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Abstract
In this paper, we propose a novel method that combines PubMed knowledge and Electronic Health
Records to develop a weighted Bayesian Network Inference (BNI) model for pancreatic cancer
prediction. We selected 20 common risk factors associated with pancreatic cancer and used
PubMed knowledge to weigh the risk factors. A keyword-based algorithm was developed to
extract and classify PubMed abstracts into three categories that represented positive, negative, or
neutral associations between each risk factor and pancreatic cancer. Then we designed a weighted
BNI model by adding the normalized weights into a conventional BNI model. We used this model
to extract the EHR values for patients with or without pancreatic cancer, which then enabled us to
calculate the prior probabilities for the 20 risk factors in the BNI. The software iDiagnosis was
designed to use this weighted BNI model for predicting pancreatic cancer. In an evaluation using a
case-control dataset, the weighted BNI model significantly outperformed the conventional BNI
and two other classifiers (k-Nearest Neighbor and Support Vector Machine). We conclude that the
weighted BNI using PubMed knowledge and EHR data shows remarkable accuracy improvement
over existing representative methods for pancreatic cancer prediction.
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1. Introduction
Every year, many people die of “silent killers”, those fatal diseases that are hard to diagnose
and treat. Pancreatic cancer is one such disease. Early diagnosis is crucial to its successful
treatment. In addition to searching for effective biomarkers [1-2] which can aid in early
diagnosis, researchers have developed models to support disease risk prediction [3-4]. The
Bayesian Network Inference (BNI) model, which uses Bayes’ theorem and represents
probabilistic dependencies between disease-associated risk factors as a directed acyclic
graph [5-6], has been a popular disease risk prediction model [7-8], especially for predicting
breast cancer [9-17] and pancreatic cancer [18]. Several factors make the BNI model a better
choice than other methods for disease risk prediction. First, whereas other classification
methods, such as the k-Nearest Neighbor (KNN) and Support Vector Machine (SVM)
methods, excel primarily in a high-dimensional feature space, the BNI model performs well
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in a low-dimensional feature space. Second, the BNI model can represent the joint
probability distribution over interrelated hypotheses about disease risk factors using network
topology, but other classification models cannot represent or use this valuable information.
Third, heterogeneous or random variables can be combined to make predictions in the BNI
model, while other classifiers often require variables of the same type. A recent advance in
BNI modeling is weighted model counting, which uses a propositional knowledge base for
improving prediction accuracy [19], although this method has rarely been used in clinical
decision support.

In this paper, we propose a novel extension to the conventional BNI by combining text
mining of PubMed knowledge with secondary use of clinical data from Electronic Health
Records (EHR) to develop a weighted BNI model. We used PubMed, because as a rich
public knowledge base, it contains official evidence of the associations between risk factors
and diseases. We developed a text mining-based method which allows us to statistically
weigh each of these associations. We make use of EHR clinical date because, with the
expanding adoption of EHR worldwide, the rich clinical data they provide serves as
additional practical evidence for disease modeling. We hypothesize that by combining
PubMed and EHR, we can calculate the prior probabilities of a weighted BNI model for
disease risk prediction. Next we present the design of such a weighted BNI model and its
evaluation results. Note that while we used pancreatic cancer as a sample disease in our
initial study, the method should generalize to other diseases.

2. Data Sources and Methods
Figure 1 shows our process for developing a weighted BNI model for pancreatic cancer
prediction. It consists of seven steps: (1) disease variable selection; (2) PubMed abstract
mining and classification; (3) variable weight computation; (4) weighted Bayesian Network
topology design; (5) EHR data extraction for prior probability calculation; (6) iDiagnosis
Graphic User Interface (GUI) design; and (7) model evaluation.

2.1 Variable Selection
We identified 31 variables associated with pancreatic cancer by aggregating the results from
a PubMed review, the recommendations by clinical experts on pancreatic cancer in our
institution, and the risk factors associated with pancreatic cancer we had previously
identified [20-21]. Figure 2 shows the class hierarchy of the risk factors, which fall into five
categories: demographics, life style, symptoms, co-morbidities, and lab test results.

