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Abstract

Background: Machine learning based miRNA-target prediction algorithms often fail to obtain a balanced prediction
accuracy in terms of both sensitivity and specificity due to lack of the gold standard of negative examples, miRNA-targeting
site context specific relevant features and efficient feature selection process. Moreover, all the sequence, structure and
machine learning based algorithms are unable to distribute the true positive predictions preferentially at the top of the
ranked list; hence the algorithms become unreliable to the biologists. In addition, these algorithms fail to obtain
considerable combination of precision and recall for the target transcripts that are translationally repressed at protein level.

Methodology/Principal Finding: In the proposed article, we introduce an efficient miRNA-target prediction system
MultiMiTar, a Support Vector Machine (SVM) based classifier integrated with a multiobjective metaheuristic based feature
selection technique. The robust performance of the proposed method is mainly the result of using high quality negative
examples and selection of biologically relevant miRNA-targeting site context specific features. The features are selected by
using a novel feature selection technique AMOSA-SVM, that integrates the multi objective optimization technique Archived
Multi-Objective Simulated Annealing (AMOSA) and SVM.

Conclusions/Significance: MultiMiTar is found to achieve much higher Matthew’s correlation coefficient (MCC) of 0.583 and
average class-wise accuracy (ACA) of 0.8 compared to the others target prediction methods for a completely independent
test data set. The obtained MCC and ACA values of these algorithms range from 20.269 to 0.155 and 0.321 to 0.582,
respectively. Moreover, it shows a more balanced result in terms of precision and sensitivity (recall) for the translationally
repressed data set as compared to all the other existing methods. An important aspect is that the true positive predictions
are distributed preferentially at the top of the ranked list that makes MultiMiTar reliable for the biologists. MultiMiTar is now
available as an online tool at www.isical.ac.in/,bioinfo_miu/multimitar. htm. MultiMiTar software can be downloaded from
www.isical.ac.in/,bioinfo_miu/multimitar-download.htm.
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Introduction

MicroRNAs (miRNAs) are tiny non-coding RNAs , 22 nt of

length that regulate their target genes at the post-transcriptional level

either by degrading the target transcript or translationally repressing

the corresponding protein product. In order to understand functional

roles of the miRNAs and to asses their impact on target genes, accurate

prediction of miRNA-target examples is necessary. Numerous target

prediction algorithms have been proposed such as miRanda, [1],

TargetScan [2], PicTar [3] and PITA [4] etc., including some machine

learning based algorithms like NBmiRTar [5] and mirTarget2 [6] etc.

However all of these suffered from either high false positive or false

negative rates. In machine learning based miRNA-target prediction

algorithms, the classifier needs to be trained with appropriate sets of

positive and negative miRNA-target examples. A sufficient number of

experimentally verified positive examples can be obtained from

TarBase [7] and miRecords [8] database. However, these algorithms

suffer from lack of gold standard of negative examples to build an

effective classifier. This is because there are no assays demonstrating

negative examples; these originate only from failed experiments of

target validation. In the earlier machine learning approaches,

randomly generated sequences were used as negative examples.

However, these randomly generated negative examples may contain

real cases by chance or may be unrealistically different from the positive

set. As a result, artificially generated negative examples may produce a

classifier that yields high cross-validation results, but poor performance

on independent, real test data set. Systematic identification of more

negative examples is therefore a critical issue for improving the

accuracy of target prediction methods. A set of 289 tissue specific

negative examples have been identified in [9] using a bioinformatic

approach and proposed a target prediction method called TargetMi-

ner. TargetMiner achieved the most balanced prediction accuracy in

terms of sensitivity and specificity compared to the other methods and

its robust performance is mainly because of the use of these high-quality

of negative examples.

Although TargetMiner achieved the best result so far, it only used a

naive feature selection technique. In general, selection of a subset of

relevant informative features leads to a simpler model and often
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results in a better generalization performance. However, measuring

the goodness of a selected subset of features using a single criterion

may often become difficult. Therefore it may be more appropriate

and natural to treat the problem of feature selection as one of multi-

objective-optimization (MOO). In this paper our previously devel-

oped multi-objective simulated annealing based optimization meth-

od, Archived Multi-Objective Simulated Annealing (AMOSA) [10],

is integrated with Support Vector Machine (SVM) in order to build

AMOSA-SVM, a novel multi-objective based feature selection and

classification tool. AMOSA is selected as the underlying optimization

strategy as it has been shown to outperform several existing, popular

MOO techniques. AMOSA-SVM extracts a set of informative, non-

redundant features that enhance the predictive power of the proposed

classifier MultiMiTar. MultiMiTar is found to achieve much higher

sensitivity and specificity compared to 12 other existing target

prediction methods for a completely independent test data set.

Moreover, it achieves the balanced precision and recall for a large set

of translationally repressed data experimented in [11] that has not

been observed by the existing prediction methods.

For each test data point, MultiMiTar computes a prediction

score. These scores have been taken into account in order to

compute the ranks of the miRNAs that are targeting a single gene

or for a set of genes that are targeted by a single miRNA. This,

especially the ranking of the miRNAs, would be useful for the

researchers because currently it is of prime interest to learn about

the combinatorial interactions of the most favored miRNAs on a

single target [12]. MultiMiTar is useful not only because of its

robust performance but also of its ability to predict high confident

interactions that are distributed preferentially towards the top of

the ranked list. A detailed description of the proposed method and

the data sets used to evaluate the performance of MultiMiTar are

provided in the materials and methods section.

