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Abstract

Background: Deficits of the default mode network (DMN) have been demonstrated in subjects with amnestic type mild
cognitive impairment (aMCI) who have a high risk of developing Alzheimer’s disease (AD). However, no longitudinal study
of this network has been reported in aMCI. Identifying links between development of DMN and aMCI progression would be
of considerable value in understanding brain changes underpinning aMCI and determining risk of conversion to AD.

Methodology/Principal Findings: Resting-state fMRI was acquired in aMCI subjects (n = 26) and controls (n = 18) at baseline
and after approximately 20 months follow up. Independent component analysis was used to isolate the DMN in each
participant. Differences in DMN between aMCI and controls were examined at baseline, and subsequent changes between
baseline and follow-up were also assessed in the groups. Posterior cingulate cortex/precuneus (PCC/PCu) hyper-functional
connectivity was observed at baseline in aMCI subjects, while a substantial decrement of these connections was evident at
follow-up in aMCI subjects, compared to matched controls. Specifically, PCC/PCu dysfunction was positively related to the
impairments of episodic memory from baseline to follow up in aMCI group.

Conclusions/Significance: The patterns of longitudinal deficits of DMN may assist investigators to identify and monitor the
development of aMCI.
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Introduction

Mild cognitive impairment (MCI) is associated with a high risk

for dementia [1,2]. Amnestic type MCI (aMCI) is generally

regarded as a pathologic precursor to Alzheimer’s disease (AD),

however the considerable clinical and biological heterogeneity in

aMCI indicates the possibility of ’reverse conversion’ or ’long-term

steady state’. Its predominant symptom is episodic memory loss,

including aMCI-single domain (the impairment involves only the

memory domain) and aMCI-multiple domain (the impairments in

the memory domain plus at least one other cognitive domain). In

addition, non-aMCI deficits are often conceptualized as the

prodromal phase for other causes of dementia [2], but they may

also be involved in AD-dementias [3]. In fact, neuropathologic

lesions similar to AD have been demonstrated in aMCI.[4]. As 10–

15% of aMCI subjects progress to AD annually, the detection of

progressive deficits in aMCI that may provide a risk indicator of

the liability to convert to AD.

The default mode network (DMN) has been widely explored by

task-based deactivation [5-7] and resting-state neuroimaging [8-

10] studies. Multiple behavioral correlates of the DMN also have

been evidenced [11], including episodic memory processing, self-

referential processing, stream of consciousness, day dreaming,

mind wandering, unconstrained thoughts, free association, and

monitoring the internal and external environment [12]. Indeed,

amyloid deposition at the earliest stages of AD shows a distribution

that is remarkably similar to the anatomy of the DMN [13], and

the extent of amyloid deposition related to DMN in AD patients

was significantly higher than that observed in older controls [12].

Furthermore, increased amyloid deposition has also been

associated with aberrant DMN activity [14] and functional

connectivity [15] in nondemented older adults. A recent study

further revealed that the mechanism underlying the regional

vulnerability to amyloid-b(Ab) deposition in AD relates to the

endogenous neuronal activity of DMN regulating the regional

concentration of interstitial fluid Ab, which drives local Abag-

gregation [16]. Therefore, AD pathology may be preferentially

located throughout the DMN [17]. Moreover, cross-sectional

neuroimaging findings have suggested that patients with AD [18–

26] and aMCI [27–31] could be characterized by abnormalities in

the DMN system. However, little is known about the progressive

deficits of DMN in aMCI subjects.

The objective of the present study was to examine changes in

DMN function in aMCI subjects over time. Resting-state fMRI
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was adopted in the present study as the magnitude of DMN

activation has been shown to vary both as a function of task

demand and of the participant’s ability to disengage from a task

[32]. Independent component analysis (ICA), which can separate

independent spatio-temporal patterns of coherent neuronal

activity without prior knowledge about activity waveforms or

locations [20], was used to investigate to compare the changes of

DMN in aMCI compared to matched controls. This approach

may provide evidence of the patterns of progressive deficits of

DMN in the development of aMCI subjects.