Since knowledge representation always involves making tradeoffs between tractability and
expressiveness [22], the more variables used, the more complex the BNI model inference
process. To curb complexity and improve efficiency for the BNI model, we considered two
issues when selecting and aggregating a subset of these variables to construct the weighted
BNI model: (1) the availability and quality of the information in EHR; for example,
information about food intake is generally inaccessible or incomplete in EHR and hence is
excluded; and (2) the importance of a variable according to the frequency of it being
discussed in PubMed and the recommendation of clinical experts. In addition, to simplify
the BNI model design, similar variables were manually grouped into one. For example,
variable “alcohol abuse” and “cigarette abuse” were grouped into one variable “alcohol or
cigarette abuse” since they were both “substance abuse”. Similarly, the variables “fatigue”
and “asthenia” were grouped into one variable “fatigue or asthenia” since they are
semantically similar or related symptoms.

Based on the above considerations, we identified the following 20 variables to design our
BNI models: age, alcohol or cigarette abuse, abdominal pain, fatigue or asthenia, nausea,

Zhao and Weng Page 2

J Biomed Inform. Author manuscript; available in PMC 2012 October 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



vomiting, weight loss, depression, appetite loss, diabetes mellitus, jaundice, carbohydrate
antigen 19-9 (CA 19-9), carcinoembryonic antigen (CEA), gamma-glutamyl transferase
(GGT), glucose, alanine aminotransferase (ALT), aspartate aminotransferase (AST),
alkaline phosphatase (ALP), albumin and bilirubin. All these variables are available in EHR,
although half of them are in narrative format in free-text notes.

2.2 PubMed Knowledge Extraction and Processing
Many text-mining algorithms have already been developed to extract disease-related risk
factors from PubMed. Learning from a popular rule-based method designed by Chen et al. to
calculate associations among biological terms [23], we implemented a keyword-based
method to automatically extract and classify PubMed abstracts that mentioned both any of
the risk factors and pancreatic cancer together to calculate the weight of each risk factor. We
implemented the program Entrez Programming Utilities (eUtils) [8], which provides direct
access to the PubMed databases and supports terminology-based query term generation,
information extraction and exportation from PubMed abstracts. Medical Subject Headings
(MeSH) terms were used to generate query terms for each variable. When searching for
information in PubMed, we used the eUtils ESearch tools. For each search, one MeSH term
that represents a variable and one MeSH term representing pancreatic cancer were paired to
issue a PubMed query searching for abstracts discussing this variable and pancreatic cancer
together in the title. If the number of the retrieved abstracts was < 100, the query was
expanded to search for the co-occurrence of the variable and pancreatic cancer in both the
title and the abstract. If the number of retrieved citations was still < 100, the query was
further expanded to search the full text. The classification accuracy of the included PubMed
abstracts decreased as the search scope was expanded from the title to the full text since
generally the co-occurrence of a variable and pancreatic cancer in the title indicates a
stronger association than in the abstract. We used the eUtils Fetch tools to download all
abstracts into a local MySQL database.

2.3 Weight Calculation
Each PubMed abstract was classified into one of the following three categories according to
the association between the selected variable and pancreatic cancer: positive, negative, or
neutral association. Each variable was assigned a set of keywords indicating the
associations; details are shown in Appendix Table A.1. Keywords indicating a positive
association typically include “risk”, “link”, “associated”, “association”, “influence” and
hundreds of others. Keywords indicating a negative association typically includes
“differentiation”, “comparison”, “discrimination”, “distinction”, “distinguish” and about a
hundred more. Keywords such as “equal to”, “same to” and “sequential” were considered
indicators of a neutral association. Abstracts that included co-occurring variables and
pancreatic cancer without obvious associations were categorized as neutral associations. For
example, a PubMed abstract may discuss biological molecules such as insulin receptor
substrate-1 protein or insulin-like growth factor instead of the association between insulin
and pancreatic cancer. To ensure high accuracy in the abstract classification phase, the
machine classification results were further reviewed manually and corrected as appropriate,
although the manual review was greatly enhanced by the text-mining algorithm since the
sentences containing the keywords were automatically highlighted to ease the manual
review.

