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Abstract
The identification of clinical and biological markers of disease in persons at risk for Huntington
Disease (HD) has increased in efforts to better quantify and characterize the epoch of prodrome
prior to clinical diagnosis. Such efforts are critical in the design and implementation of clinical
trials for HD so that interventions can occur at a time most likely to increase neuronal survival and
maximize daily functioning. A prime consideration in the examination of prodromal individuals is
their proximity to diagnosis. It is necessary to quantify proximity so that individual differences in
key marker variables can be properly interpreted. We take a data-driven approach to develop an
index that can be viewed as a proxy for time to HD diagnosis known as the CAG-Age Product
Scaled or CAPS. CAPS is an observed utility variable computed for all genetically at-risk
individuals based on age at study entry and CAG repeat length. Results of a longitudinal receiver
operating characteristic (ROC) analysis showed that CAPS had a relatively strong ability to predict
individuals who became diagnosed, especially in the first 2 years. Bootstrap validation provided
evidence that CAPS computed on a new sample from the same population could have similar
discriminatory power. Cutoffs for the empirical CAPS distribution can be used to create a
classification for mutation-positive individuals (Low-Med-High) that is useful for comparison with
the naturally occurring mutation-negative Control group. The classification is an improvement
over the one currently in use as it is based on observed data rather than model-based estimated
values.
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INTRODUCTION
Huntington disease (HD) is an autosomal dominant illness of the brain caused by the
trinucleotide cytosine–adenine–guanine (CAG) expansion in the gene of the protein
huntingtin. People affected with HD, known as mutation-positive individuals, have a CAG
repeat length between 36 and 250 [Brinkman et al., 1997; Bruland et al., 1999; Kremer et
al., 1994; Nance et al., 1999]. There is an inverse relationship between CAG repeat length
and age of HD diagnosis with longer lengths being associated with earlier diagnosis.
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Various statistical models have been developed to account for this phenomenon [Andresen
et al., 2007a, 2007b; Andrew et al., 1993; Brinkman et al., 1997; Gutiérrez and MacDonald,
2002, 2004; Langbehn et al., 2004, 2010; Langbehn and Paulsen, 2007; Lucotte et al., 1995;
Maat-Kievit et al., 2002; Rubinsztein et al., 1996, 1997; Squitieri et al., 2000; Stine et al.,
1993].

The PREDICT-HD study is an ongoing observational study including 32 sites from the
United States, Canada, Australia, Germany, Spain and the United Kingdom [Paulsen et al.,
2006]. Recruits consist of a large number of participants who have undergone genetic testing
for the HD gene mutation, but were not clinically diagnosed with the disease at the time they
entered the study. These at-risk participants for HD are described as “prodromal” because
they are mutation-positive (CAG repeat length ≥ 36) and show evidence of disease
progression based on several key clinical and biological markers [Paulsen, 2010; Paulsen et
al., 2008, 2010a]. PREDICT-HD is a prevalent cohort design as it involves cross-sectional
sampling criteria for study inclusion. Participants must be adults (≥ 18 years), and those who
are mutation-positive for HD must not show manifest signs at study entry as determined by
the absence of a diagnosis.

One goal of prodromal research is to better characterize the natural history of HD so that
preventive intervention can be initiated at the time best suited to maximize success. Previous
research using various clinical and biological markers suggests that the prodromal phase will
include an insidious decline followed by a precipitous deterioration about 12 years prior to
clinical diagnosis [Campodonico et al., 1996; Paulsen et al., 2006, 2008]. Since the specific
epoch of time considered during the relatively long prodrome of HD appears to vary,
methods to classify prodromal individuals are essential to understanding the success or
failure of interventions.

The prevalent cohort design of PREDICT-HD presents a challenge for statistical analysis as
inferences can be biased if certain study characteristics are ignored. Individuals with HD are
mutation-positive at birth and this time might be considered the initiating event and the
natural time origin for studying disease progression. A problem with using birth as the time
origin is that a prevalent cohort design like PREDICT-HD has length bias [Zelen et al.,
1969, 2005]. Individuals with a greater time to diagnosis since birth will have a higher
probability of being selected for the study, and the selected sample will not be representative
of the general population of HD.

Though birth might be considered the natural initiating event, participants are not observed
until entry into the study. Study entry is when participants join the cohort, and more
importantly, become part of the risk set for determining survival probabilities. For these
reasons, the time origin for prevalent cohort designs is commonly defined as the point of
entry into the study. The time metric is duration, defined as the current age in years minus
the age at study entry. Upon entering the study, individuals are tracked over a number of
years. Interest often focuses on changes in a key marker, such as striatal volume, over the
study duration.

To minimize length bias and make proper inferences, it is desirable to have a proxy variable
of HD progression at the time of study entry. One participant might have a shorter duration
to diagnosis than another due to a greater progression, and this must be taken into account in
the interpretation of statistical results. Two variables important in characterizing disease
progression are CAG repeat length and age (Langbehn et al., [2010]).

A number of proxy variables for baseline HD progression have been suggested, with the
work of Langbehn and colleagues being the most pertinent for the present purposes
(Langbehn et al., [2004, 2010]). The Langbehn et al. [2010] approach is based on a logistic
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survival model incorporating age and CAG length. In most applications (see e.g., [Aylward
et al., 2010]), an ordered categorical variable is used with groups representing three levels of
estimated time to HD diagnosis (TTD). The groups are (i) Far: estimated TTD > 15 years;
(ii) Middle (Mid): 9 years < estimated TTD ≤ 15 years; and (iii) Near: estimated TTD ≤ 9
years.