Materials and Methods

Participants
The study was approved by the Research Ethics Committee of

Affiliated ZhongDa Hospital, Southeast University and written

informed consent was obtained from all participants. Firstly, 115

aMCI subjects and 126 healthy controls were recruited from 1480

aging subjects in Chinese community through strict diagnostic

criteria. Secondly, 48 aMCI and 36 well-matched healthy

recruited subjects underwent the baseline fMRI scan between

Aug. 2006 and Feb. 2008. Thirdly, after a mean follow-up period

of 20 months (ranging from 15 months to 30 months) between

Feb. and Jun. 2009, subjects not completing the testing procedures

or otherwise dropping out of the study (i.e. non-responders/

refusals/death) were excluded (aMCI n = 14; controls n = 15). Six

of the remaining aMCI subjects subsequently developed AD

identified by clinical criteria, while no healthy control subject was

found to convert to AD. Five subjects (aMCI n = 2; controls n = 3)

were further excluded after the evaluation of head motion (i.e.

exceeding 3 mm in transition or 30 in rotation) or poor quality of

image (i.e. ghost intensity). Therefore, 26 aMCI subjects and 18

matched healthy controls underwent the baseline fMRI scan, with

these participants completing a follow-up scan at approximately 20

months, and these groups were matched for follow up length.

Entry criteria
All subjects underwent diagnostic evaluations including a

clinical interview and focused neurological and mental status

exam, review of medical history, and demographic inventory.

Cognitive functioning was evaluated by a mini mental state

examination (MMSE) and the degree of dementia determined by a

clinical dementia rating scale (CDR). In addition, a neuropsycho-

logical battery that consisted of Auditory Verbal Learning Test

(AVLT)-delayed recall, Rey-Osterrieth Complex Figure Test,

Digit Span Test, Symbol Digit Modalities Test, Trail Making

Test-A and –B, and Clock Drawing Test to evaluate the function

of episodic memory, attention, psychomotor speed, executive

function and visuo-spatial skills respectively.

Inclusion criteria
Presence of aMCI (including aMCI-single domain and aMCI-

multiple domain) was determined following the procedure of

Petersen et al. (1999) [1] and others [33], including (1) subjective

memory impairment corroborated by subject and an informant;

(2) objective memory performances documented by an AVLT-

delayed recall score less than or equal to 1.5 SD of age- and

education-adjusted norms (cutoff of # 4 correct responses on 12

items for $ 8 years of education); (3) MMSE score of 24 or higher;

(4) CDR of 0.5; (5) no or minimal impairment in activities of daily

living; (6) absence of dementia, or not sufficient to meet the

NINCDS-ADRDA Alzheimer’s Criteria (National Institute of

Neurological and Communicative Disorders and Stroke and the

Alzheimer’s Disease and Related Disorders Association). The

diagnostic process was conducted by an experienced neuropsy-

chiatrist by structured interview with subjects and their infor-

mants.

Exclusion criteria
Participants were excluded from the study if they had a history

of known stroke, alcoholism, head injury, Parkinson’s disease,

epilepsy, major depression or other neurological or psychiatric

illness, major medical illness, severe visual or hearing loss. Controls

were required to have a CDR of 0, MMSE score $ 26, and an

AVLT-delayed recall score . 4 for those with 8 or more years of

education.

Longitudinal follow-up
Follow-up neuropsychological tests and fMRI parameters were

identical to those undertaken at baseline in every participant.

Mean follow-up period was twenty months. Diagnostic and

Statistical Manual of Mental Disorders-IV (DSM-IV) and

NINCDS-ADRDA Alzheimer’s Criteria were subsequently used

to clinical diagnosis of AD.

Magnetic resonance imaging procedures
The subjects were scanned using a General Electric 1.5 Tesla

scanner (General Electric Medical Systems, USA) with a homoge-

neous birdcage head coil. Subjects lay supine with the head snugly

fixed by a belt and foam pads to minimize head motion.

Conventional axial Fast Relaxation Fast Spin Echo sequence

(FRFSE) T2 weighted anatomic MR images were obtained to rule

out cerebral infarction or other lesions: repetition time

(TR) = 3500 ms; echo time (TE) = 103 ms; flip angle (FA) = 900;

acquisition matrix = 3206192; field of view (FOV) =

240 mm6240 mm; thickness = 6.0 mm; gap = 0 mm; no. of

excitations = 2.0. High-resolution T1-weighted axial images

covering the whole brain were acquired using a 3D spoiled gradient

echo (SPGR) sequence as follow: TR = 9.9 ms; TE = 2.1 ms;

FA = 150; acquisition matrix = 2566192; FOV = 240 mm6
240 mm; thickness = 2.0 mm; gap = 0 mm. The functional scans

(T2* weighted images) involved the acquisition of 30 contiguous

axial slices using a gradient-recalled echo-planar imaging (GRE-

EPI) pulse sequence: TR = 3000 ms; TE = 40 ms; FA = 900;

acquisition matrix = 64664; FOV = 240 mm6240 mm; thickness

= 4.0 mm; gap = 0 mm and 3.7563.75 mm2 in-plane resolution

parallel to the anterior commissure–posterior commissure line. This

acquisition sequence generated 142 volumes in 7 min and 6 s. All

subjects have eyes closed during scanning. It should be noted that

the same parameters were employed in both baseline and follow-up

scans, and two experienced radiologists executed the scans in the

whole longitudinal process.

