate and alters the uniform EOF profile to
that similar to pressure- and electrically-driven flows in a straight uniform channels, where
an applied pressure flow can oppose the electrically-driven flow. This effect can be seen in
the leading-order velocity expression (Eq. 16). The second effect is from the redistribution
of ions from the static equilibrium ion distribution due to flow through the constricted
geometry, and arises at (δ2) through the χ̂ term.

These effects can be illustrated with plots of the dimensionless induced pressure gradient
∂Π ̂/∂Z and the dimensionless electrical body force φ ̂0∂χ̂/∂Z. In Fig. 2 we report these
quantities for δ = 0.4, α = 0.41, and κa0 ≡ k = 10. Here δ and α are large, and k is small
enough (i.e., the Debye length is large enough), so that the dimensionless induced pressure
gradient is comparable to the electrical body force.

The result of the competition between these two force densities is illustrated in Fig. 3 where
streamlines are plotted for various α and δ values for k = 10, each of which shows eddies
either at the center and/or near the boundary of the channel. If the induced pressure gradient
is larger than the electrical body force near the center of the channel, then a reversal of flow
is expected in this region, similar to combined pressure- and electrically-driven flows in
straight channels [2]. For example, for Z ≤ 0.1 and Z ≥ 0.9, the pressure gradient dΠ ̂/dZ is
larger in magnitude than the electrical body force φ ̂0(∂χ̂/∂Z) at R = 0 (Fig. 2). There exists
then a recirculating “central” eddy in this region (Fig. 3a). The direction of the resulting
recirculation should be counter to the net flow direction near the center and aligned with the
net flow direction near the surfaces. Because the induced pressure gradient must disappear
in the unperturbed portion of the channel, the size of this central recirculating eddy must
roughly correspond to the size of the perturbation wavelength.

On the other hand, as shown in Fig. 2, near the surface R ≈ A, and for 0.25 ≤ Z ≤ 0.4 and 0.6
≤ Z ≤ 0.75, the pressure gradient is also comparable or larger in magnitude than the
electrical body force. Then, the local flow will oppose the net flow direction and there exists
a recirculating “perimeter” eddy in this region as can be seen in Fig. 3b. The size of such a
perimeter eddy should correspond to the size of the region with the largest induced osmotic
pressure distribution. Further, if the pressure gradient is large enough in both regions, then
we should see both types of eddies as in Fig. 3c.

A phase diagram summarizing the existence of both central and perimeter eddies as a
function of the amplitude (α) and the wavenumber (δ) parameters is plotted in Fig. 4 for k =
10 and 30. As the arrow in Fig. 4 indicates, the parameter regimes containing eddies
decrease in size as k increases (i.e., as the Debye layer becomes thinner).

Since the central eddies are predominantly due to the leading-order induced pressure term,
we can evaluate the leading-order force densities and obtain a criterion for one aspect of
eddy formation. Using Eqs. 17 and 18, the volume flux can be estimated for kA ≥ (1) as Q ̂0
≈ (πb0/k2)[1 − 2/(kAmin)], where Amin = (1 − 2α) is the minimum channel radius for the
specific shape given by Eq. 20, which leads to dΠ ̂0/dZ ≈ (16b0/k3A4)(1/Amin − 1/A). This
force density should be larger than the maximum electrical body force (i.e., b0/A2) to obtain
an estimate for a “central eddy criterion”:
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(21)

The left-hand term has a maximum for A = (3/2)Amin. The typical minimum constriction
radius  that meets the central eddy criterion is then

(22)

which states that as the Debye length decreases, i.e., as k increases, the constriction radius
must decrease to obtain a central eddy. Since this is a leading-order estimate, it only
involves the constriction amplitude, and not the perturbation wavelength. Hence, only the
central eddies are present in Fig. 4 for small values of δ. We note that the prediction Eq. 22
is in good agreement with the results in Fig. 3, e.g., for k = 10, we predict central eddies
when α > 0.43 and for k = 30, when α > 0.48. The basic conclusion is that when the Debye
length is comparable to the minimum channel radius, central eddies are formed.

As the wavenumber increases, the second-order effect due to the (δ2) induced pressure
term becomes more important and perimeter eddies appear. We attribute this pressure effect
to the redistribution of ions during EOF; increasing k, or decreasing the Debye length,
confines this redistribution effect to a thinner layer around the cylinder surface. Indeed, the
phase region containing perimeter eddies in Fig. 4 is smaller for k = 30 than for k = 10 and
the amplitude α and wavenumber δ values required for the perimeter eddies increase with k.

In general, given the qualitative shifts observed theoretically, we predict that eddies should
be only observable for large amplitude perturbations as the Debye length becomes small.
Further, we predict that only the central eddies should be observable in the small Debye
length limit and the eddies should disappear in the limit of infinitely thin Debye lengths.

Although it is common to consider electroosmotic flow to be uni-directional, we have
theoretically demonstrated that a sinusoidal perturbation of the channel radius of sufficient
amplitude can have significant influences on the local velocity profiles. We have also shown
that controlling the amplitude and wavenumber of the shape perturbation can lead to eddies
in the center and/or the perimeter regions of the channel (Fig. 3). The various parameter
values that give rise to eddies (Fig. 4A) further show that as k decreases, eddies become
more observable for a larger array of δ and α values.