Materials and Methods

This section first describes the data sets considered in this

article. A set of biologically validated positive examples and a set of

systematically identified tissue specific negative examples are

considered as training examples. A set of 90 miRNA-targeting site

context specific features have been extracted from the training

data set. Among these 90 feature set, a subset of 39 more

informative and relevant features have been extracted using our

technique AMOSA-SVM, a novel integration of a multi-objective

optimization (MOO) based feature selection tool AMOSA [10]

and SVM classifier. Based on the selected subset of relevant

features a classifier model has been built called MultiMiTar.

Data sets
Experimentally verified positive and negative

examples. A set of 289 biologically validated positive

examples (see Table S1) and 289 systematically identified tissue

specific negative examples (see Table S2) have been extracted from

[9] as training data sets in order to build the classifier model. A

completely independent biologically validated test data set is

considered. The data set consists of 187 positive and 57 negative

examples among which randomly selected 10 positive and equal

number of negative examples are separated to generate a small

independent validation data set (see Table S3). This data set is

used for finding the optimal parameters of the classifier SVM. Rest

of the data set (Table S4 and Table S5) is used to assess the

prediction performance of the proposed MultiMiTar compared to

the 12 other target prediction methods.

miRNA and 39 UTR sequence data set. All the available

human mature miRNA sequences are collected from miRBase

database (http://microrna.sanger.ac.uk/sequences). Human 39

UTRs are extracted from the University of California, Santra

Cruz (UCSC) Genome bioinformatics site (http://genome.ucsc.

edu).

pSILAC data set. From the pSILAC (pulsed stable isotope

labelling with amino acids in cell culture) data [11], 15,806

examples have been extracted in [13]. In this data set, there are

2,406 mRNAs that are downregulated more strongly than 20.2

log-fold change at protein level. In the present article, these are

considered as targets and the remaining 13,400 examples are

considered as non-targets as described in [13].

Extraction of Features
We have generated a set of 90 miRNA-targeting site context

specific features. These are described here for the convenience of

the reader. MiRNA sequence is divided into seed (position 1 to 8)

and out-seed regions (remaining part). Seed matching site is

categorized into 6mer/7mer-A1/7mer-m8/8mer. These are

recognized as functional because target mRNAs with one or more

of these seed matching sites are preferentially downregulated [14].

A perfect seed matching site of length 6 including one optional GU

wobble pair (miRNA seed region 2–7/3–8) is considered as 6mer.

MultiMiTar first search the 6mer seed complementary sites in the

39UTR of mRNA. A single GU wobble pair is considered, if

present in the seed matching site. A 6mer seed matching site

(miRNA seed region 2–7) including another complementary pair

at position 8 of miRNA seed is referred to as 7mer-m8. In case of

category 7mer-A1, position 1 of miRNA is aligned with ‘A’ of

target 39UTR including one 6mer seed matching site (miRNA

seed region 2–7). Presence of both the 7mer-m8 and 7mer-A1 can

be categorized into 8mer seed matching site (for details see

Figure 1).

For miRNA-target interaction, an additional Watson-Crick base

pairing may be present at miRNA positions 13–16 and that can be

extended to position 12 and 17 of miRNA out-seed part. If so,

then the corresponding feature value is set to 1, otherwise 0 is

considered (see Figure 1). We have also measured whether the

seed-site is preferentially residing within a locally AU rich region

or not. Functional sites are highly enriched for A and U content

relative to the non functional sites; local AU contents impact not

only mRNA destabilization but also protein expression. For doing

this we have considered the composition of bases from the

upstream and downstream flanking region (30 nt each) of the seed

site. We set the feature value to 1 if in this region the AU content is

$ 60%, otherwise this is set to 0. All these biologically explained

features are grouped into category 1. Beside this, other categories

of features are (2) Frequency of Single nucleotide in seed matching

site (3) Frequency of Single nucleotide in seed matching out site (4)

Frequency of di-nucleotides in seed matching site (5) Frequency of

di-nucleotides in seed matching out site (6) miRNA-mRNA base

interaction features in seed region and (7) Two consecutive

miRNA-mRNA base interaction features in seed region (bi-di-

nucleotide base pairing) (see Table S6).

In feature category 2 and 4, frequency of single nucleotides (A,

C, U, G) and dinucleotides is computed by considering the seed

matching site region. Unlike to most of the existing target

prediction algorithms, MultiMiTar is not restricted for considering

target information only from seed-site interaction regions. Rather,

in feature category 3 and 5 we have considered immediately

flanking regions of seed-interaction site. This region is important

because the sequence surrounding the target site is assumed to take

an effective part for the accessibility of target site by the miRNA

[4]. Hence, it is expected that these regions provide discriminating

and informative features for positive and negative examples. In

MultiMiTar
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this regard length of the flanking regions is an important factor.

We have considered 30 nt upstream and 30 nt downstream

sequences from the seed matching site as the effective region. This

is biologically a valid region (60nt+Nmer site) as there is a less

probability of intra mRNA base pairing interactions between bases

that are separated by more than 70 nucleotides [4].

In category 6, frequency of 6 types of base pair interaction viz.,

A:U, U:A, G:C, C:G, G:U and U:G at seed matching site is possible.

In the proposed approach a single GU wobble pair is considered at

seed-site interaction region. We observe that GU pairing at seed-site

region may have a partial influentially role in identification of

potential positive examples. A detailed description is provided in

section discussion. In category 7, we have extracted the frequency of

two consecutive base pairing. For example, frequency of the

occurrence of A:U base pairing immediately after C:G.