Image preprocessing
Data analyses of four groups were conducted with SPM5

(www.fil.ion.ucl.ac.uk/spm) using the same procedures. The

first eight volumes of the scanning session were discarded to

allow for T1 equilibration effects. The remaining images were

corrected for timing differences and motion effects. Partici-

pants with head motion more than 3 mm maximum displace-

ment in any direction of x, y, and z or 3 degree of any angular

motion were excluded. The resulting images (both baseline and

follow-up data) were spatially normalized into the SPM5

Montreal Neurological Institute (MNI) echo-planar imaging

template using the default settings and resampling to

36363 mm3 voxels, and smoothed with a Gaussian kernel of

86868 mm.

Progressive Deficits of aMCI
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Independent component analysis
ICA was applied to fMRI data of each subject by using GIFT

(Version 1.3b; http://icatb.sourceforge.net). This involves a

preliminary dimension estimation on each of four groups to

determine the number of independent components (ICs), using the

minimum description length (MDL) criterion [28,34–36]. The

fMRI data of each group were further analyzed separately

according to previous studies [28,35,37,38]. This step is associated

with two reasons: one is to ensure that the resting-state networks

have similar spatial pattern in these four groups; on the other

hand, ‘‘breakdown’’ of function connectivity in resting-state

networks are associated with in patients. This breakdown is

thought to be a reduction in connectivity, while change the

topology of resting-state networks and eventually produces new

networks. It cannot be assumed that these datasets of patients and

controls have the same number of ICs, and it is thus appropriate to

apply MDL separately on the present four datasets. In the present

study, there were respectively 33/31/35/35 ICs for the data of

baseline aMCI group, follow-up aMCI group, baseline controls

group, and follow-up controls group. Briefly, three stages were

further performed: considering all subjects gather into ICA mode,

a reasonable assumption in many fMRI studies due to the large

number of time points often acquired. Principle component

analysis (PCA) was used to reduce the data within a lower

dimensionality; estimation of independent sources was performed

using the Infomax algorithm; back reconstruction, consisting of

computing individual subject image maps and time courses,

followed by component grouping across subjects and thresholding

the resulting group ICA images [39] Then, ICs for each subject

were obtained. The use of the ICA was assumed to reflect global

functional connectivity. In order to display the voxels that

contributed most strongly to a particular IC, the intensity values

in each spatial map were converted to Z-values, removing the

average value and dividing by the standard deviation of the

intensity distribution [39,40]. Each voxel within IC of single

subject showed a Z score that represents the degree of correlation-

ship between this voxel’s time series and the mean time series of

that particular IC. As ICA on fMRI data intrinsically extracts

patterns of coherent neuronal activity (i.e. networks), it is

commonly accepted that Z values can provide an indirect measure

of functional connectivity [36,37,41]. In the current study, the

regions only within the brain were considered, i.e., background

and other tissues outside the brain were removed.

An implemented in the GIFT software [39], the components to

be retained for further analysis among the 33/31/35/35 estimated

ICs for four groups were selected based on the largest spatial

correlation [42–44] with the specific DMN template [36,37]. This

template was provided by Dr. Liao (Key Laboratory for

Neuroinformation of Ministry of Education, School of Life

Science and Technology, University of Electronic Science and

Technology of China), which has been recruited in previous

studies (35,36). In particular, this template mainly included

posterior cingulate cortex/precuneus (PCC/Pcu), bilateral inferior

parietal gyrus, angular gyrus, middle temporal gyrus, superior

frontal gyrus and medial frontal gyrus. After combination with the

spatial correlation for the DMN selection criterion, the resulting

IC based on the specific DMN template was consistent with our

prior knowledge on this network.

Voxelwise-based gray matter volume correction
To control for possible DMN differences that may be explained

by differences in gray matter distribution between subjects, we

included estimates of a voxel’s likelihood of containing gray matter

as a covariate (nuisance variable) in the analysis of the resting-state

functional data [45]. The purpose of this method is to isolate the

functional changes component which cannot be attributed to

anatomical difference and is thus likely due to genuine functional

differences. Firstly, Voxel-Based Morphometry (VBM) [46,47] was

used to explore gray matter volume maps of every subject. These

maps were transformed into the same standard space as the

Table 1. Demographic and neuropsychological data between aMCI group and healthy controls group.