For each risk factor, only the abstracts containing positive and negative associations between
the risk factor and pancreatic cancer were used to calculate the original weights for each risk
factor (wo

i). For variable Vi, Pi indicates the number of abstracts with positive associations,
Ni denotes the number of abstracts with negative associations, and the original weight wo

i is
the ratio between Pi and Ni, calculated as:
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(1.1)

To avoid infinity, if Ni equals 0, wo
i is assigned the value 1. The rationale behind this design

is that PubMed publications reflect collective evidence regarding the association generated
by subject matter experts from all over the world and over time, who may disagree with one
another; therefore, the ratio between Pi and Ni is a statistical summary of the collective
evidence for the association between the risk factor and the disease. After the original
weight wo

i is calculated, a procedure of normalization, wi, is defined as:

(1.2)

where wo
i is the original weight defined in Eq. (1.1), max(w1

o, w2
o ,.. w20

o) is the maximum
of the original weights wo

i, and wi is the normalized weight in the range [0, 1].

2.4 Node-weighted Bayesian Network Inference (BNI) Model Development
Figure 3 shows the topology of our weighted BNI model, which separates dependent
variables (e.g., co-morbidities, symptoms, and lab test results that might be caused by
pancreatic cancer) from independent variables (e.g., age, gender, smoking and alcohol
abuse). Each risk factor is treated as a binary variable without considering the severity,
degree, accumulative length, or other quantitative information of the risk factor. The value
“true” represents the presence of a factor and the value “false” represents the absence of a
risk factor. To integrate the normalized weights into the BNI model, we multiply the
normalized weight, wi, of each variable to its corresponding prior probability P, as
illustrated by the simple network in Figure 4 (a), where one node is pancreatic cancer and
the other node is variable Vi. The function of the weighted prior probability is defined as:

(2)

where wi is the normalized weights in Eq. (1.2) with the range [0, 1]. Since the probability
P(pancreatic cancer=true | Vi=true) is in the range [0. 1], the normalized weights are
bounded in [0, 1], and the weighted prior probability Pw(Vi=true|pancreatic cancer=true) is
in the range [0, 1]. The weighted posterior probability Pw(pancreatic cancer=true|Vi=true)
can be calculated using the weighted prior probability Pw(Vi=true|pancreatic cancer=true)
defined in Eq. (2).

Theorem One. The weighted posterior probability Pw(pancreatic cancer=true| Vi=true) is a
probability function.

Proof. (PC is the abbreviation for Pancreatic Cancer hereafter.)

Given Bayes’ theorem and Eq. (2), the weighted posterior probability Pw(PC=true | Vi=true)
can be calculated as:

(3)
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Given Bayes’ theorem, the posterior probability P(PC=false | Vi=true) is:

(4)

Summarizing Eq. (3) and Eq. (4), we arrive at

Therefore, the posterior probability Pw(PC=true | Vi=true) is a probability function.

End proof.

Eq. (3) shows that for each variable Vi, the value of the posterior probability Pw(pancreatic
cancer=true | Vi=true) depends on both the prior probability P(pancreatic cancer=true |
Vi=true) and the normalized weight wi. If the variable and pancreatic cancer are positively
associated, the normalized weight wi ≈ 1, and the weighted posterior probability
Pw(pancreatic cancer=true | Vi=true) is approximately equal to the conventional posterior
probability P(pancreatic cancer=true | Vi=true). This means that the posterior probability of
pancreatic cancer increases if variable Vi is true. If the variable and pancreatic cancer are
negatively associated, the normalized weight wi ≈ 0, and the posterior probability
Pw(pancreatic cancer=true | Vi=true) is approximately equal to 0, which means that the
posterior probability of pancreatic cancer barely increases.