Classifier model building based on SVM
The SVM is a supervised learning algorithm [15][16] that can

learn the classifier by transforming the input data into another

higher dimensional feature space where it is easy to compute an

accurate classification. In this study, a training vector corresponds

to the miRNA-targeting site context specific features. Given m
training vectors xk[Rn, k~1,:::,m and a vector of labels y[Rm

such that yk[ {1,21} (+1 for miRNA-target mRNA, -1 for

miRNA-non target mRNA), the SVM in training learns a

hyperplane (v,b), optimally separating the items of the two classes,

defined as:

min
v,b,j

1

2
vT vzC

Xm

k~1

jk ð1Þ

subject to

yk(vT w(xk)zb)§1{jk,

jk§0,k~1,:::,m:

The function w maps the training data to a higher dimensional

space and C is a penalty parameter on the training error. With a

learned hyperplane (v,b), a query vector x (miRNA-targeting site

context specific feature vector) can be classified based on the

decision value f (x) or the SVM score:

f (x)~sign(vT w(x)zb): ð2Þ

Figure 1. Different miRNA-mRNA seed-site interaction patterns (6mer, 7mer-A1, 7mer-m8 and 8mer). Watson-Crick complimentary
regions can be obtained at miRNA seed and out-seed part.
doi:10.1371/journal.pone.0024583.g001

MultiMiTar

PLoS ONE | www.plosone.org 3 September 2011 | Volume 6 | Issue 9 | e24583



We need a kernel function k(x,x
0
)~w(x)T w(x

0
) for mapping the

data to a higher dimensional space. In this regard a radial basis

function (RBF) kernel is used,

k(x,x
0
)~exp({cEx{x

0
E2): ð3Þ

The query vector x is compared with the feature vector of each of

the training instance using the radial basis function in order to

calculate the decision value f (x). From the sign of f (x) a decision

is made whether it is from class target or non-target. A decision

value which is the distance between each input vector and a

decision plane can be used to evaluate the reliability of the

prediction [17]. In general, the prediction with a higher decision

value is considered as more reliable [16]. The obtained decision

value has been considered and reported as the MultiMiTar

prediction score.

Finding of an optimal hyperplane depends on the selection of

the two parameters C and c. The parameter C is used to control

the tradeoff between the training error and the margin, and the

parameter c controls the width of the RBF kernel. We iteratively

build the classifier model for the training data set with different

combinations of C and c values and measure the performance of

the classifier based on a small independent validation data set (see

Table S3). The optimal parameters are chosen from the classifier

model that shows the best prediction accuracy on this small data

set.

Feature selection algorithm AMOSA-SVM: A novel
integration of AMOSA and SVM

AMOSA is an MOO based generalized version of simulated

annealing (SA) [10]. In the proposed article AMOSA has been

integrated with SVM in order to build a feature selection and

classification technique AMOSA-SVM. SA is a popular search

technique that can solve single objective based optimization

problems. However, its utility has been limited in solving the

MOO problem because of its point based search nature. AMOSA

can efficiently overcome the limitation of SA to solve the MOO

problem. The MOO can be stated as follows [18]: determine the

vectors x�~½x�1,x�2,:::,x�n�
T

of decision variables that simultaneous-

ly optimize the N objective values f1(x), f2(x),:::, fN (x), while

satisfying the constraints, if any. In the MO maximization

framework a solution x�j is defined to be dominated by another

solution x�i if Vk[f1,2,:::,Ng, fk(xi)§fk(xj). Among the set of

solutions S, a subset is considered as non-dominated if none of the

solutions in it is dominated by any member of the set S. In general,

an MOO algorithm defines a set of solutions that are not

dominated by any solution encountered by it.

In the AMOSA algorithm the non-dominated solutions are

stored in an archive. The archive maintains two limits viz., a hard

limit denoted by HL and a soft limit denoted by SL. At the very

beginning, the algorithm considers c|SL (cw1) number of initial

solutions each of which represents a state in the search space. The

multiple objective functions are computed. For a predefined

number of iterations, each of these solutions is refined by using a

simple hill climbing technique. Here a current solution is

perturbed to generate a new solution which is accepted if it

dominates the previous one. Finally, the non-dominated solutions

are stored in the archive. A single linkage clustering scheme is used

when the archive size exceeds HL. From each cluster the member

whose average distance to the other members is the minimum, is

considered as the representative member of the cluster. This

completes the archive initialization process. Now from the archive

one point is selected and considered as current-pt or the initial

solution at an initial temperature Tmax. The current-pt is perturbed

and a new point called new-pt is generated. The objective functions

of the new-pt are computed. In order to accept or reject the new

solution, AMOSA uses the concept of amount of domination to

measure the acceptance probability of the new solution. For the

two solutions S1 and S2 the amount of domination is computed as,

DdomS1,S2
~PN

i~1, fi (S1)=fi (S2)

jfi(S1){fi(S2)j
Ri

ð4Þ

where fi(S1) and fi(S2) are the ith objective values of the two

solutions, N = number of objectives and Ri = range of the ith

objective. Domination status determines different conclusions such

as accept the (a) new-pt (b) current-pt or (c) an existing solution from

the archive [10]. After storing the accepted solution in the archive,

AMOSA checks whether the archive size exceeds SL. In this case,

single linkage clustering is applied to reduce its size to HL. For

each temperature the process is repeated for a predefined number

of iterations. The process is annealed with a cooling rate of a (here

a~0:8) till the minimum temperature Tmin is attained. Then the

process is terminated with a set of non-dominated solutions stored

in the archive.