Items Baseline Follow up

aMCI group
(n = 26)

controls group
(n = 18)

P
(MWU)

Effect
size

aMCI group
(n = 26)

controls group
(n = 17)g

P
(MWU)

Effect
size

Age (years) 71.464.3 70.364.7 0.357 - - - - -

Education levels (years) 13.862.8 15.163.1 0.084 - - - - -

Gender (male: female) 19:7 10:8 0.233 - 19:7 9:8 0.233 -

Clinical dementia rating (CDR) 0.5 0 - - 0.5 0 - -

Mini mental state exam (MMSE) 27.261.5 28.361.3 0.026* 0.76 27.262.1 28.661.8 0.01* 0.69

Auditory verbal memory test
- delayed recall

2.861.2 8.161.9 0.000* 3.42 4.262.2 8.662.7 0.000* 1.79

Rey-Osterrieth complex figure test 32.964.7 34.761.4 0.471 0.47 34.062.9 35.060.8 0.715 0.42

Rey-Osterrieth complex figure test
-delayed recall

12.067.4 17.366.8 0.017* 0.73 12.967.6 20.967.4 0.002* 1.04

Trail making test-A (seconds)
Trail making test-B (seconds)

88.7636.2
182.3670.4

70.0628.7
139.3639.2

0.049*
0.046*

0.55
0.71

95.1644.3
175.6682.8

75.7626.0
138.8655.1

0.096
0.099

0.50
0.49

Symbol digit modalities test 27.7610.4 34.368.7 0.043* 0.66 29.0611.4 33.2613.0 0.164 0.34

Clock drawing test 8.561.6 8.961.2 0.231 0.27 8.862.0 9.160.9 0.689 0.17

Digit span test 12.262.0 13.261.8 0.09 0.51 12.762.0 13.662.5 0.303 0.40

Values are mean 6 (SD); MWU: Mann-Whitney U-test, which was used here due to the neuropsychological data were not normally distributed;
*indicates had statistical difference between groups, P,0.05. D: One subject of follow-up neuropsychological data in healthy controls was absent. Effect size for
distinguishing groups using Hedges g scores, accounting for sample sizes.
doi:10.1371/journal.pone.0024271.t001
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resting-state fMRI images using affine linear registration [48]. As

VBM results can be sensitive to the size of the smoothing kernel

used to smooth the tissue segment images, the criterion used in this

work was to match the smoothness of the gray matter volume map

data to that of the corresponding functional data (8 mm). Finally,

the resulting voxelwise gray matter volume maps were input as

covariates in the analysis of functional data. The voxelwise-based

gray matter volume correction was used for each subject. It noted

that one of twenty-six baseline aMCI subjects had no anatomical

images. The DMN ICs corrected by voxelwise-based gray matter

volume were then analyzed in following process.

Group-level analyses of the DMN
Within group: to determine the patterns of DMN in each of four

groups, the spatial maps of DMN IC in each group were submitted

to a random-effect analysis using one-sample t-tests. The thresholds

were set at a corrected P,0.05, determined by Monte Carlo

simulation for multiple comparison (Parameters were: single voxel P

value = 0.005, a minimum cluster size of 1242 mm3, FWHM =

8 mm, with mask. See program AlphaSim by D. Ward, and http://

afni.nimh.nih.gov/pub/dist/doc/manual/AlphaSim.pdf).

Between groups: (1) a mixed ANOVA with a within-subject

repeated factor (time points: baseline and follow up) and an across-

subject factor (groups: aMCI and control) with subject as a nested

random variable within group was performed. (2) Post hoc test: to

explore the details of longitudinal changes in the patterns of DMN

IC were in groups, a comparison between aMCI group and

controls group at baseline, and a direct comparison between the

change estimates between aMCI group (from baseline to follow-

up) and controls group (from baseline to follow-up) were further

explored. It should be noted that post hoc analyses were masked

with a map from groups6time points interaction of aforemen-

tioned ANOVA. The thresholds were set at a corrected P,0.05,

determined by Monte Carlo simulation for multiple comparison

(Parameters were: single voxel P value = 0.005, a minimum

cluster size of 1242 mm3, FWHM = 8 mm, with mask. See

program AlphaSim by D. Ward, and http://afni.nimh.nih.gov/

pub/dist/doc/manual/AlphaSim.pdf).

