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TO THE EDITOR

Despite consensus that intense, intermittent ultraviolet exposure is a major melanoma risk 

factor, the role of DNA repair in melanoma pathogenesis remains controversial. UV-

characteristic cyclobutane–pyrimidine dimers and pyrimidine–pyrimidone 6,4-

photoproducts are absent in most melanomas, and many frequently encountered mutations in 

melanoma, such as BRAF c.1799 T->A, are not characteristic UV signature 

mutations(Davies et al., 2002).

We set out to explore the role of DNA repair in melanoma via microarray analysis of 

expression of DNA repair genes in melanoma and non-melanoma skin cancer (NMSC). Our 

study population included 16 primary cutaneous melanomas (PCMs), 11 squamous cell 

carcinomas (SCCs), and 15 basal cell carcinomas (BCCs). PCMs included 2 melanomas in 

situ (MIS), 2 thin (<1 mm Breslow depth, measured from top of stratum granulosum to 

deepest portion of tumor), 3 intermediate thickness (1–4 mm), and 9 thick melanomas (>4 

mm). 40 metastatic melanoma (MM) samples were also analyzed (Supplemental Table S1).
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The Fanconi Anemia (FA) repair pathway is the primary cellular mechanism for addressing 

DNA damage related to cross-links, alkylation, and stalled replication forks(Kee and 

D'Andrea, 2010). We found that expression of FA genes is significantly elevated in MM 

compared to normal skin. The most melanoma-specific signature was provided by the 

aggregate expression of FANCL and FANCD2. Combined FANCD2-FANCL expression 

was at least 50% greater than normal skin in 35 of 40 MM, but in none of the BCCs or SCCs 

(Figure 1a, Supplemental Table S3). In contrast, no nucleotide excision repair (NER) genes 

were significantly upregulated in MM. Expression of XPA, XPE, XPG, and RAD23B were 

significantly decreased in MM (Figure 1a, Supplemental Tables S2, S4). This observation is 

consistent with the high incidence of melanoma in xeroderma pigmentosum patients with 

defects in the NER pathway.

We next examined expression levels of DNA repair genes in PCM. When segregated 

according to Breslow depth, a stepwise increase in FA gene expression was noted with 

increasing melanoma thickness (Figure 1b, Supplemental Tables S5 and S6). In MIS, only 

one FA gene, FANCN, was over-expressed; in intermediate thickness melanomas, three 

genes (FANCB, G, L) were over-expressed. In thick melanomas, nine FA genes were 

broadly over-expressed, including FANCA, B, C, D1, D2, G, I, L, N. NER expression was 

not significantly increased in PCM.

We then sought to confirm our DNA microarray findings via quantitative RT-PCR (qRT-

PCR) analysis of randomly selected PCM and NMSC. Consistent with the microarray 

results, normalized mRNA levels of the key downstream mediator FANCD2 were 

significantly higher in 8 PCM than in 9 NMSC (p=.0001, Figure 1c). Furthermore, there was 

a trend toward association between Breslow depth and FANCD2 expression level detected 

by qRT-PCR (data not shown).

To assess changes in FA expression at the protein level, we analyzed 4 randomly selected 

melanomas and 4 NMSCs by immunohistochemistry for expression of FANCD2. These 

included two thin and two intermediate thickness PCMs, as well as 3 SCCs and 1 BCC 

(Supplemental Table S7). When comparing PCMs to NMSCs, 45% of melanoma cells had 

intense homogenous to granular nuclear staining (Figure 2), versus 4.8% in NMSC, (p=.

029). When comparing PCMs of differing depth, we found increased FANCD2 staining with 

increased Breslow thickness. The two thin PCM displayed nuclear staining of FANCD2 in 

13% and 31% of cells, respectively, compared to 60 and 75% in intermediate thickness 

melanomas. No significant elevation of markers of S-phase progression including Ki-67 

labeling index (data not shown), or transcript levels of cyclin A, cyclin E, or histone H3, 

were found in melanoma compared to NMSC (Supplemental Table S8). Thus, we believe 

that increased FA gene expression in melanoma was not simply due to increased 

proliferative index.