Selection of relevant feature set is crucial to enhance the

predictive power of any classifier. In the proposed AMOSA-SVM,

a state of AMOSA denotes the features that are selected to build

the SVM classifier model. The selected and discarded features are

denoted by 1’s and 0’s, respectively. Hence, a string of 1’s and 0’s

of length 90 indicates the features that are to be used (the 1’s) for

building the SVM. In order to evaluate the performance of the

classifier, three objectives such as sensitivity (Sn~
tp

tpzfn
),

specificity (Sp~
tn

tnzfp
) and Matthew’s correlation coefficient

(MCC~
tp|tn{fp|fnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(tpzfp)|(tnzfn)|(tpzfn)|(tnzfp)
p ) are comput-

ed. These objective values are used to accept and store the relevant

solutions in the archive. The chosen objectives should be equally

important. Here, Sn and Sp control false negatives and false

positives, respectively and MCC balances the classification results.

For each data point the objective functions are computed based on

5-fold cross validation using radial basis function (RBF) kernel.

Among a set of non-dominated solutions stored in the archive, we

select the one that achieves the highest accuracy based on perfectly

balanced training data. The selected solution consists of 39

relevant features (see Table 1) that have been used to build the

SVM classifier model using publicly available tool Libsvm [19].

Results

In this section we report the comparative performance of

MultiMiTar vis-a-vis several existing methods, for a completely

independent test data set. In a part of the experiment, a detailed

analysis of the feature set selected by MultiMiTar is conducted.

Performance on completely independent test data
Figure 2 shows the plot for the true positive rate versus the false

positive rate on the completely independent test data set. In this

regard, thirteen target prediction algorithms including the recently

published target prediction method TargetSpy [20] have been

considered. TargetSpy provides prediction results for no seed

match requirement (TargetSpy no-seed sens/TargetSpy no-seed spec) and

MultiMiTar
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Table 1. miRNA-targeting site context specific relevant features used in MultiMiTar.

Feature number Feature name Common features

Category 1

6 Number of additional Watson-Crick pairing associated with effective seven mer m8 *

Frequency of Single nucleotide in seed matching out site (Category 3)

19 G’s frequency in effective seed matching out site

Frequency of Di-nucleotides frequency in seed matching site (Category 4)

22 AU’s frequency in effective seed matching site

24 AC’s frequency in effective seed matching site

25 UA’s frequency in effective seed matching site

26 UU’s frequency in effective seed matching site *

28 UC’s frequency in effective seed matching site *

30 GU’s frequency in effective seed matching site *

32 GC’s frequency in effective seed matching site

35 CG’s frequency in effective seed matching site *

36 CC’s frequency in effective seed matching site *

Frequency of Di-nucleotides in seed matching out site (Category 5)

38 AU’s frequency in effective seed matching out site

39 AG’s frequency in effective seed matching out site *

40 AC’s frequency in effective seed matching out site *

42 UU’s frequency in effective seed matching out site *

44 UC’s frequency in effective seed matching out site *

45 GA’s frequency in effective seed matching out site

47 GG’s frequency in effective seed matching out site

48 GC’s frequency in effective seed matching out site

miRNA-mRNA base interaction features in seed region (Category 6)

53 Frequency of AU base pair *

54 Frequency of UA base pair

56 Frequency of GC base pair *

57 Frequency of GU base pair *

58 Frequency of CG base pair *

Two consecutive miRNA-mRNA base interaction features in seed region (Bi-Di-nucleotide base pairing) (Category 7)

59 Frequency of AU-AU *

62 Frequency of AU-CG *

64 Frequency of AU-UG *

65 Frequency of UA-AU

67 Frequency of UA-GC

68 Frequency of UA-CG *

69 Frequency of UA-GU

70 Frequency of UA-UG *

73 Frequency of GC-GC

74 Frequency of GC-CG

78 Frequency of CG-UA *

79 Frequency of CG-GC *

83 Frequency of GU-AU

84 Frequency of GU-UA *

86 Frequency of GU-CG

The features are selected by using novel feature selection algorithm AMOSA-SVM. Category-wise list of common features selected by at least 90% non-dominated
solutions in the archive are denoted by ‘*’.
doi:10.1371/journal.pone.0024583.t001

MultiMiTar
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seed match requirement (TargetSpy seed sens/TargetSpy seed spec)

where sens and spec correspond to two threshold scores as

mentioned in [20]. The plot compares the balance between

sensitivity and specificity of the proposed method MultiMiTar

with other existing methods. The plot area is divided into four

quadrants marked 1 to 4 for the convenience of the readers. The

diagonal line (0,0) – (1,1) denotes an algorithm that produces equal

of true positive and false positive rates, i.e. a totally random

method without any predictive power. The four quadrants denote

algorithm that achieve the following: (1) higher sensitivity but

lower specificity, (2) higher sensitivity and higher specificity, (3)

lower sensitivity but higher specificity and (4) lower sensitivity and

lower specificity. Evidently, the algorithms in quadrant 2, far away

from the diagonal line are better performers. According to

Figure 2, MultiMiTar is plotted further away from TargetMiner,

TargetScan and TargetSpy no-seed sens (and TargetSpy no-seed spec) and

closer to the optimal performance point i.e. (1,1). TargetSpy no-seed

spec obtains similar results as that of TargetSpy no-seed sens, hence this

has not been plotted in the Figure 2.

To evaluate the prediction sensitivity and specificity of Multi-

MiTar compared to TargetMiner, the area under the curve (AUC)

has been computed. It is found that TargetMiner and MultiMiTar

have AUCs of 0.7085 and 0.7464, respectively, clearly depicts the

fact that the sophisticated AMOSA based feature selection in

MultiMiTar is primarily responsible for its improved performance.