To further explore the role of the changes of DMN IC, firstly,

the overlap of aMCI-related baseline changes and longitudinal

changes of DMN IC identified via comparison across groups was

extracted as region of interest. Secondly, a direct functional index

Figure 1. Validation of the ICA approach in aMCI subjects and healthy controls. Images showed the DMN in aMCI group and controls
group at baseline and follow up, separately. Significant consistency between these studies is demonstrated across the majority of clusters including
the posterior cingulated cortex, precuneus, inferior parietal lobule, prefrontal cortex, ventral anterior cingulate cortex, lateral temporal cortex.
Thresholds were set at a corrected P,0.05, determined by Monte Carlo simulation.
doi:10.1371/journal.pone.0024271.g001
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of overlap regions was calculated in all four groups. Finally, we

performed a correlative analysis between longitudinal changes in

neuropsychological test scores and longitudinal changes of these

overlap regions in groups. The thresholds were set at a P,0.05.

Results

Neuropsychological data
Healthy subjects displayed levels of cognitive performance within

the normal range both at baseline and follow up. Compared to

controls, aMCI subjects showed deficits in CDR, MMSE, and

performance on AVLT-delayed recall and Rey-Osterrieth Complex

Figure test-delayed recall (evaluate the function of episodic memory)

both at baseline and follow up. Impaired performance on the Trail

Making Test and Symbol Digit Modalities Test (evaluate the

function of attention, psychomotor speed and executive function)

were also observed in the aMCI group at baseline, confirming

episodic memory impairment as a predominant symptom in these

subjects (i.e. higher effect size than with other cognitive measures).

aMCI patients did show stable CDR and MMSE scores suggesting

little change in general cognitive abilities over the study period

(details see Table 1).

Group ICA
Within group: the DMN was identified in each of the four

groups by Group ICA (Figure 1) and is consistent with previous

work in aMCI subjects [28]. A qualitative visual inspection of

functional connectivity in DMN, showing the majority of clusters

with high consistency in these groups, such that PCC/Pcu, inferior

parietal lobule, prefrontal cortex, ventral anterior cingulate cortex

and lateral temporal cortex.

Between groups: (1) main effect of groups were in parietal cortex

(bilateral PCC/Pcu), frontal cortex (right superior/left middle

gyrus) and temporal cortex (left middle gyrus), while main effect of

time points were widely observed in parietal cortex (bilateral

PCC/Pcu, bilateral inferior parietal lobule), frontal cortex

(bilateral medial/ right middle gyrus, bilateral anterior cingulate)

and temporal cortex (right superior/ left middle/ bilateral inferior

gyrus). In particular, regions associated with groups6time points

interaction were parietal cortex (bilateral PCC/Pcu) and frontal

cortex (bilateral medial/left middle/ left inferior gyrus, bilateral

anterior cingulate) (details see Table 2 and Figure 2).

(2) Post hoc test: As compared to controls group, aMCI group

showed increased functional connectivity of DMN IC in bilateral

PCC/Pcu, while no significant decreased functional connectivity

of DMN IC was observed in aMCI subjects at baseline (Table 3,

Figure 3-1). In addition, there was evidence of a greater decrement

in functional connectivity of DMN IC in the aMCI group

compared to controls group in several regions (Table 3, Figure 3-

2). Areas identified were bilateral PCC/Pcu and right anterior

cingulate/ medial frontal gyrus. It should be noted that PCC/Pcu

were associated with the most extensive progressive deficits in

aMCI subjects (i.e. cluster size and mean T values, Figure 3-2).

Interestingly, there was no significant change of prefrontal cortex

in baseline aMCI subjects, while increased functional connectivity

of the prefrontal cortex was observed at follow up in aMCI

Table 2. Groups 6 time points ANOVA of DMN IC functional connectivity.