Next we illustrate how wi can increase the BNI prediction accuracy for pancreatic cancer
using a two-node Bayesian Network in Figure 4 (a). For example, if we use “vomiting” or
“abdominal pain” to instantiate Vi to predict the risk of pancreatic cancer, according to the
prior probabilities in Table 2, P(vomiting=true | pancreatic cancer=true) = 0.4592 and
P(abdominal pain=true | pancreatic cancer=true) = 0.3980, respectively. To instantiate the
model for illustration purposes only, we suppose the prior probability of pancreatic cancer is
P(PC = true) = 10-3. According to the Bayes’ Theorem, using the two-node network in
Figure 4 (a), we would arrive at similar posterior probabilities for the two risk factors:
P(pancreatic cancer=true | vomiting = true) = 8.4924 × 10-4 and P(pancreatic cancer=true |
abdominal pain = true) = 6.6135 × 10-4. However, looking at the calculated prior
probabilities, one may infer that “vomiting” is associated with pancreatic cancer to the same
degree as “abdominal pain”. However, the pure probability information is inconsistent with
the existing medical knowledge that abdominal pain is more strongly associated with
pancreatic cancer than vomiting. By using the normalized weights for pancreatic cancer risk
factors in Table 1: wabdominal pain= 0.4828 or wvomiting =0.0172 and applying formula Eq. (2)
and Eq. (3) to the two-node network in Figure 4(a), we obtain the weighted posterior
probabilities Pw(pancreatic cancer=true | abdominal pain = true) = 6.6135 × 10-4 and
Pw(pancreatic cancer=true | vomiting = true) = 1.4619 × 10-5. The former is significantly
higher than the latter, which is consistent with our medical knowledge. Therefore, the
weighted posterior probabilities are more realistic and consistent with prior knowledge about
the risk factors and can correct possible errors introduced by pure statistics.
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Figure 4 (b) explains why the normalized weights wi can increase the BNI prediction
accuracy for pancreatic cancer using a three-node Bayesian Network with the variable set V
= (Vdown U Vup), where nodes Vup are the set of parent nodes of the decision node (“the risk
of pancreatic cancer”) and nodes Vdown are the set of all children nodes of the decision node.
After the prior probabilities are weighted, based on Theorem 3.1 in [24], we obtain:

(5)

where V = (Vdown U Vup). We calculate the posterior probability P(pancreatic cancer=true |
Vup=true) using the method described in [24], and Pw(Vdown=true | pancreatic cancer=true)
is calculated as follows:

(6)

where Vdown = (VL U VR). Substituting Eq. (6) into Eq. (5), we can see that the normalized
weight wi contributes to the posterior probability P(pancreatic cancer=true | V=true).

2.5 EHR Information Extraction for Prior Probability Calculation
For a BNI model, the prior probability of each variable is often stored in a conditional
probability table (CPT). We built such a CPT using de-identified EHR information for
pancreatic cancer patients which had been extracted from our institutional research data
warehouse. Two datasets were used to calculate the prior probabilities: one was a 98-sample
dataset with patients who were manually confirmed pancreatic cancer cases, and the other
was a 14971-sample dataset for patients who did not have ICD-9 diagnosis of pancreatic
cancer.