A detailed comparative results in terms of MCC and ACA are

shown in Table 2. As is evident, MultiMiTar provides the best

values of MCC (0.583) and average class-wise accuracy (ACA)

(0.8) compared to the other existing algorithms including

TargetMiner (MCC = 0.403 and ACA = 0.73), TargetScan

(MCC = 0.135 and ACA = 0.582) and TargetSpy no-seed sens

(MCC = 0.209 and ACA = 0.56) that are placed at quadrant 2.

Feature analysis
As already mentioned, while TargetMiner uses a simple way to

select features (using the F-score), MultiMiTar uses a sophisticated

MOO based approach. The proportion of the features selected in

the two techniques is not the same. The ratio of the number of

selected features to the total number of features in each category, is

referred to as the feature selection ratio (FSR). For each category

the obtained FSRs for TargetMiner and MultiMiTar have been

shown in Table 3. We can see that the obtained FSR for

TargetMiner and MultiMiTar are quite different. For example, for

the features that are extracted from category 1, the FSR for

TargetMiner is quite high at 41.67%, while that of MultiMiTar is

very low at 8.33%. For all the features of this category the

obtained correlation coefficient between biologically validated

positive and negative examples is very high (r = 0.964, Pearson’s

product-moment correlation, see column 3 of Table 3) indicating

that possibly this is not a good discriminating feature set. Hence

considering lesser number of features from this category as in

MultiMiTar appears to be proper. Similarly, considering more

number of features would be useful if the feature has a poor

correlation between positive and negative data set. For example,

Figure 2. Scatter plot of the True positive rate versus the False positive rate for different algorithms. The plot is based on the
independent test data set.
doi:10.1371/journal.pone.0024583.g002

MultiMiTar
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for the categories 4 and 7, the correlation coefficients are

comparatively poor (r = 0.734 and r = 0.784) where MultiMiTar

has higher FSRs of 56.25% and 46.87%, respectively, compared

to TargetMiner which has 18.75% and 12.5%, respectively.

In the proposed work, AMOSA-SVM stores a set of non-

dominated solutions in the archive each representing a subset of

the relevant features. The feature set encoded in each solution

need not to be the same; however it is interesting to analyze the

features that are common to at least 90% of the solutions (referred

to as common feature set). These features are mentioned in

Table 1. The last column of Table 3 shows FSR rate of the

common features grouped into different categories. In order to

study the importance of the different categories of features, we do

the following. For each feature category, the features that in the

common feature set are removed from the 39 features and the

performance of the classifier is measured based on the completely

independent test data set mentioned above. Removing common

features from category 5 or 6 result in lower performance

(AUC = 0.7262 and AUC = 0.7241, respectively) of the classifier

compared to that for 39 features (AUC = 0.7464). The other

categories of features are found to produce very small change of

performance of the classifier (AUC of category 1 = 0.7358,

category 4 = 0.7353 and category 7 = 0.7364). This clearly

demonstrates that the common features of category 5 and 6 are

relevant and these increase the predictive power of the classifier.

Detection of downregulated proteins based on pSILAC
data

Due to the over/under-expression of a transfected miRNA into

HeLa cells, changes of protein levels had been measured in [11] in

order to assess the endogenous regulation of mRNA translation by

miRNAs. In [11] those mRNAs that were downregulated more

strongly than 20.1 log2-fold change at protein level by any of the

five miRNAs viz., hsa-let-7b, hsa-miR-1, hsa-miR-16, hsa-miR-

30a and hsa-miR-155 were considered to be the targets. In [13],

proteins that were downregulated more strongly than 20.2 log2 fold

change by any of the five miRNAs were taken as targets. This

stricter definition in [13] than in the original paper makes the data

more reliable towards assessing the prediction accuracy of target

prediction algorithms. In total 15,806 interactions are observed in

[13] among which a total of 2,406 interactions were found where

mRNAs are downregulated more strongly than 20.2 log2-fold

change at protein level. Hence are considered as targets in the

present paper (see Dataset S1). The remaining 13400 examples that

have log2 fold change of $20.2 are considered as non-targets (see

Dataset S2). According to [13], only two algorithms viz.,

TargetScan 5.0 [2] and DIANAv3.0(strict) [21] obtained a precision

(the fraction of the predicted targets that are downregulated) of

50%. However, these algorithms fail to obtain a good sensitivity

(recall) for the mRNAs that are downregulated at the protein level

mentioned above. The obtained sensitivities for these two

algorithms are 12.34% and 3.78%, respectively (see Figure 3). For

the rest of the algorithms, miRanda obtained a comparatively better

recall of 19.83%, however it is suffered from lower precision of

,28.77 only. In [13], it has been shown that nearly half of the

downregulated genes consist of at least one miRNA seed interaction

site. As can be shown in Figure 3 a simple seed measure (seed (1+)),

therefore, provides a good recall of 44.72% with the expense of

lower precision (29.76). Here, additionally we have measured the

precision and recall for MultiMiTar, TargetMiner and TargetSpy

algorithms. For this data set, we have extracted six types of

prediction results provided by TargetSpy. These are TargetSpy no-seed

sens, TargetSpy no-seed spec, TargetSpy seed sens, TargetSpy seed spec,

Table 3. Category-wise feature selection ratio for TargetMiner and MultiMiTar.

Feature Total Corr-coeff TargetMiner MultiMiTar Common feat. in archive

category Feat. No of Feat. Ratio(%) No of Feat. Ratio(%) No of Feat. Ratio(%)

1 12 0.964 5 41.67 1 8.33 1 8.33

2 4 0.90 2 50 0 0 0 0

3 4 0.984 2 50 1 25 0 0

4 16 0.734 3 18.75 9 56.25 5 31.25

5 16 0.976 11 68.75 8 50 4 25

6 6 0.865 3 50 5 83.33 4 66.67

7 32 0.784 4 12.5 15 46.87 8 25

Total 90 30 33.33 39 43.33 22 24.44

doi:10.1371/journal.pone.0024583.t003

Table 2. Performance of MultiMiTar and existing target
prediction methods on independent test data set.