Brain region BA
Peak MNI Coordiates
x, y, z (mm) PeakF value cluster size

(1) main effect of groups

B Posterior Cingulate Cortex/ Precuneus 7/30/31 6 -75 48 23.44 19521

R Superior Frontal Gyrus 8/9 21 39 42 19.59 5157

L Middle Frontal Gyrus 6/8/10 -27 0 54 23.62 8154

L Middle Temporal Gyrus 19 -39 -78 18 26.10 1944

(2) main effect of time points

B Posterior Cingulate Cortex/ Precuneus 7/18/30/31 9 -48 6 102.35 87696

B Medial Frontal Gyrus 6/8/9 -6 30 45 51.72 50571

R Middle Frontal Gyrus 11 42 48 -9 42.58 2538

B Anterior Cingulate 10/32 -3 48 0 42.12 6507

R Superior Temporal Gyrus 22 57 -39 9 31.39 7479

L Middle Temporal Gyrus 21 -60 -33 -12 33.36 4779

L Inferior Temporal Gyrus 20 -51 -9 -42 25.41 1998

R Inferior Temporal Gyrus 20 51 -6 -45 23.33 2025

L Inferior Parietal Lobule 39/40 -54 -57 39 78.39 19683

R Inferior Parietal Lobule 39/40 63 -51 42 19.90 3294

(3) groups6time points interaction

B Posterior Cingulate Cortex/ Precuneus 7/23/29/30/31 9 -69 36 64.53 66906

B Anterior Cingulate/ Medial Frontal Gyrus 10/32 12 57 6 19.04 3024

B Superior Frontal Gyrus 6/8 -9 27 57 41.70 14202

L Middle Frontal Gyrus 10 -42 39 3 17.61 3132

L Inferior Frontal Gyrus 47 -54 12 15 27.74 4887

Note: A corrected threshold by Monte Carlo simulation at P,0.05. R = right; L = left; B = Bilateral; BA = Brodmann’s area; Cluster size is in mm3; MNI: Montreal
Neurological Institute.
doi:10.1371/journal.pone.0024271.t002
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subjects compared with controls, including bilateral superior

frontal gyrus/ middle frontal gyrus, left middle/inferior frontal

gyrus. In addition, there was no evidence on less longitudinal

changes of DMN IC in aMCI compared with controls.

DMN dysfunction and behavioral significance
The common regions associated with baseline changes and

longitudinal changes of DMN IC were in PCC/PCu in aMCI group

compared to controls (Figure 3–3). Particularly, hyper-functional

connectivity between the PCC/PCu and mean DMN IC in baseline

aMCI subjects, and significant hypo-connections of these regions were

in follow-up aMCI subjects, whilst controls only showed a light

decreases at the longitudinal period (Figure 3–4). Furthermore, the

decreases of functional connectivity between PCC/PCu and mean

DMN IC were positively related to the impairments of episodic

memory (AVLT-delayed recall scores, r = 0.462, P = 0.018, two-

tailed) from baseline to follow up in the aMCI group (Figure 3-5).

Discussion

This study utilized ICA to investigate spatial patterns of DMN,

and to investigate changes in these patterns in aged subjects

presenting with aMCI and normally aging participants, over a

mean period of 20 months with the objective of determining

clinical markers valuable for predicting those aMCI subjects

expected to convert to AD in the near future. PCC/PCu hyper-

functional connectivity was observed in baseline aMCI subjects,

yet a decrement of these connections was far greater in follow-up

aMCI subjects, compared to matched controls. Specifically, PCC/

PCu dysfunction was positively related to the impairments of

episodic memory from baseline to follow up in the aMCI group.

This investigative approach may lead to a better understanding of

the progressive changes of DMN in aMCI subjects.

Brain imaging research has recently converged to define the

brain’s default network - a novel and only recently appreciated

brain system that participates in internal modes of cognition [41].

Our previous cross-sectional studies assessing regional homogene-

ity [29] and seed-based correlational analysis approach [30] have

revealed abnormal DMN in aMCI subjects. However, using the

ICA method, the current study also confirmed progressive changes

of DMN within the aMCI subjects and healthy controls. This

change was more prominent in the aMCI subjects, suggesting wide

and abnormally rapid deficits of DMN occur in aMCI. It should

be noted that the disruption was mainly in parietal cortex and

Figure 2. Groups 6 time points ANOVA of DMN IC functional connectivity. Thresholds were set at a corrected P,0.05, determined by
Monte Carlo simulation.
doi:10.1371/journal.pone.0024271.g002
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prefrontal cortex. Specifically, these findings may represent a

disruption of frontal-parietal network which has been suggested in

previous DMN studies of AD and MCI subjects, of task-induced

deactivation [19,27], low-frequency activity fluctuations in the

whole brain [18,24], correlations of intrinsic activity [20-

23,25,26,28,29,31,49]. Importantly, previous hypotheses have

highlighted that DMN directly supports episodic memory

processing [9] and other functions [11]. Episodic memory loss is

the predominant symptom in aMCI [2], and was also a key deficit

in present aMCI subjects. Moreover, the present study provided

further evidence of the decreases of DMN dysfunction being

positively related to impairments of episodic memory in aMCI.