As shown in Figure 3, in this BNI model, all 20 of the risk factor nodes had only one
connection, which was to pancreatic cancer. The prior probability of each of the two
independent variables (age and smoking/drinking) was obtained by querying the
corresponding condition in the EHR. For example, to calculate the probability P (age ≥ 60),
a search condition in EHR of “age at least 60 years old” was used. In contrast, for each of
the 18 dependent variables, two search conditions were used. For example, to calculate the
probability P (abdominal pain = true| pancreatic cancer = true), we queried the condition
“abdominal pain = true” among the patients who had pancreatic cancer. The calculated prior
probabilities for the twenty risk factors are described in Table 2 and 3. To calculate the prior
probability P (pancreatic cancer = true| (age ≥ 60 AND smoking/drinking = true)), we first
queried patients satisfying the two conditions: “is equal to or older than 60 years” and “is a
smoker and a drinker”, among whom we searched for patients who had “pancreatic cancer”.
Table 4 shows the prior probabilities for the pancreatic cancer node.
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2.6 Graphic User Interface Development
We developed a graphic user interface, iDiagnosis, for the weighted BNI model using the
Professional Version of Microsoft Visual Studio 2010. iDiagnosis includes two main
functions: the Bayesian function and the eUtils function. The Bayesian part realizes the
inferences in a Bayesian Network using a Pearl's Message-Passing algorithm [6, 25-26]. The
eUtils part is responsible for generating search terms, searching and fetching PubMed
papers, and accessing MySQL data tables. Figure 5 (a) and Figure 5 (b) display the interface
for the Bayesian part and the interface for the eUtils part, respectively.

2.7 Model Evaluation
Our evaluation consisted of two parts: (1) comparing the weighted BNI model to the
conventional BNI model using the data set that contained the 98 cases and 14,971 controls;
and (2) comparing the weighted BNI model to two other popular classification models,
KNN and SVM, in the open source Weka package [22]. Note that part one used only
aggregated de-identified information for the 14,971 control set to calculate prior
probabilities, as shown in Table 3, without requiring individual patient information for each
of the 20 risk factors. However, KNN and SVM required more patient-level information
than the BNI models for feature representation needed by machine-learning. Therefore, for
part two, we reused the 98 cases but reduced the control group size from 14,971 to 196 since
it was impractical to obtain the values of the 20 risk factors for each of the 14,971 controls.
The 196-patient controls included 106 randomly selected patients without pancreatic cancer
and 90 with symptoms similar to pancreatic cancer but without pancreatic cancer. We
constructed a feature matrix with the size being 294 (patients) by 20 (risk factors) and
divided the combined case and control, 294 in total, into two groups with the ratio between
the training and the testing patients being 1 to 3 so that there were 73 training patients,
consisting of 24 cases and 49 controls, and 221 testing patients, including 74 cases and 147
controls. When implementing SVM, the training data were centered on zero mean and
scaled to a standard deviation of value 1. We selected the linear function (dot product) as the
SVM kernel. To optimize the search for the separating hyper-plane by using quadratic
programming, the interior point method was applied [27]. The soft margin was used by
setting the value of the additional constraint C as 1.

All four models were applied to classify each patient. We compared performances by
measuring sensitivity, specificity, and accuracy. The definition of accuracy is provided
below:

We drew the ROC curves for the weighted BNI, the conventional BNI, KNN and SVM, and
compared area under curve (AUC), standard error (SE) and 95% confidence interval (CI) for
each to evaluate each one's performance.