Method MCC ACA

MultiMiTar 0.583 0.800

TargetMiner 0.403 0.730

PITA 0.155 0.549

TargetScan 0.135 0.582

miRanda 0.128 0.570

NBmiRTar 0.083 0.550

MirTarget2 0.052 0.495

PicTar 20.006 0.496

DIANA MicroT 3.0 20.013 0.498

RNAhybrid 20.029 0.487

MicroInspector 20.216 0.378

RNA22 20.269 0.321

TargetSpy no-seed sens 0.209 0.560

TargetSpy no-seed spec 0.209 0.560

TargetSpy seed sens 0.234 0.557

TargetSpy seed spec 0.234 0.557

doi:10.1371/journal.pone.0024583.t002
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TargetSpy seed sens for conserved data and TargetSpy seed spec for

conserved data where sens and spec correspond to two threshold

value mentioned earlier. As can be seen from Figure 3, TargetSpy seed

sens for conserved data and TargetSpy seed spec for conserved data

obtained a precision of 51.79% and 56.82%, respectively. However,

again these two suffered from a very low recall of 4.82% and 2.08%,

respectively. On the otherhand, MultiMiTar obtains the precision

of 51.27% with a good recall of 18.50% compared to the others (see

Figure 3) including TargetMiner (precision = 46.79% and recall =

17.87%). For this experiment, we have considered conserved targets

for a phastcons cutoff value of 0.57 as almost all the other target

prediction methods consider conservation criteria. A detailed

prediction results for the downregulated and upregulated data set

are provided in Dataset S3 and Dataset S4 respectively. As can be

seen from Figure 3, among 12 predictors that are obtaining

precision of $ 45%, only MultiMiTar and TargetMiner obtain

recall of .15% (18.5% and 17.87%, respectively). Among the rest

of the methods DIANAv3.0 (loose) and TargetScan5.0 obtain a

recall of 11.89% and 12.34%, respectively. Rest of the algorithms

obtain recall values from 1.95% to 10.10%. This clearly

demonstrates that MultiMiTar achieves a balanced result in terms

of precision and recall, while the existing target prediction

algorithms suffer either from poor precision or recall for the

pSILAC validated translationally repressed data set.

Predicting true positive examples: A ranking analysis
In the proposed MultiMiTar prediction result, two types of

rankings have been introduced viz., (i) ranking of the miRNAs

from their combinatorial interactions on a single target and (ii)

ranking of the mRNAs targeted by a single miRNA. Specifically

ranking of the miRNAs that are targeting a single gene of interest

is in high demand. Investigators are interested to obtain only

reliable, high confident miRNAs that are targeting a gene of

interest involved in specific disease such as cancer. Therefore a

common approach is to consider the top ranked miRNA

molecules and verify their targeting potentiality experimentally.

In the proposed work a comparative study has been conducted to

know whether the existing target prediction algorithms can

efficiently detect biologically validated combinatorial interactions

of several miRNAs on a particular target transcript as top ranked

examples. Recently in [12], a high throughput luciferase reporter

screen demonstrated that p21Cip1/Waf1 gene can be directly

targeted by a large set of 28 miRNA molecules. p21Cip1/Waf1,

also known as Cyclin-dependent kinase inhibitor 1A (CDKN1A)

Figure 3. Performance comparison of several miRNA target prediction algorithms on the Psilac data. Proteins with log2-fold change
,20.2 are considered as target.
doi:10.1371/journal.pone.0024583.g003
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acts as a master effector molecule of multiple tumor suppressor

pathways. Till date this is the only gene that has been verified

experimentally to be regulated by such a large number of

miRNAs. On the basis of this combinatorial interaction data set

we measure the sensitivity and ranks of the miRNAs that have

been predicted to target CDKN1A by using MultiMiTar and

existing target prediction algorithms.

The prediction accuracies obtain by the existing algorithms have

been provided in Table S7. As is evident from the table,

MultiMiTar obtains a sensitivity (sn) of 67.86% which is much

better compare to the three most popular methods viz., miRanda

(sn = 60.71%), PicTar (sn = 21.43%) and TargetScan (sn =

28.57%). Some other methods viz., microInspector (sn = 25%)

[22], Diana-microT 3.0 (sn = 39.28%) and the two machine

learning based methods MirTarget2 (sn = 28.57%) and NBmiR-

Tar (sn = 46.43%), have poor sensitivity. In contrast PITA and

RNAhybrid appear to recognize almost all the 28 miRNAs

correctly. However this is quite misleading since these two tend to

predict all the examples as positive as is evident from Figure 2.

We now consider MultiMiTar and the six most sensitive target

prediction methods including TargetMiner. For each algorithm

we observe whether the true positive predictions (the number of

correctly predicted positive examples) are uniformly distributed

along the entire ranked list or distributed preferentially at the top

of the ranked list. We found that, 78.95% of the total true positive

predictions fall within 20th percentile of MultiMiTar ranked list;

this is very high compared to the other algorithms used in this

study. For example, only 17.65%, 30.77%, 25.93%, 25%, 36.36%

and 55% true positive predictions lie within the 20th percentile of

the ranked list of miRanda, NBmiRTar, PITA, RNAhybrid,

DIANA-microT 3.0 and TargetMiner, respectively (see Figure 4).