Taking into account previous findings and these study results,

DMN may be particularly vulnerable to neuropathology in aMCI

patients. Importantly, we found an intriguing functional link

between the DMN and aMCI in this longitudinal study. In

addition, there was a slight improvement in the performance of

aMCI subjects in several cognitive tasks upon follow-up based on

visual comparisons (no significant difference in statistics). One

potential mechanistic explanation of this slight improvement may

be associated with that the brain’s attempt to continually arouse

cognitive potentiality in the early development of aMCI, especially

as it relates to these aMCI subjects who are still with steady-state

clinical diagnosis in short term, and then it is only when this

normal mechanism becomes over extended and the underlying

deficits will begin to surface. One could argue that the more

effective this mechanism is the longer, it disguises the effects of

increasing levels of cognition. Thus, when the mechanism

eventually falters, a more dramatic level of functional failure is

suddenly uncovered which translates into an accelerated decline

afterward. However, the details need further study.

A notable finding in this study was the most extensive

progressive deficits (i.e. cluster size and mean T values) of

functional connectivity between PCC/Pcu and mean DMN IC

in aMCI subjects over the study period. It should be noted that the

present findings revealed paradoxical hyper-functional connectiv-

ity between the PCC/Pcu and mean DMN IC in baseline aMCI

subjects, yet significant hypo-connections of these regions were

more severely affected in follow-up aMCI subjects, compared to

matched controls. However, our previous cross-sectional studies

used other approaches, such as decreased regional activation of

PCC/Pcu detected by regional homogeneity [29] and decreased

functional connectivity of PCC and temporal cortex assessed by

seed-based correlational analysis [30] in aMCI subjects. Although

the underlying meaning of different measures could be used to

interpret the discrepancy of present and previous findings, all these

findings highlighted the potential value of PCC/Pcu in the

progression of aMCI subjects. Some regions with early hyper-

function could be due to compensation for other impairments,

indeed the present findings related to increased functional

connectivity at baseline were closely associated with a recent

study. Bero et al. (2011) suggested that excess activity in the DMN

could be amyloidogenic processing through that neuronal activity

increases Ab production and secretion into interstitial fluid [16].

Namely, regional differences in neuronal activity may underlie the

spatial relationship between resting-state physiologic function and

amyloid deposition in AD. Therefore, DMN increased activity at

baseline may be a pathological process that contributes to

generating plaques, which then create a pathological load in the

same regions that subsequently causes a rapid decline in

connectivity in these regions. This was also consistent with the

threshold model of AD [50].

Healthy subjects showed the highest regional homogeneity in

these regions during the resting state, in which Kendall’s

coefficient of concordance was used to measure the similarity of

time series of a given voxel to those of its neighbors [51]. PCC/

Pcu, considered as two of tonically active regions of the resting

brain with high metabolic rates, is identified as an anatomic hub in

the DMN [52]. Importantly, the PCC/Pcu regions are brain

regions associated with the earliest signs of AD-related pathology,

as imaging studies have shown that changes in these regions,

typically hypometabolism [53], hypoperfusion [54], amyloid

Table 3. Post hoc test: abnormal functional connectivity of DMN IC in aMCI compared with controls.

Brain region BA
Peak MNI
Coordiates x, y, z (mm)

Peak
T value cluster size

(1) Increased functional connectivity of DMN IC in aMCI compared with controls at baseline

R Posterior Cingulate Cortex/ Precuneus 30/31 3 -57 12 4.95 7641

L Posterior Cingulate Cortex/ Precuneus 30 -3 -63 9 4.75

Decreased functional connectivity of DMN IC in aMCI compared with controls at baseline

None

(2) Greater longitudinal increases of DMN IC in aMCI compared with controls

L Superior Frontal Gyrus/ Middle Frontal Gyrus 6/8 -9 27 57 6.33 13878

R Superior Frontal Gyrus/ Middle Frontal Gyrus 6/8 9 27 54 5.49

L Middle Frontal Gyrus 10 -42 39 3 4.56 3132

L Inferior Frontal Gyrus 47 -54 36 -3 5.73 4833

Greater longitudinal decreases of DMN IC in aMCI compared with controls

B Posterior Cingulate Cortex/ Precuneus 7/23/29/30/31 9 -66 27 9.44 66366

R Anterior Cingulate/ Medial Frontal Gyrus 10/32 6 48 9 5.00 2997

Less longitudinal changes of DMN IC in aMCI compared with controls

None

Note: A corrected threshold by Monte Carlo simulation at P,0.05. R = right; L = left; B = Bilateral; BA = Brodmann’s area; secondary peaks are italic; Cluster size is in
mm3; MNI: Montreal Neurological Institute.
doi:10.1371/journal.pone.0024271.t003
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deposition [55], volume reduction [56], reduction in regional