3. Results
Table 1 shows the resulting normalized weights and variable rankings. The top three
variables associated with pancreatic cancer, ranked by importance, were: weight loss,
abnormal glucose, and abnormal CA 19-9. According to the PubMed weights, these
variables weigh about 50 times more than the most weakly associated variables (GGT and
ALT). Table 2 shows the prior probabilities of P(Vi=true | pancreatic cancer=true) for each
of the 20 risk factors and their frequencies in pancreatic cancer patients. Note the strength of
an association is measured by the weights, or the frequency of the PubMed citation of the
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association. In contrast to the PubMed weighting results, the top three most frequent
variables appearing in pancreatic cancer patients EHR were: glucose, albumin, and nausea.
The most frequent variable, glucose, is about 50 times more frequent than the least frequent
variable, jaundice. Table 3 shows the prior probabilities of P(Vi=true | pancreatic
cancer=false) for patients without pancreatic cancer. The three least frequent variables in
patients without pancreatic cancer were: GGT, glucose, and bilirubin. Table 5 shows the
sensitivity, specificity, accuracy, and ROC curve of the weighted BNI, the conventional
BNI, KNN and SVM. The accuracy indicated by the AUC value of the weighted BNI
(0.910) is significantly higher than that of the conventional BNI (0.806), KNN (0.718) and
SVM (0.727) with P<0.0001. Figure 6 shows the ROC curves for the weighted BNI, the
conventional BNI, KNN and SVM. All ROC curves are on the upper-left side of ROC
space, but the ROC curve of the weighted BNI is higher than that of the conventional BNI,
KNN and SVM, indicating a better performance is achieved by the weighted BNI for
pancreatic cancer prediction. Results in Figure 6 and Table 5 suggest that the weighted BNI
is significantly more accurate than the conventional BNI, KNN and SVM for pancreatic
cancer prediction (P<0.0001).

4. Discussion
In this paper, we developed a weighted BNI model for pancreatic cancer prediction by
combining PubMed knowledge and EHR data to calculate the ratio between the positive and
negative evidence for the associations between each risk factor and the target disease. The
evaluation results indicate that the weighted BNI significantly outperformed the
conventional BNI and two other classification models for pancreatic cancer prediction. This
result can be explained by the following characteristics of the weighted BNI model. First,
the posterior probabilities of the weighted BNI are determined by two data sources, the ratio
between the positive-negative evidence for the association between the risk factor and the
disease and the prior probability of each risk factor in EHR, both being important empirical
evidence for disease risk prediction. The more frequently a risk factor can be found in EHR,
the higher the posterior probability of the risk factor. The weighted BNI can tell clinically
relevant variables from clinically irrelevant variables and weigh the relevant variables
according to PubMed evidence. The conventional BNI can recommend risk factors only by
using high posterior probability of statistical significance. Moreover, some approaches
simply eliminate irrelevant variables; however, we keep seemingly irrelevant variables in
the model but use PubMed knowledge to avoid abusing their prior probability. Our design
seems to be more realistic and sensitive than a simplified model that disregards such
variables. To our knowledge, the weighted BNI is a novel approach to handling clinically
irrelevant variables for disease risk prediction. Our results in Table 5 and Figure 6 confirm
our hypothesis that the weighted BNI model can overcome the limitations in the
conventional BNI based on pure probabilities.

The weighted BNI also outperformed KNN and SVM for pancreatic cancer prediction. This
may be because of two reasons. Firstly, the BNI model better serves risk prediction than
other classification models by using a small number of variables. Our model contains only
20 variables. KNN and SVM, on the other hand, usually excel in a high-dimensional feature
space, such as highly dimensional microarray datasets and do not show advantages in low-
dimensional feature space. Secondly, the weighted BNI obtains information of the
association between the variables and pancreatic cancer from the topology of Bayesian
Network and the weights from PubMed and EHR, while KNN and SVM do not have such
knowledge to support accurate prediction.

The combination of PubMed and EHR knowledge and information for weighing risk factors
can be used to generate hypotheses about the clinical significance of an association between
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a variable and pancreatic cancer by a combined analysis of its frequency in patients with
pancreatic cancer (Table 2) and in patients without pancreatic cancer (Table 3). For
example, glucose is top ranked in Table 2, but appears at the bottom in Table 3. This result
indicates a positive association between glucose and pancreatic cancer, which is consistent
with scientific knowledge in that glucose is the second most frequently studied variable in
pancreatic cancer research due to the association between diabetes and pancreatic cancer.