Langbehn et al. had the laudable goal of developing a general model of TTD when no
prospective study of prodromal HD existed. PREDICT-HD has conducted comprehensive
annual assessments for prodromal HD participants for over 10 years, and there are currently
137 individuals prospectively diagnosed. This wealth of longitudinal data, in concert with
the prospectively diagnosed patients evaluated over the course of their transition from
presymptomatic to diagnosed, offer a rich resource from which to construct a new
classification system.

There are two goals of this paper. The first goal is to develop a “utility variable” for
PREDICT-HD participants and other participants in the HD prodrome, which is a summary
of two key variables observed at study entrance, age and CAG repeat length. The utility
variable can be treated as a proxy variable of TTD for the duration of the study and used as a
covariate or control variable to account for variation in disease progression in order to
properly interpret the results of statistical analysis.

The second goal is to update the classification of study participants based on the utility
variable. Rather than emphasize the distance to HD diagnosis that Far-Mid-Near implies,
the classification of Low-Medium-High is suggested to denote the amount of cumulative
“disease burden” that participants have at the time they enter the study.

The utility variable is developed from a data-driven approach using a standard parametric
survival model, the accelerated failure-time (AFT) model [Klein and Moeschberger, 2003].
It is argued that the adopted model has scientifically useful parameter interpretations and is
highly predictive of TTD. We refer to the utility variable as the CAG-Age Product (CAP), as
it is computed by multiplying age at entry (Age0) by a scaling of CAG repeat length, as
explained below. A scaled version of CAP, CAPS, is also discussed that is especially useful
for comparing mutation-negative individuals with mutation-positive individuals. Such
comparison is a major preoccupation of PREDICT-HD analysis (see, e.g., [Aylward et al.,
2010]) and other prodromal HD research, and prepares the way for preventive clinical trials.

METHODS
Overview

Two statistical analyses were performed. The first was concerned with development of CAP
and CAPS, and an evaluation of predictive performance. The second analysis was concerned
with development of the Low-Med-High classification and comparison with the Far-Mid-
Near groups. The analysis sections provide an overview of the methods and details can be
found in the Appendix.

Participants
The first analysis was based on N = 730 prodromal individuals with at least 1 year and up to
7 years of follow-up data. These were participants who tested positive for the HD mutation,
but did not have motor features indicating onset of diagnosable HD at the time of
enrollment. Participants were seen yearly by clinicians experienced in the evaluation of
movement disorders and specifically trained in administration of the Unified Huntington’s
Disease Rating Scale (UHDRS) for PREDICT-HD [Huntington Study Group, 1996]. Of the
730 prodromal individuals, 137 received a HD diagnosis over the course of the study.
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All aspects of the study were approved by the Institutional Review Board at each
participating institution, and all aspects of the study are in compliance with the Declaration
of Helsinki.

In accordance with clinical practice, diagnosis was made on the basis of “an otherwise
unexplained characteristic movement disorder,” operationally defined as a score of 4 on the
HD Diagnostic Rating Scale of the UHDRS. A rating of 4 indicates that the clinician had ≥
99% certainty that the participant showed “unequivocal presence of an otherwise
unexplained extrapyramidal movement disorder.” This method of diagnosis is “standard” in
the respect of being approved by authorities such the Huntington Study Group (HSG)
[Huntington Study Group, 1996]. Participants were excluded from the analysis if they
received a rating of 4 at baseline.

Portions of the second analysis added 233 control participants, for a total sample size of N =
963. The control participants were offspring of at least one HD-diagnosed parent, but tested
negative for the HD mutation (CAG repeat length < 36). Additional information about the
participants and the PREDICT-HD study can be found in [Duff et al., 2010a; Nopoulos et
al., 2011; Paulsen et al., 2010b; Stout et al., 2011].

STATISTICAL ANALYSIS I: MODEL AND UTILITY VARIABLE
DEVELOPMENT

The first step in the analysis was a data-driven selection of an appropriate AFT model. The
response variable was duration, which was the years since entry to HD diagnosis for
individuals who received a diagnosis, and the years since entry to the last observation time
for individuals who did not receive a diagnosis. All possible subsets of models with
predictors of Age0, CAG, and their interaction (i.e., Age0 × CAG) were considered. Reduced
models were defined by having one or two of the predictor terms in the structural portion of
the AFT. For example, one reduced model had Age0 as the only predictor, and another had
Age0 and Age0 × CAG as the predictors, etc.

In applications of the AFT, the exact distribution of the error term is typically unknown and
various possibilities are considered. Therefore, the statistical analysis consisted of fitting
models defined by combinations of number of predictors and different types of error
distributions. There were seven structural models and five error distributions for a total of 35
fitted models. Each model was estimated using maximum likelihood methods assuming
right censoring. To assess model fit, Akaike’s information criterion (AIC) was computed for
each fitted model. In addition, the prediction error (PE) of the fitted model for the 137 HD
diagnosed individuals was also computed (PE =∑|Ŷ − Y|). All models were estimated using
the survival package [Therneau and original Splus->R port by Thomas Lumley, 2009] of
the R computer program [R Development Core Team, 2010].

The best fitting model according to the AIC had the predictors Age0 and Age0 × CAG with a
normal error distribution, AIC = 888.1599, PE = 539.9115. The second best fitting model
according to the AIC had the same predictors, but a logistic error distribution, AIC =
888.4643, PE = 496.6704. The difference in the AIC values (ΔAIC = 0.3044) indicated the
second best fitting model had essentially equal fit as the first, based on the common
evaluation criterion of ΔAIC < 2 [Burnham and Anderson, 2002]. The logistic model had a
smaller PE value indicating less prediction error for those actually diagnosed. Therefore, the
logistic AFT model was selected as the working model for continued development.
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Having selected the model with the predictors Age0 and Age0 × CAG, certain simplifications
were made to yield a scientifically meaningful model with useful parameter interpretations
(see the Appendix). The final AFT prediction model was

(1)

Parameter estimates obtained via maximum likelihood are shown in Table I. Since C is a
ratio of two parameters, the Delta method was used to compute its standard error (see
[Casella and Berger, 2002]).