As mentioned in the introduction there are other microfabrication methods that lead to
eddies in electrically driven flows, and the choice of any particular method must depend on
the parameters and desired outcome. Flows driven by induced-charge electro-osmosis, for
example, vary as the square of the field, unlike the results here which vary linearly in the
electric field. Smaller magnitudes in field are required for similar eddy formation, and may
be, therefore, more advantageous for certain applications. However, there are some
attractive experimental controls for the DC electrokinetic effects. Similar to eddy formation
in AC fields, which can be controlled through the changes in frequency, eddy formation in
DC fields with geometric constrictions can also be controlled in situ through proper material
choices. For example, Unger et al. [29] have shown that “soft” valves can be fabricated
using multilayer soft lithography. Additionally, field-effect transistor (FET)-type control of
flow, as discussed in Schasfoort et al. [30], are possible for bottlenecks made from glass (or
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other insulating) capillaries. As various applications are developed, each of the different
approaches may find uses in integrated devices.

The Debye length in current microfluidic systems is always considered much smaller than
the channel width, i.e., k ≡ κa0 range typically from 105 to 106. As fabrication techniques
allow for even smaller channels, the values of k will decrease. For example, in experiments
performed with ion-beam sculpted nanopores at 1M KCl [26], k ≈ 100 and Amin ≈ 0.05. We
expect that given such a marked radial variation and moderate value of k, eddies exist in the
nanopore system.

As is well known in inertial flows, eddies can be used as fluid mixers. Furthermore, particles
passing through a small-scale device, such as a nanopore [26], will be influenced by the
fluid motion near such a device, particularly in the presence of eddies where the velocity
field is non-uniform. With non-uniformity in the velocity field, we may be able to stretch,
stall, or locally concentrate molecules in a very small fluid volume for use as sensors or
reactors. For such applications, it will be important to better understand the parameters that
must be controlled, explore a more extensive phase space, and determine whether finite wall
permittivity [20] also contributes to eddy formation.
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A Appendix
In this appendix we report the details necessary for the determination of the function χ̂ to
O(δ2), which was given in Eq. (12) in the main body of the paper. Since ∇2χ̂ = 0, and as we
use a perturbation expansion χ̂ = χ̂0 + δ2χ̂2 + ···, then we have

(23)

At leading order, we have  and so conclude that χ̂0 is only a function of Z, i.e.
χ̂0(Z). At O(δ2) we have

(24)

which may be integrated twice to obtain (the boundedness of the solution has been invoked)

(25)

where c1(Z) is a function to be determined. With the condition that the surface r = a(z) or R
= A(Z) is impermeable to ions, n · ∇χ̂ = 0 (here n is the unit outward normal to the surface),
we find

(26)

Since χ̂0(Z) guarantees that , then the condition  from (26) and the use of
Eq. (25) yields, after some simplification,
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(27)

Thus, dχ̂0/dZ = b0/A2, where b0 is a constant to be determined.

To complete the solution for χ̂ to O(δ2) we need the O(δ4) term in the expansion in Eq. (23):

. Using Eq. (25) we have

(28)

which, with an integration and the need for boundedness, leads to

(29)

Evaluating this equation at R = A(Z) and using the boundary condition at R = A(Z) from Eq.
(26) that  (this result follows naturally since  and we also utilize the O(δ2

condition) we find

(30)

Upon integration we obtain an equation for c1(Z),

(31)

where c2 is a constant. This result is sufficient to obtain :

(32a)

(32b)

Finally, we impose a condition on the average (based first on an integration over the cross
section) potential change along the bottleneck:
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(33)

Substituting with Eq. (32) leads to the conclusion c2 = 0 and

(34)

These results leads to (12).
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Figure 1.
Schematic of an axisymmetric cylinder with radial shape variation viewed as a cross-section
along the Z-axis. The “perimeter” eddy paths – discussed in the Results and Discussion
section – are mapped out in grey with the direction of the eddies indicated by the curved
arrows. The larger arrows indicate the overall direction of EOF. The perturbation
wavelength is L and the invariant radius of the channel away from the constriction region is
a0.
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Figure 2.
(a): the dimensionless induced pressure gradient (∂Π ̂/∂Z) and (b): the electrical body force
φ ̂0(∂χ̂/∂Z) for δ = 0.4, α = 0.41, and k ≡·κa0 = 10. Dashed lines show the outline of the
constricted channel where R is the dimensionless radius and Z the dimensionless axial
distance. Note that R = 0 corresponds to the center of the channel. The color bars next to the
contour plots show the magnitudes of these force densities. Extra contours with the
corresponding numerical values are plotted near Z = 0.1 and 0.9 for both a and b to show the
central region in which the pressure gradient is larger than the electrical body force.
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Figure 3.
Streamlines for k = 10, and (a): δ = 0.2, α = 0.45 showing “central” eddies; (b): δ = 0.4, α =
0.4 showing “perimeter” eddies; and (c): δ = 0.4, α = 0.41 showing “central” and
“perimeter” eddies. Dashed line shows the outline of the constricted channel and the arrows
indicate the flow direction. A scan in the thin region along the surface of the channel in a
showed absence of “perimeter” eddies and a scan in the empty region towards the center in
b revealed an absence of “central” eddies.
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Figure 4.
Eddy “phase” diagram (A) for various amplitudes α and aspect ratios (inverse perturbation
wavelength) δ for k = 10 solid lines and k = 30 dashed lines. (B) shows the same diagram in
terms of kAmin and δ. The circles are the calculated boundary points and the lines (solid for k
= 10 and dashed for k = 30) represent approximate boundary lines. The diagram shows four
regions: with perimeter eddies, with central eddies, both eddy types, and no eddies
(unidirectional flow). The arrow indicates the shift in α and δ values needed to observe
eddies for the larger k value.
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