This clearly elucidates the fact that the ranking provided by

MultiMiTar is superior to the ranking provided by the existing

target prediction algorithms including TargetMiner. The obtained

P-values (Wilcoxon rank sum test) between MultiMiTar and the

rest of the algorithms show the statistically significant superiority of

the former algorithm over the others (see column 2 of Table 4). On

the other hand, except for the case between TargetMiner and

miRanda (P-value 3.72610202, Wilcoxon rank sum test) there is

no statistically significant difference between any two ranked lists

among the rest of the algorithms (see column 3–7 of Table 4). This

clearly depicts the fact that excluding MultiMiTar, all the

prediction methods are less reliable and are unable to keep true

positive predictions at the top of the ranked list.

Comparative study of MultiMiTar and TargetMiner: A
statistical analysis

Sophisticated AMOSA based feature selection in MultiMiTar is

primarily responsible for its improved performance over Target-

Miner. For different data sets, it is important to measure whether

such improved performances are statistically significant. More-

over, it would be meaningful to observe whether for the other data

sets also, ranking of the miRNAs obtained by the proposed

method is significantly better compared to TargetMiner, especially

because the proposed method is motivated by TargetMiner.

Comparison based on Sn, Sp, MCC and Precision
We have reconsidered the two data sets viz., independent test

data and the pSILAC data [11] (described in section Materials and

Methods). For the independent test data, a set of 100 miRNA-

mRNA pairs (both positive and negative examples) are extracted

randomly. Based on this, the prediction has been carried out using

MultiMiTar as well as TargetMiner. The classification results are

measured in terms of Sn, Sp, MCC and Precision. The process is

repeated 100 times and results are stored. Based on the obtained

results, a non-parametric Wilcoxon rank sum test, at 0.05 level of

significance, is carried out to measure whether the proposed

method obtains a statistically significant improved performance in

terms of Sn, Sp, MCC and Precision over TargetMiner. The P-values

obtained were Sn = ,2.2610216, Sp = 0.1152, MCC =

,2.2610216 and Precision = 2.45361025. The results show that

except for Sp, for the other measures the proposed method

achieves a statistically significant superior performance compared

to that of TargetMiner. In terms of Sp, an improved performance

is observed for MultiMiTar (see Fig. 2), but this is not statistically

significant. This is because of the small number of available

negative examples used in the experiment.

For the conserved pSILAC data, 10% of the miRNA-mRNA

pairs (both positive and negative examples) are randomly selected

and similar experimentation, as described above, is carried out.

Again, the P-values for Sn = 1.043610202, Sp = 7.327610214,

MCC = 2.202610211 and Precision = 4.02461028 clearly

elucidate the fact that the proposed method provides an improved

classification result which is statistically significant compared to

TargetMiner. Note that, for this data set where a large set of

negative examples are available, in terms of the specificity, a

remarkable improvement in prediction is observed by the

proposed method compared to TargetMiner.

Comparison based on ranking
Here, we have considered more data sets to check whether the

proposed method obtains consistently better rankings compared to

that of TargetMiner, the second best ranking provider (see Figure 4

and Table 4). In this regard 20 mRNAs, each of which is targeted

by 6 or more miRNAs, are extracted from miRTarBase [23], a

recently published database. These 20 mRNAs constitute 20

biologically validated data sets. For each mRNA, the proposed

method MultiMiTar predicts a list of miRNAs. For each data set,

we count how many true positive examples fall within 50th

percentile of MultiMiTar predicted ranked list and divide it by the

total true positive predictions to yield the ratio value. Similar tasks

have been carried out by TargetMiner. A vector of such ratio

values is generated by each of the algorithms (see Figure 5). The

higher the ratio value is, the more the chance that the prediction

algorithm is getting superior compared to the other one. As can be

seen from Figure 5 that out of the 20 mRNAs, the proposed

method obtains higher, same and lower ratio values for the 12, 6

and 2 mRNAs, respectively, compared to that of TargetMiner. A

t-test has been carried out based on the list of 20 ratio values

provided by each of the two algorithms. The result (P-value

4.72610203) clearly demonstrates the fact that the proposed

method provides an improved ranking result which is statistically

significant.

Discussion

This paper describes MultiMiTar, a novel integration of MOO-

based feature selection and classification for miRNA target

prediction. MultiMiTar obtains the best MCC of 0.583 and

ACA of 0.8 compared to the existing 12 target prediction methods

including TargetMiner (MCC = 0.403 and ACA = 0.73). Beside

MultiMiTar and TargetMiner, rest of the 11 target prediction

methods obtain the MCC and ACA ranges from 20.269 to 0.155

and 0.321 to 0.582, respectively. MultiMiTar seems to be the best

target prediction algorithm so far compared to the others.

However, before drawing any conclusion in favor of the proposed

algorithm, it should be tested on different data sets that have

distinct characteristics from each other. In this regard we have

MultiMiTar
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Figure 4. Distribution of the predictions of MultiMiTar and other algorithms in recognizing biologically validated miRNA-CDKN1A
interactions. The plots show that MultiMiTar obtains the most preferential distribution that tends to be shifted towards the top 20th percentile
compared to the other algorithms.
doi:10.1371/journal.pone.0024583.g004
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considered a pooled dataset of mRNA cleavage examples

extracted from TarBase (Papadopoulos et al., 2009), experimentally

verified interactions between RAS protein and hsa-let-7 family

miRNAs ([24] and [25]), a data set consisting of combinatorial

interactions between p21Cip1/Waf1 gene and 28 human miRNAs

experimented in [12], and the largest set of translationally repressed

miRNA-target examples obtained from [11].