The parameter estimates of Table I provide useful information. The sign of the estimate and
the CI limits for C are negative. Assuming the parameter C is negative, CAG + C can be
thought of as a type of calibrated or corrected CAG, with C being the correction factor.
Thus, we define the corrected CAG repeat length, CAGC, as

(2)

Substantively, CAGC indexes the toxicity of the mutant huntingtin gene. Individuals with
higher values have greater toxicity and those with lower values have less toxicity.

In addition to mutation toxicity, the other important consideration is Age0. Age0 is an index
of the length of exposure to the mutation toxicity from birth to study entry. It is also the
truncation time required to account for length bias [Wolkewitz et al., 2010]. Taking toxicity
and length of exposure into account, we define the CAG and Age0 product (CAP) as,

(3)

Based on the data, CAP = Age0 × (CAG − 33.6600). CAP is interpreted as an index of the
cumulative toxicity of mutant huntingtin at study entry and is nearly identical to the measure,
sometimes called “genetic burden,” that was introduced by [Penney et al., 1997]. Hence,
participants with a larger cumulative genetic toxicity at study entry may likely develop HD
sooner. It is emphasized that the CAP score is an observed score computed on an
individual’s actual age at study entry and CAG repeat length.

Given the equations above, the CAP model for estimated TTD is written as

(4)

Using the estimates from Table 1, we have Ŷ = exp(4.4196 − 0.0065 × CAP). An important
feature of Equation (4) is that estimated TTD is completely determined by CAP based on the
fitted model. For this reason, CAP can be regarded as a proxy variable for estimated TTD.
The utility is that CAP is computed based on the data, yet it is a substitute for the estimated
TTD that is potentially computed from the model.

To enhance the utility of CAP, it can be scaled based on the estimated survival probabilities.
Survival probabilities are convenient for studying the process of a disease and are a common
means of communicating likelihood of an event, such as HD diagnosis [Kleinbaum and
Klein, 2005].

For the survival probability scaling, 5 years is considered a reasonable landmark time, as it
allows for a sufficient period of disease progression and is the common duration of clinical
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trials. Focus is on the key survival probability of 0.5, representing a 50-50 chance of a
diagnosis. Given the assumptions mentioned in the Appendix, the scaled CAP, denoted as
CAPs, is computed as

(5)

Based on the data, CAPS = CAP / 432.3326. CAPS has a convenient interpretation: CAPS < 1
indicates a 5-year diagnosis probability of less than 0.5; CAPS = 1 indicates a 5-year
probability equal to 0.5; and CAPS > 1 indicates a 5-year probability greater than 0.5. CAPS
then, is interpreted as an index of the scaled cumulative mutation toxicity, with the scaling
being in reference to a 50-50 chance of diagnosis by 5 years.

An additional practical issue is that mutation-negative individuals (controls) are often
considered along with mutation-positive individuals in PREDICT-HD analyses. Controls
provide a convenient reference group for evaluating progression of HD in prodromal
individuals. The control individuals have at least one parent diagnosed with HD, but their
CAG repeat length is less than 36, indicating they will never develop HD. Control
individuals have no mutation toxicity, which is represented by setting CAPS = 0 for these
individuals. Suppose the probability of diagnosis after 5 years is D5. Then the final
definition of CAPS is,

(6)

Table II shows CAPS along with other relevant scores and probabilities for hypothetical
individuals aged 50 at study entry and having various CAG repeat length. The CAG repeat
lengths are classified as mutation-negative (no penetrance), mutation-positive but reduced
penetrance (36–40), and mutation-positive but full penetrance (> 40). These penetrance
classifications are based on proportions of individuals in the population expected to display
HD symptoms sufficient to warrant diagnosis at some point [Langbehn et al., 2004].

The AFT model of Equation (4) can be expressed in terms of CAPS. Setting β* = −(α −
log(5)), the CAPS AFT model is,

(7)

Based on the data, Ŷ = exp(4.4196 − 2.8102 × CAPs.

The parameters of Equation (7) have the following interpretations. By definition, CAPS = 0
for mutation-negative individuals (see Equation (6)) meaning that α and β* are irrelevant for
these individuals. For mutation-positive individuals, CAPS > 0, and α is the intercept and β*

is the slope or acceleration of their scaled cumulative toxicity. As indicated by the CI in the
second row of Table I, β is assumed to have a negative sign. Thus, as CAPS increases, the
expected TTD decreases. The acceleration is estimated to be β̂*=−2.8102, meaning a unit
increase in CAPS is accompanied by a 2.8102 decrease in log duration.
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Predictive Performance and Bootstrap Validation
An important issue in the development of the CAPS utility variable is the extent to which it
predicts HD diagnosis. CAPS is suggested as a proxy for cumulative disease burden, which
implies that individuals with higher scores are closer to diagnosis than individuals with
lower scores. A popular means of assessing predictive performance is based on the receiver
operating characteristic (ROC) curve. In this context, the area under this curve (AUC) is an
index of the ability of CAPS to discriminate between diagnosed and non-diagnosed
individuals. AUC varies between 0.5 and 1.0 for reasonable models with higher values being
better [Miller et al., 1993].

Since PREDICT-HD is a prospective study, diagnosis accumulates among the cohort over
time. This time dependence should be taken into account when constructing the ROC curve.
To evaluate the predictive performance of CAPS, longitudinal AUC was computed based on
censored survival times using the methods of [Heagerty and Zheng, 2005]. The R package
risksetROC was used for this analysis [Heagerty and packaging by Saha, 2011]. In
addition to considering AUC as a function of study duration, an overall index was computed
that summarizes the AUC over the time span, known as the integrated AUC (iAUC).