According to Eq (1.1) and (1.2), the weight wo
i represents the ratio between the number of

PubMed abstracts of positive association (Pi) and the number of PubMed abstracts of
negative association (Ni) for each risk factor i. If Pi is bigger than Ni, then the original
weight wo

i is bigger than 1, which means there is more positive than negative evidence
showing variable Vi is associated with pancreatic cancer; if Pi is smaller than Ni, then the
original weight wo

i is smaller than 1, which means that there is more negative than positive
evidence indicating that variable Vi is associated with pancreatic cancer. In Table 1, almost
all the original weights wo

i are > 1, which may imply that most PubMed publications about
risk factors are positive results and negative results are rare. Because we cannot tell if there
is a publication bias toward only positive association, this warrants further study to guide the
use of PubMed evidence.

We identified several tasks as future work to continuously improve the weighted BNI model
for disease risk prediction. First, a highly accurate dataset is crucial to realizing the full
potential of the weighted BNI and the software iDiagnosis for pancreatic cancer risk
prediction. In this paper, we reused a dataset of manually reviewed 98 cases [21]; however,
we faced significant challenges when it came to verifying the completeness and accuracy of
the information for the larger sample population, the 14,971-patient control group. Each
variable entails laborious information extraction and summarization from PubMed and EHR.
The same variable may be reflected in multiple formats in different data sources (e.g., ICD-9
codes, various types of notes, and other structured data sources such as lab results) in EHR.
Our unstructured EHR data in the research data warehouse were pre-processed by one of the
best medical natural language processing software, MedLEE [10, 28-31], but the data
accuracy was not close to 100%. Time was an issue in this study as for the smaller case
sample we used manual review to compensate for the NLP limitations, which was time
consuming. We also lacked a method to reconcile the inconsistencies between structured and
unstructured data sources. Development, validation, and reuse of sophisticated phenotyping
algorithms in the EHR are much needed to improve the efficiency and accuracy of EHR
phenotyping.

Second, although the weighted BNI model improves the accuracy for pancreatic cancer
prediction over conventional BNI and the other two popular classification methods, it can be
improved in multiple aspects, including the efficiency for variable generation and selection,
prior probabilities calculation, and variable weights calculation. In this study, we selected 20
variables to predict pancreatic cancer risks. It is possible that unknown variables related to
pancreatic cancer have not been included in our model. It is beyond our current capacity to
define a model with hundreds or thousands of fine-grained phenotypic features related to
pancreatic cancer. Therefore, efficient discovery of unknown disease features is a
challenging research topic that needs more future work.

Moreover, in this study, we used the batch processing mode to obtain data to calculate prior
probabilities from EHR. It would be more efficient to support prior probability calculation
using a real-time data warehouse to automatically update the parameters of the model online
as the warehouse receives updates. An advanced analytical framework based on efficient
EHR-phenotyping algorithms can be developed to increase the efficiency of dynamic prior
probability calculation for each risk factor in vivo.
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Finally, in this weighted BNI network, we weighted nodes only. As an alternative, the causal
edges between nodes can be weighted. In [32], Zhou et al. developed a causal edge weighted
BNI for visual tracking, and the authors achieved better recognition results than when using
a conventional BNI. One of our future works is to investigate the efficacy of weighing
causal edges for improving the predictive accuracy of BNI.

5. Conclusion
We developed a weighted BNI using both PubMed knowledge and EHR data to weigh
network nodes for pancreatic cancer prediction. We demonstrated that the weighted BNI
model showed remarkable improvement in prediction accuracy over the conventional BNI
for pancreatic cancer prediction (P<0.0001). We conclude that an integration of a statistical
summary of PubMed knowledge and real-world evidence collected from EHR data can
improve weighting of the variables in a BNI model and improve its disease predictive
accuracy. More studies are warranted to generalize the findings here to allow modeling of
other diseases based on the integration of PubMed and EHR knowledge.
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Figure 1.
Steps to construct a node-weighted BNI
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Figure 2.
Class hierarchy of pancreatic cancer variables
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Figure 3.
The topology of the Bayesian Network for predicting pancreatic cancer
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Figure 4.
A simplified Bayesian Network for pancreatic cancer prediction: (a) two-node Bayesian
Network (b) three-node Bayesian Network, where Vup is the set of all parent nodes of PC
and Vdown is the set of all child nodes of pancreatic cancer.
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Figure 5.
The interfaces of iDiagnosis for (a) the Bayesian function and (b) the eUtils function.
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Figure 6.
Comparison of ROC curves of the weighted BNI, the conventional BNI, KNN and SVM:
the weighted BNI model is more accurate than the conventional BNI, KNN and SVM for
pancreatic cancer prediction.
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Table 2

Calculated prior probabilities with the condition pancreatic cancer = true (data source: EHR, the 98-case
dataset).