homogeneity [24,29], activation [19,27], and functional connec-

tivity [20,25,26,28,30,31] were associated with both AD and MCI

patients. Another marked finding was that the hysteretic increased

functional connectivity between the prefrontal cortex and mean

DMN IC was observed in aMCI subjects compared with controls

at follow up. The present study supported that the abnormal

changes of PCC/Pcu maybe presented at an earlier stage than the

changes occurring in prefrontal cortex in aMCI subjects.

Therefore, it was not surprising that the deficits were predomi-

nantly observed in PCC/Pcu in MCI subjects, whilst AD patients

almost showed concurrent changes in these regions [19,20,24–

31,53–56], albeit the details still need to be further explored.

Therefore, this is crucially important if treatment options and

delivery are to be best distributed across the at risk population.

There were technical and biological limitations in the present

study which must be acknowledged. Firstly, there is a considerable

clinical and biological heterogeneity in samples of present aMCI

subjects whose recruitment were based only on clinical criteria.

Some subjects may not display the underlying AD-pathology, and

Figure 3. (1). Comparison to controls group at baseline, aMCI group showed increased functional connectivity of DMN IC in a = bilateral PCC/PCu.
(2). A comparison between the longitudinal changes between aMCI group and controls group, showing a greater decrement in functional
connectivity of DMN IC in the aMCI group, particularly in PCC/PCu, and another region was d = right anterior cingulate/ medial frontal gyrus. In
addition, the longitudinal increased functional connectivity of the prefrontal cortex was observed at follow up in aMCI subjects compared with
controls, including b = left superior frontal gyrus/ middle frontal gyrus, c = right superior frontal gyrus/ middle frontal gyrus, e = left middle frontal
gyrus and f = left inferior frontal gyrus. Thresholds were set at a corrected P,0.05, determined by Monte Carlo simulation. (3) Overlap regions (PCC/
Pcu) between baseline changes and longitudinal changes of DMN IC were observed in aMCI group compared to controls. (4) Hyper-functional
connectivity between the PCC/PCu (overlap regions) and mean DMN IC in baseline aMCI subjects, and significant hypo-connections of these regions
were in follow-up aMCI subjects, whilst controls only showed a light decreases at the longitudinal period. * P,0.05 (0.046); ** P,0.001(0.000). (5)
Correlative analysis: within the aMCI group, the decreases of functional connectivity between PCC/PCu and mean DMN IC were positively related to
the impairments of episodic memory (AVLT-delayed recall scores, r = 0.462, P = 0.018, two-tailed) from baseline to follow up. It should be noted that
the raw scores of AVLT-delayed recall for each subject was transformed to z scores.
doi:10.1371/journal.pone.0024271.g003
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represent a ‘contamination’ of the sample with non-AD cases. This

could be obtained by means of adding biomarker information

(CSF, PET or structural MRI data) to better characterize the study

groups, albeit our previous study also observed significant atrophy

of hippocampus in aMCI subjects compared to controls (It should

be noted that only some subjects of the present samples were

recruited in our early-stage study) [57]. This would further yield

the current diagnosis of ‘aMCI due to AD’, as recently published

in the revised diagnostic criteria for AD [58]. Secondly, no

conversions from aMCI to dementia were directly follow-up

scanned, the present findings based on two time points of aMCI

should be interpreted with caution in the prediction of disease’s

development, especially it may relate to some aMCI subjects

referring to the possibility of ‘reverse conversion’ or ‘long-term

steady state’ in the future. Thirdly, the previous studies have

demonstrated only moderate test-retest reliability of resting state

fMRI measures [59,60]. Therefore, replication of these findings in

larger cohorts will be necessary for validation. Finally, the present

aMCI subjects included aMCI-single domain and aMCI-multiple

domain, and precise subgroups could be recommended in future

study, such as single domain and multiple domains, separately.

Despite these limitations, these findings may have important

clinical implications, as this investigative approach may lead to a

better understanding of the progressive functional neurodegener-

ation underlying this disease and a possible means to monitor

development of aMCI subjects who are with high risk of AD.
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