It is well known that predictive performance will decrease when a statistical model
developed in one sample is applied to an independent sample. It is desirable to adjust for this
“optimism” to provide a more realistic appraisal of predictive performance for out-of-sample
data originating from the same population. One method of adjustment is the enhanced
bootstrap [Efron, 1986; Efron and Tibshirani, 1993], the details of which are found in the
Appendix. The enhanced bootstrap produces adjusted AUC and iAUC. The extent of
similarity of the bootstrap-adjusted and unadjusted values is an indication of the interval
validity of the AFT and CAPS [Harrell et al., 1996].. Close agreement suggests that when
CAPS is computed based on a new sample from the same population, it will function
similarly as in the original sample.

Bootstrap-adjusted and unadjusted AUC and iAUC were examined using the N = 730
mutation-positive individuals. There were N = 137 participants who received a diagnosis
over the course of the study (18.77%), and N = 593 individuals who did not (81.23%).

Results of the analysis show the overall unadjusted index was iAUC = 0.7203 and the
bootstrap-adjusted value was slightly smaller, 0.7172. Figure 1 shows the AUC as a function
of duration. The unadjusted values are depicted by a solid line and the bootstrap-adjusted
values with a dashed line. As the figure shows, the AUC (adjusted and unadjusted) was
relatively high (AUC > 0.75) for 2 years duration, then dropped to around 0.70 until the last
time point. The precipitous drop at 2 years was due to a small group of participants with the
highest CAPS values whose survival probability change from 1 to 0 at this time. The
bootstrap-adjusted AUC was only slightly lower that the unadjusted version indicating that
CAPS may have similar discriminatory power for a new sample from the same population.

STATISTICAL ANALYSIS II: GROUP CLASSIFICATION
CAPS can be used whenever an index of proximity to diagnosis at study entry is needed. For
example, CAPS might be used in a regression model as a predictor of striatal volume to
investigate prodromal indicators of disease progression (see [Aylward et al., 2010]).

There are situations in which researchers might consider using groups based on a
categorization of the CAPS distribution. When mutation-negative individuals (controls) and
mutation-positive individuals (cases) are to be analyzed together, grouping has advantages.
Mutation-negative individuals constitute a naturally occurring group, and there is no within-
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group variability of cumulative HD toxicity or proximity to diagnosis. This is reflected by
the fact that controls always have CAPS = 0.

Since the controls constitute a well-defined group, it is perhaps natural for some researchers
to form similar mutation-positive groups for comparison. A dichotomous distinction, such as
control/case groups, is too coarse a formulation as it ignores the CAPS variability among
mutation-positive individuals (only CAG repeat length is needed for a dichotomous
classification). To take advantage of potentially important between-subjects variability in
CAPS, it is desirable to categorize the CAPS distribution for mutation-positive individuals.

As mentioned in the introduction, there have been previous attempts to formulate groups
representing proximity to diagnosis, the Far-Mid-Near of Langbehn et al. being the most
relevant. In previous analyses [Aylward et al., 2010; Beglinger et al., 2008; Biglan et al.,
2009; Duff et al., 2010a; Klöppel et al., 2009; Nopoulos et al., 2010; Paulsen, 2010; Paulsen
et al., 2008, 2010a, 2010b; Rowe et al., 2010; Stout et al., 2011], the formulation of the Far-
Mid-Near groups was based on predicted values rather than observed scores with the criteria
for categorizing being unclear. To remedy this, we propose using CAPS and estimated TTD
as the basis for grouping. This will help ensure maximal potential group differences of
estimated primary outcomes. For continuity with the previous analysis, three groups will be
considered. To distinguish the new groups from the old, the descriptors Low, Medium (Med),
and High are used.

The cutoffs for group membership among mutation-positive individuals were determined by
the algorithm outlined in the Appendix. This resulted in the rounded cutoffs values of CAPS
= 0.67 (lower cutoff), and CAPS = 0.85 (upper cutoff). Based on Equation (3), these values
corresponded to estimated durations of Ŷ = 12.78 and Ŷ = 7.59 years, respectively. Based on
the cutoffs, the mutation-positive study participants were classified into the three groups.
The fourth Control group consisted of the mutation-negative individuals with CAPS = 0.

Examination of group differences
There are key variables used by PREDICT-HD researchers to study the progression of HD.
These include baseline imaging, motor, cognitive, and psychiatric measures. Descriptive
statistics for the key variables and some demographic variables (gender, age, CAG repeat
length, education) by classification (Low-Med-High and Far-Mid-Near) were computed.
The N = 233 control participants (Control group) were included for a more thorough
comparison (total N = 963).

As for the key variables, the imaging measure was striatal volume (as a ratio to total
intracranial volume) [Paulsen et al., 2010a], and the motor measure was the UHDRS total
motor score. There were two cognitive measures, the Symbol Digit Modalities Test
(SDMT), which is a measure of processing speed, and the Hopkins Verbal Learning Test-
Revised (HVLT-R), which is a test of immediate recall memory. Three psychiatric measures
were included, the Frontal System Behavior Scale (FrSBe) yielding a total score and an
executive subscale score, and the Schedule of Compulsions, Obsessions, and Pathologic
Impulses (SCOPI) total score. The FrSBe is a self-report symptom inventory that measures
behaviors associated with damage to frontal systems of the brain; the executive subscale
evaluates problems with working memory, planning, problem solving, and insight [Duff et
al., 2010b; Grace and Malloy, 2001]. The SCOPI is a multidimensional self-report measure
composed of 47 items with a total score that is the sum of the obsessive checking, obsessive
cleanliness, and compulsive rituals subscales [Beglinger et al., 2008; Watson and Wu,
2005].
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The difference between the new and old classifications is summarized in the contingency
table shown in Table III. As indicated by the values above the diagonal, the new grouping
tended to classify study participants into more severe disease groups compared to the Far-
Mid-Near classification. For example, the new classification moved 93 of the 275
participants in the Far group (34.55%) to the Med group, and 113 of the 276 in the Mid
group (41.30%) to the High group.