Variable Probability Percent Ranking

Glucose P(Glucose=true|PC=true) 0.8776 1

Albumin P(Albumin=true|PC=true) 0.6536 2

Nausea P(Nausea = true|PC=true) 0.5102 3

Age >= 60 P(Age>=60|PC=true) 0.4592 4

Vomiting P(Vomiting=true|PC=true) 0.4592 4

Abdominal pain P(Abdominal pain = true|PC=true) 0.3980 6

Weight loss P(Weight loss=true|PC=true) 0.3776 7

Diabetes P(Diabetes=true|PC=true) 0.3367 8

Smoking/Drinking (UNION) P(Smoking or Alcohol = true|PC=true) 0.3163 9

Appetite loss P(Appetite loss=true|PC=true) 0.2347 10

ALT P(ALT=true|PC=true) 0.1633 11

Fatigue/Asthenia P(Fatigue or Asthenia = true|PC=true) 0.1531 12

CEA P(CEA=true|PC=true) 0.1429 13

Depression P(Depression=true|PC=true) 0.1327 14

GGT P(GGT=true|PC=true) 0.1327 14

CA 19-9 P(CA 19-9=true|PC=true) 0.1122 16

AST P(AST=true|PC=true) 0.1122 16

Bilirubin P(Bilirubin=true|PC=true) 0.0918 18

ALP P(ALP=true|PC=true) 0.0816 19

Jaundice P(Jaundice=true|PC=true) 0.0204 20
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Table 3

Calculated prior probabilities with the condition pancreatic cancer = false (data source: EHR, the 14971-
control dataset).

Variable Probability Percent Ranking

Age P(Age>=60|PC=false) 0.4751 1

Diabetes P(Diabetes=true|PC=false) 0.2458 2

Depression P(Depression=true|PC=false) 0.2351 3

AST P(AST=true|PC=false) 0.2100 4

Albumin P(Albumins=true|PC=false) 0.2000 5

ALP P(ALP=true|PC=false) 0.1900 6

Vomiting P(Vomiting=true|PC=false) 0.1029 7

Nausea P(Nausea = true|PC=false) 0.0855 8

Fatigue/Asthenia P(Fatigue or Asthenia = true|PC=false) 0.0836 9

Smoking/Drinking (UNION) P(Smoking or Alcohol = true|PC=false) 0.0626 10

Weight loss P(Weight loss=true|PC=false) 0.0429 11

CEA P(CEA=true|PC=false) 0.0300 12

ALT P(ALT=true|PC=false) 0.0200 13

Appetite loss P(Appetite=true|PC=false) 0.0129 14

Jaundice P(Jaundice=true|PC=false) 0.0102 15

CA 19-9 P(CA 19-9=true|PC=false) 0.0100 16

Abdominal pain P(Abdominal pain = true|PC=false) 0.0013 17

GGT P(GGT=true|PC=false) 0 18

Glucose P(Glucose=true|PC=false) 0 18

Bilirubin P(Bilirubin=true|PC=false) 0 18
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Table 4

Calculated prior probabilities of pancreatic cancer to be true under the conditions of age and substance
(smoking or drinking) abuse (data source: EHR for the entire patient population).

pancreatic cancer=true Age >= 60 Age < 60

Smoking/Drinking =true 0.00002 0.00001

Smoking/Drinking =false 0.0008 0.0003
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