In [9], performance comparisons among several target predic-

tion algorithms had been carried out based on a pooled data set of

mRNA cleavage examples. We have considered this data set and

measured the performance of MultiMiTar compared to the other

existing popular target prediction algorithms which were men-

tioned in [9]. For this data set, the sensitivities of MultiMiTar,

TargetMiner, TargetScan, PicTar, miRanda, MirTarget2 and

NBmiRTar are 0.868, 0.816, 0.790, 0.684, 0.658, 0.658 and

0.526, respectively. MultiMiTar has already shown a superior

performance for the translationally repressed (PSILAC data) data

set. Here, it obtains the best sensitivity for the cleavage data set as

well. These results clearly depict the fact that MultiMiTar is able

to predict both types of miRNA regulation and dominates the

other existing target prediction methods.

The influence of GU pairing at miRNA-target seed interaction

site has been addressed in [25]. According to [25], most of the

target prediction algorithms fail to obtain a good prediction

accuracy as they do not tolerate non-Watson-Crick seed pairing

(e.g. TargetScan is unable to predict a single seed match in let-7

miRNAs-KRAS interaction). However, we observe that GU pairing

at seed-site region may have a partial influentially role rather a full

control. In this regard we have considered KRAS and all the let-7

miRNAs and measured the performance of MultiMiTar and all the

major target prediction algorithms viz., miRanda, TargetScan and

PicTar. All the major prediction algorithms have failed to predict a

single positive example whereas MultiMiTar obtained the optimal

prediction accuracy (100%). Although MultiMiTar considers a

single GU pairing at seed matching site, we further investigate if the

good prediction accuracy is due to the inclusion of this feature. So

we build MultiMiTar classifier model without considering single

GU pairing at the seed matching site and measure its performance

Table 4. Pairwise comparisons between different ranked lists distributed preferentially (MultiMiTar) or uniformly (rest of the
algorithms).

MultiMiTar miRanda NBmiRTar PITA RNAhybrid DIANA-microT 3.0

miRanda 1.73610203 – – – – –

NBmiRTar 4.91610203 0.34 – – – –

PITA 3.45610203 0.15 0.34 – – –

RNAhybrid 1.57610203 0.43 0.45 0.06 – –

DIANA-microT 3.0 1.32610202 0.50 0.50 0.23 0.42 –

TargetMiner 4.2610202 3.72610202 0.12 0.15 0.10 0.13

P-values are obtained by wilcoxon rank sum test.
doi:10.1371/journal.pone.0024583.t004

Figure 5. Comparison between MultiMiTar and TargetMiner based on ranking results for true positive examples.
doi:10.1371/journal.pone.0024583.g005
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on this data set again. Still an optimal prediction accuracy (100%)

has been observed. However, now it detects a smaller number of

seed matching sites with lower decision values compared to the

original MultiMiTar (see Table S8a and Table S8b). This clearly

depicts the fact that for this data set, considering GU pairing at the

seed matching site plays a partial role for identifying true positive

examples.

Based on the data set experimented in [12] it has been observed

that MultiMiTar is so far the best algorithm that can predict high

confident interactions that are distributed preferentially towards

the top of the ranked list (as discussed in previous section, Figure 4

and Table 4). This is an useful experiment through which

researchers can rely on the proposed algorithm and may use its top

ranked predicted target set for their desired work.

For the translationally repressed target set [11] of 5 miRNAs

that are downregulated more strongly than 20.2 log2-fold change at

protein level, MultiMiTar provides the most balanced result in terms

of precision and recall as compared to the others. This data set

provides thousands of negative examples and hence it is possible to

measure the specificity of different target prediction algorithms. This

experiment is useful because in reality there are a lot more of

negative examples than positive examples. Hence, the motivation of

target prediction algorithms is to predict only those small number of

true targets. Through pSILAC data set, it has already been observed

that the existing target prediction algorithms that provide a high

sensitivity for the biologically validated positive examples suffer from

low specificity. These algorithms would be unreliable to the biologists

because of the very high false positive prediction rate. On the other

hand, those algorithms that provide a high specificity would fail to

detect many true targets or have very high false negative prediction

rate. Only a few target prediction algorithms, like MultiMiTar, exist

that provide a balanced prediction rate. Using MultiMiTar we have

searched for human genome-wide potential conserved targets as in

miRanda, TargetScan and PicTar, etc (we used phastcons cutoff

value of 0.57). The average number of predicted targets for a

miRNA is moderate (1079.45). Moreover, the targets are associated

with a score (decision value), making it possible for the users to select

only a few top ranked targets for future study. The predicted targets

are available in www.isical.ac.in/,bioinfo_miu/multimitar-geno

mewide-prediction.zip. We have extracted statistics from [8] and

observed that those algorithms that provide a high sensitivity for

biologically validated positive examples also provide a very high false

positive rate. For example, RNAhybrid, PITA, and miRanda

obtained high sensitivity for the different experimental data sets and

the average number of predicted targets for these algorithms are

10958, 3956 and 3005, respectively. On the otherhand, it has been

observed that, although average prediction rates for PicTar,

MirTarget2 and TargetScan are comparatively low (200, 255.3

and 685.9, respectively), these suffer from lower sensitivity (or

provide a high false negative rate). Moreover, as observed from

Figure 3, the specificities obtained by these algorithms are also lower

compared to MultiMiTar. A sophisticated and robust target

prediction algorithm should provide a balanced sensitivity and

specificity over different types of data sets used in the proposed

article. These data sets clearly depict the fact that MultiMiTar is the

most reliable and robust algorithm so far among the existing popular

methods.
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