Descriptive statistics for the key variables by classification are shown in Table IV. Note this
is a comparison of Control-Far-Mid-Near and Control-Low-Med-High, with the Control
group consisting of the same individuals in both classifications. One of the dramatic
differences between the classifications is the sample size of the groups as the percentage of
the total (N = 963). Whereas the Near group consists of 18.59% of the total in the old
classification, the comparable High group consists of 30.22% in the new classification.

The descriptive statistics of the other demographic variables were similar for the two
classifications. The same can be said for motor score, symbol digit, HVLT, and striatal
volume. There were differences between the two classifications for one of the psychiatric
variables. For FrSBe Executive, there was a statistically significant difference between the
High group and Control in the new classification, but not a similar difference for the two
most distant groups in the old classification (i.e., Near and Control). For the remaining
psychiatric variables, (FrSBe Total and SCOPI), the Mid group had the largest mean value
for the old classification, which was also true for the Med group. However, differences
among the FrSBe scores were less pronounced for the new classification.

DISCUSSION
The first aim of this article was to develop a proxy of disease severity or “disease burden” in
the form of proximity to diagnosis at study entry based on observed age at entry and CAG
repeat length. The result was CAPS, which is a scaled index of cumulative huntingtin
mutation toxicity. The second aim was to develop a new classification of mutation-positive
individuals that can be used for comparisons with mutation-negative individuals. The result
was a categorization of the observed CAPS distribution into the groups Control-Low-Med-
High.

The predictive performance indexed by the longitudinal AUC values (see Figure 1) suggest
that CAPS is a reasonable index for proximity to diagnosis, especially within the first 2
years. CAPS is especially convenient for analysis in PREDICT-HD and other prevalent
cohort studies because it is an observed score. CAPS is computed from quantities that are
observed with high accuracy at study entrance and CAPS does not require a statistical model
for its estimation. The bootstrap-adjusted AUC in Figure 1 provides evidence that the
scaling constants are relatively inconsequential in the sense that when estimated on a new
sample from the same population, the predictive performance of CAPS is essentially the
same.

It was demonstrated that the new classification of Low-Med-High based on CAPS in relation
to the old (Far-Mid-Near) represents a migration of individuals from less severe disease
categories to more severe categories (see Table III). This migration seems desirable as the
PREDICT-HD cohort has aged since the older classification, which has increased the risk of
diagnosis in the cohort. As Table IV illustrates, the Low-Med-High classification using
CAPS is clinically meaningful, in that, it is correlated with differences in other widely
recognized markers of prodromal HD. Not only does the classification strongly predict TTD,
but it also groups prodromal HD participants into potentially more homogeneous cohorts for
the study of clinical markers.
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Baseline clinical markers are very important in the study of prodromal HD as they are
indicators of disease progression and potentially provide information for understanding the
relevant mechanisms involved [Aylward et al., 2010; Beglinger et al., 2008; Biglan et al.,
2009; Duff et al., 2010a; Nopoulos et al., 2010; Paulsen, 2010; Paulsen et al., 2008, 2010a,
2010b; Stout et al., 2011]. Figure 2 is a hypothesized illustration of HD disease progression.
CAPS represents a necessary but not sufficient condition for the progression of HD, namely
a sufficiently extended CAG repeat length and a sufficiently long exposure period. As
opposed to other hypothesized variables, CAPS is an observed variable that is hypothesized
to exert influence at the beginning of the causal change depicted in Figure 2.

Assuming the hypothesized model in Figure 2, the Low-Med-High classification may be
important for the design of clinical trials, which is a future goal of PREDICT-HD. The
second set of results show that 40% (292 / 730) of prodromal HD participants in the
PREDICT-HD study were classified into the High group (see Table IV). For the prodromal
HD individuals in this group, the average estimated time to HD diagnosis was 5.47 years
with a standard deviation of 1.41, and the average estimated 5-year probability of HD
diagnosis was 0.47 with a standard deviation of 0.16. This group may serve as a potential
focus group for future clinical trials on therapeutic treatment designed to delay HD
progression. For example, suppose a balanced treatment-control clinical trial is designed
with the aim of reducing the 5-year HD diagnosis by 40%. If the study participants were
enrolled from the High group, the trial would require only 140 participants for each
experimental group to demonstrate such treatment efficacy in a two-sided 0.05 level test
powered at 0.90. As the PREDICT-HD study has already enrolled 292 individuals that are
classified in the High group within 7 years, it is anticipated that the recruitment of study
participants for such clinical trials with 5-year follow-up can be achieved in less than 7 years
with a multicenter setting.

An important caveat to be highlighted is that CAPS is intended as a utility variable for
analyses in the PREDICT-HD and similar prevalent cohort studies. It is not intended as a
true or literal measure of an individual’s distance from HD diagnosis. CAPS summarizes two
of the key variables related to the timing of HD diagnosis: age and CAG repeat length.
However, there are undoubtedly numerous other important variables—most unobserved—
that influence the TTD, as depicted at the left in Figure 2. PREDICT-HD participants are
observed only once a year. Assuming there is a threshold for passing from prodromal to
diagnosed, it is impossible to determine the exact TTD based on yearly measures (monthly
or daily measures would be required). In addition, there is debate as to the validity of the
threshold of CAG ≥ 36 for classifying individuals as mutation-positive. The validity of the
threshold is not a concern for the development of CAPS in this paper because no PREDICT-
HD participants had CAG repeated lengths in the range of 35 to 37 inclusive. However, for
samples that include numerous individuals with CAG lengths in this range, the estimated
AFT and CAPS will be affected. Therefore, we caution the reader to not over-interpret
CAPS, as it does not represent the true TTD for prodromal HD individuals. The same can be
said for the Low-Med-High classifications.