While increased gene expression does not necessarily imply FA pathway hyperactivation, 

three lines of evidence suggest this is likely the case. First, given that FANCD2-FANCI 

nuclear complexes are an established hallmark of FA pathway activation(Kee and D'Andrea, 

2010), the increased homogenous and granular nuclear staining we observed for FANCD2 

protein in melanoma appears consistent with FA activation as well. Second, FA pathway 
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activity correlates closely with level of FA gene transcripts (Hoskins et al., 2008; Taniguchi 

et al., 2002; Vaughn et al., 1996). Finally, FA activation through over-expression of FA 

pathway constituents has been reported to confer cellular resistance to DNA damage(Chen 

et al., 2007; Hazlehurst et al., 2003).

These reports suggest that the FA pathway may function in oncogenesis in addition to its 

previously implicated role of tumor suppressor (Condie et al., 2002). Consistent with this 

hypothesis, FANCC knockout mice are deficient in STAT-1 mediated IFN-γ signaling (Pang 

et al., 2000), a pathway that may promote UVB-mediated melanomagenesis (Zaidi et al., 

2011). Additionally, activation of the FA pathway could provide resistance to increased 

endogenous DNA damage typically seen in oncogenic states(Nitta et al., 2010) and confer 

survival advantage to melanoma cells. Further supporting this hypothesis, activation of the 

FA pathway has been associated with resistance to a variety of DNA damaging agents 

including BCNU and temozolomide (Chen et al., 2007), the tumoricidal effect of which is 

synergistically increased by bortezomib, a FA pathway inhibitor(Jacquemont and Taniguchi, 

2007).

Recent studies have shed light on possible mechanisms of FA gene upregulation during 

melanoma pathogenesis. For instance, E2F activates the FANCD2 gene by binding 

consensus promoter response elements (Hoskins et al., 2008). Similarly, NF-κB binds and 

activates the FANCD2 promoter (Yarde et al., 2009) as well as mediates nuclear localization 

of FANCD2 (Ma et al., 2009). Finally, p53 has been shown to bind the FANCC promoter 

and up-regulate FANCC transcription(Liebetrau et al., 1997). Aberrant regulation of such 

transcription factors during melanomagenesis may account for increased FA gene 

transcription that is disassociated from cell-cycle dependent regulation.

In summary, we have found that FA DNA repair genes are transcriptionally upregulated in 

melanoma. Furthermore, increased FA gene expression correlates with increased Breslow 

thickness. In the context of the broader literature, our results suggest that activation of the 

FA pathway could contribute to melanomagenesis and resistance to chemotherapy. As such, 

the FA genes constitute potential targets in the development of novel melanoma 

therapeutics.
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Figure 1. Fanconi anemia, but not NER, genes are transcriptionally upregulated in melanoma 
compared to normal skin and NMSC
(a) Microarray analysis of Fanconi anemia and NER gene expression in MM and SCC. 

Green and red represent decreased and increased expression relative to control, respectively. 

Color intensity is proportional to expression level up to a 4-fold difference from control. 

Middle row shows combined expression of FANCD2 + FANCL relative to normal skin; 

dark brown, medium tan, and orange denote 25-50% greater, 50-100% greater, and more 

than 100% greater than normal, respectively. (b) DNA microarray analysis of FA and NER 

genes in PCM. (c) qRT-PCR analysis of FANCD2 expression in PCM vs NMSC. FANCD2 

expression levels were normalized to β-actin mRNA levels. Vertical bars represent standard 

error.
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Figure 2. Strong nuclear FANCD2 protein expression is observed in primary melanoma but not 
NMSC
Paraffin-embedded tumors were immunostained with 1:50 anti FANCD2 (H-300) (sc28194, 

Santa Cruz Inc, Santa Cruz CA) and then biotinylated anti-rabbit antibody (Vector 

Laboratories, Burlingame CA). (a) Photomicrographs of FANCD2 protein expression in 

PCM (left panels) and NMSC (right panels). Breslow thickness is shown for each PCM. 

Black scale bars at lower right of each panel indicate 50 μm. (b) Percentage of PCM and 

NMSC cells with positive nuclear staining for FANCD2 by IHC. Numbers associated with 

each PCM on the horizontal axis represent Breslow thickness.
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