The AFT model developed in the analysis has the desired characteristic of simplicity as
compared to related models (see [Langbehn et al., 2010]). The predictive performance of the
model, as reflected by the discriminatory ability of CAPS (see Figure 1), is comparable to
that of some other sample-developed models in other areas of medical research (e.g.,
[Bleeker et al., 2003]). The bootstrap validation suggests that CAPS might be useful for new
samples from the same population; the population consisting of prodromal individuals in
prevalent cohort studies. However, the bootstrap adjustment does not address the issue of
performance for data from a different population. The utility of CAPS for individuals with
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characteristics that differ from those in PREDICT-HD is an open question and probably
depends on the similarity of key characteristics [Laupacis et al., 1997].

Conclusion
In conclusion, CAPS and its associated classification can be used as an index of proximity to
HD diagnosis at study entry for individuals in the PREDICT-HD study and in similar
prevalent cohort studies. An index of proximity is important for prodromal analyses, so that
differences among prodromal HD individuals can be properly interpreted. It is hoped that
the use of CAPS and the Control-Low-Med-High classification will lead to better prediction
and greater understanding of the processes of HD.

Appendix
This appendix provides the technical details pertaining to the development of the prediction
model and utility variables (CAP and CAPs), the group classifications (Low-Med-High), and
the bootstrap adjustment for predictive performance.

Development of the prediction model
Suppose that study entrance is the time origin, so that Y is the time in years to HD diagnosis
or the last observation time in the study (i.e., duration). Then the full model AFT is,

(A1)

This is essentially a linear model for Y in the natural logarithm scale with an interaction
effect of age at study entrance and CAG repeat length. The model guarantees the positive
estimation of TTD [Klein and Moeschberger, 2003]. In Equation (A1), σ is a scaling
parameter and ε is a random variable denoting the model error which may be a proxy for
many other potentially important predictors not considered. The exact distribution of ε is
typically unknown and empirical AFT modeling involves an exploration of various
possibilities, usually the Exponential, Weibull, Normal, Logistic, or Generalized Gamma
distributions.

Equation (A1) was only one of several potential models with reduced models defined by
having one or two of the predictor terms in the structural portion of Equation (A1). As
discussed in the text, the selected model had Age0 and Age0 × CAG as predictors and a
logistic error distribution. The prediction formula for the selected model was

(A2)

Certain simplifications were made to yield a scientifically meaningful model with useful
parameter interpretations. To simplify Equation (A2), define C = β1 / β3, so that β1 = β3 × C.
Then the selected working model can be written as

Dropping the subscript for β3 yields

(A3)
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Defining CAP = Age0 × (CAG + C) we have Equation (4) in the text.

CAPS is a scaling of CAP based on the estimated survival probabilities. Assuming a logistic
error, the model of Equation (A3) can be expressed in terms of a survival probability [Klein
and Moeschberger, 2003]. The survival probability of being diagnosis-free from study entry
to a future time t is given by

(A4)

where all the parameters are as defined above.

Based on the parameter estimates in Table I, the estimated probability of being diagnosis-
free at time t is computed as

It follows that the estimated probability of diagnosis at time t is D ̂t = 1 − Ŝt.

Focus is on the key survival probability of 0.5, as in this case D ̂t = Ŝt and there is a 50-50
chance of a diagnosis. Inspection of Equation (A4) reveals that St = Dt = 0.5 = [1 +
exp(0)]−1, which occurs when log(t) − (α + β × CAP) = 0. Given t = 5 and estimates of the
parameters, CAP can be solved for in this situation. This solution is then used as a basis for
scaling CAP.

Suppose we define B = CAP for this special case and solve for B̂ using the sample estimates,

B̂ is the sample CAP that produces D ̂t = Ŝt = 0.5. Then CAP can be divided by B (or its
estimate) to compute CAPS as in Equation (5). Finally, setting β* = β × B = −(α − log(5)),
we obtain the CAPS AFT model of Equation (6).

Algorithm for determining group membership
Recall that CAPS can be used as a basis for classifying individuals into groups. Using the
sample data, the cutoffs for group membership among mutation-positive individuals were
determined by the following steps.

1. For each study participant, CAPS was computed along with the estimated time to
diagnosis, Ŷ, based on Equation (4).

2. To avoid radically different sample sizes among the groups, the potential lower
cutoff was constrained to be between the 25th and 40th percentiles of the CAPS
sample distribution.

3. The potential upper cutoff was constrained to be between the 60th and 75th

percentiles of the CAPS distribution.

4. The grid of all possible pairs of lower and upper percentiles was considered. For
each candidate pair of cutoffs (e.g., 26th and 64th percentiles), the between-group
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and within-group variation for the estimated TTD was calculated. The ratio of
between-group to within-group variation was used as the selection criterion.

5. The cutoffs for constructing the groups consisted of the pair that yielded the largest
value of the ratio.

The optimization algorithm essentially searched for the largest ANOVA F-statistic of the
estimated TTD based on the CAPS percentiles. The selected cutoffs indicated the best
separation of the study participants in terms of the estimated TTD.

Bootstrap adjustment of predictive performance
To address the issue of optimistic prediction performance, an enhanced bootstrap procedure
was used to adjust the AUC and iAUC (see [Harrell et al., 1996] for additional details). The
overly-optimistic apparent performance (AP) was indexed by the AUC and iAUC computed
on the original sample. For each bootstrap replication, a bootstrap sample was drawn by
sampling from the original data set with replacement using the same sample size (N = 730).
For each bootstrap sample, the parameters of Equation (A2) were estimated, CAPS was
computed, and AUC and iAUC were produced. The latter two were indicators of bootstrap
performance (BP). Then CAPS was computed for the original sample based on the estimates
for the bootstrap sample, and AUC and iAUC were produced. In this case, AUC and iAUC
were indicators of test performance (TP). The bootstrap procedure was replicated 200 times
and the adjusted AUC (AUCadj) was computed as

(A6)

where the average was taken over the 200 replications. A similar adjustment was computed
for iAUC. The difference AUCBP − AUCTP was an estimate of optimism, and averaging
over replications produced a more stable estimate. The average was subtracted from the
AUC value computed on the original sample (AUCAP), which constituted an optimism
penalty. A relatively few replications (i.e., 200) were sufficient, as the average was used
rather than the empirical quantiles required by other bootstrap methods (e.g., a bootstrap
confidence interval).

Appendix. PREDICT-HD Investigators, Coordinators, Motor Raters,
Cognitive Raters

Active: September 2009 – August 2010
Thomas Wassink, MD, Stephen Cross, BA, Nicholas Doucette, BA, Mycah Kimble, BA,
Patricia Ryan, MSW, LISW, MA, Jessica Wood, MD, PhD, Eric A. Epping, MD, PhD, and
Leigh J. Beglinger, PhD (University of Iowa, Iowa City, Iowa, USA);

Edmond Chiu, MD, Olga Yastrubetskaya, PhD, Joy Preston, Anita Goh, D.Psych,
Chathushka Fonseka, and Liz Ronsisvalle (St. Vincent’s Hospital, The University of
Melbourne, Kew, Victoria, Australia);

Phyllis Chua, MD, and Angela Komiti, BS, MA (The University of Melbourne, Royal
Melbourne Hospital, Melbourne, Australia)

Lynn Raymond, MD, PhD, Rachelle Dar Santos, BSc, and Joji Decolongon, MSC, CCRP
(University of British Columbia, Vancouver, British Columbia, Canada);
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Adam Rosenblatt, MD, Christopher A. Ross, MD, PhD, Barnett Shpritz, BS, MA, OD, and
Claire Welsh (Johns Hopkins University, Baltimore, Maryland, USA);

William M. Mallonee, MD, Greg Suter, BA, and Judy Addison (Hereditary Neurological
Disease Centre, Wichita, Kansas, USA);

Ali Samii, MD, and Alma Macaraeg, BS (University of Washington and VA Puget Sound
Health Care System, Seattle, Washington, USA);

Randi Jones, PhD, Cathy Wood-Siverio, MS, Stewart A. Factor, DO, and Claudia Testa,
MD, PhD (Emory University School of Medicine, Atlanta, Georgia, USA);

Roger A. Barker, BA, MBBS, MRCP, Sarah Mason, BSC, Anna Goodman, PhD, Rachel
Swain, BA, and Anna DiPietro (Cambridge Centre for Brain Repair, Cambridge, UK);

Elizabeth McCusker, MD, Jane Griffith, RN, Clement Loy, MD, David Gunn, BS, and
Linda Stewart, RN (Westmead Hospital, Sydney, Australia);

Bernhard G. Landwehrmeyer, MD, Michael Orth MD, PhD, Sigurd Süβmuth, MD, RN,
Katrin Barth, RN, and Sonja Trautmann, RN (University of Ulm, Ulm, Germany);

Kimberly Quaid, PhD, Melissa Wesson, MS, and Joanne Wojcieszek, MD (Indiana
University School of Medicine, Indianapolis, IN);

Mark Guttman, MD, Alanna Sheinberg, BA, and Irita Karmalkar, BSc (Centre for Addiction
and Mental Health, University of Toronto, Markham, Ontario, Canada);

Susan Perlman, MD and Arik Johnson, PsyD (University of California, Los Angeles
Medical Center, Los Angeles, California, USA);

Michael D. Geschwind, MD, PhD, Jon Gooblar, BA, and Gail Kang, MD (University of
California San Francisco, California, USA);

Tom Warner, MD, PhD, Maggie Burrows, RN, BA, Marianne Novak, MD, Thomasin
Andrews, MD, BSC, MRCP, Elisabeth Rosser, MBBS, FRCP, and Sarah Tabrizi, MD, PhD
(National Hospital for Neurology and Neurosurgery, London, UK);

Anne Rosser, MD, PhD, MRCP, Kathy Price, RN, and Sarah Hunt, BSc (Cardiff University,
Cardiff, Wales, UK);

Frederick Marshall, MD, Amy Chesire, LCSW-R, MSG, Mary Wodarski, BA, and Charlyne
Hickey, RN, MS (University of Rochester, Rochester, New York, USA);

Oksana Suchowersky, MD, FRCPC, Sarah Furtado, MD, PhD, FRCPC, and Mary Lou
Klimek, RN, BN, MA (University of Calgary, Calgary, Alberta, Canada);

Peter Panegyres, MB, BS, PhD, Elizabeth Vuletich, BSC, Steve Andrew, and Rachel
Zombor, MPSYC (Neurosciences Unit, Graylands, Selby-Lemnos & Special Care Health
Services, Perth, Australia);

Joel Perlmutter, MD, Stacey Barton, MSW, LCSW, and Amy Schmidt (Washington
University, St. Louis, Missouri, USA);

Zosia Miedzybrodzka, MD, PhD, Sheila A. Simpson, MD, Daniela Rae, RN, and Mariella
D’Alessandro, PhD (Clinical Genetics Centre, Aberdeen, Scotland, UK);
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David Craufurd, MD, Ruth Fullam, BSC, and Elizabeth Howard, MD (University of
Manchester, Manchester, UK);

Pietro Mazzoni, MD, PhD, Karen Marder, MD, MPH, and Paula Wasserman, MA
(Columbia University Medical Center, New York, New York, USA);

Rajeev Kumar, MD and Diane Erickson, RN (Colorado Neurological Institute, Englewood,
Colorado, USA);

Vicki Wheelock, MD, Terry Tempkin, RNC, MSN, Nicole Mans, BA, MS, and Kathleen
Baynes, PhD (University of California Davis, Sacramento, California, USA);

Joseph Jankovic, MD, Christine Hunter, RN, CCRC, and William Ondo, MD (Baylor
College of Medicine, Houston, Texas, USA);

Justo Garcia de Yebenes, MD, Monica Bascunana Garde, Marta Fatas, BA, and Asuncion
Martinez-Descales (Hospital Ramón y Cajal, Madrid, Spain);

Wayne Martin, MD, Pamela King, BScN, RN, and Satwinder Sran, BSC (University of
Alberta, Edmonton, Alberta, Canada);

Anwar Ahmed, PhD, Stephen Rao, PhD, Christine Reece, BS, Janice Zimbelman, PhD, PT,
Alexandra Bea, BA, Emily Newman, BA, and Alex Bura, BA (Cleveland Clinic Foundation,
Cleveland, Ohio, USA).

Steering Committee
Jane Paulsen, PhD, Principal Investigator, Eric A. Epping, MD, PhD, Hans Johnson, PhD,
Megan Smith, PhD, Janet Williams, PhD, RN, FAAN, Leigh Beglinger, PhD, James Mills,
MS (University of Iowa Hospitals and Clinics, Iowa City, IA); Elizabeth Aylward, PhD
(Seattle Children's Research Institute, WA); Kevin Biglan, MD (University of Rochester,
Rochester, NY); Blair Leavitt, MD (University of British Columbia, Vancouver, BC,
Canada); Marcy MacDonald, PhD (Massachusetts General Hospital); Martha Nance, MD
(Hennepin County Medical Center, Minneapolis, MN); and Cheryl Erwin, JD, PhD
(University of Texas Medical School at Houston).

Scientific Sections
Bio Markers: Blair Leavitt, MDCM, FRCPC (Chair) and Michael Hayden, PhD (University
of British Columbia); Stefano DiDonato, MD (Neurological Institute “C. Besta,” Italy); Ken
Evans, PhD (Ontario Cancer Biomarker Network); Wayne Matson, PhD (VA Medical
Center, Bedford, MA); Asa Peterson, MD, PhD (Lund University, Sweden), Sarah Tabrizi,
MD, PhD (National Hospital for Neurology and Neurology and Neurosurgery, London);
Beth Borowsky, PhD (CHDI); Andrew Juhl, BS, James Mills, MS, Kai Wang, PhD
(University of Iowa); and David Weir, BSc (University of British Columbia).

Brain: Jean Paul Vonsattell, PhD (Chair), and Carol Moskowitz, ANP, MS (Columbia
University Medical Center); Anne Leserman, MSW, LISW, Lynn Schaul, BA, and Stacie
Vik, BA (University of Iowa).

Cognitive: Deborah Harrington, PhD (Chair), Gabriel Castillo, BS, Jessica Morison, BS,
and Jason Reed, BS (University of California, San Diego), Michael Diaz, PhD, Ian Dobbins,
PhD, Tamara Hershey, PhD, Erin Foster, OTD, and Deborah Moore, BA (Washington
University Cognitive Science Battery Development); Holly Westervelt, PhD (Chair, Quality
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Control and Training, Alpert Medical School of Brown University), Jennifer Davis, PhD,
and Geoff Tremont, PhD, MS (Scientific Consultants, Alpert Medical School of Brown
University); Megan Smith, PhD (Chair, Administration), David J. Moser, PhD, Leigh J.
Beglinger, PhD, Kelly Rowe, and Danielle Theriault, BS (University of Iowa); Carissa Gehl,
PhD (VA Medical Center, Iowa City, IA); Kirsty Matheson (University of Aberdeen); Karen
Siedlecki, PhD (Fordham University); Marleen Van Walsem (EHDN); Susan Bonner, BA,
Greg Elias, BA, and Melanie Faust, BS (Rhode Island Hospital); Beth Borowski, PhD
(CHDI); Noelle Carlozzi (University of Michigan); Kevin Duff, PhD (University of Utah);
Nellie Georgiou-Karistianis (St. Vincent’s Hospital, The University of Melbourne,
Australia); Julie Stout, PhD (Monash University, Melbourne, Australia); Herwig Lange
(Air-Rahazentrum); and Kate Papp (University of Connecticut).

Functional: Janet Williams, PhD (Chair), Leigh J. Beglinger, PhD, Anne Leserman, MSW,
LISW, Eunyoe Ro, MA, Lee Anna Clark, Nancy Downing, Joan Laing, PhD, Kristine Rees,
BA, and Stacie Vik, BA (University of Iowa); Rebecca Ready, PhD (University of
Massachusetts); Anthony Vaccarino, PhD (Ontario Cancer Biomarker Network); Sarah
Farias, PhD (University of California, Davis); Noelle Carlozzi, PhD (University of
Michigan); and Carissa Gehl, PhD (VA Medical Center, Iowa City, IA).

Genetics: Marcy MacDonald, PhD (Co-Chair), Jim Gusella, PhD, and Rick Myers, PhD
(Massachusetts General Hospital); Michael Hayden, PhD (University of British Columbia);
Tom Wassink, MD (Co-Chair) Eric A. Epping, MD, PhD, Andrew Juhl, BA, James Mills,
MS, and Kai Wang, PhD (University of Iowa); Zosia Miedzybrodzka, MD, PhD (University
of Aberdeen); and Christopher Ross, MD, PhD (Johns Hopkins University).

Imaging: Administrative: Ron Pierson, PhD (Chair), Kathy Jones, BS, Jacquie Marietta,
BS, William McDowell, AA, Greg Harris, BS, Eun Young Kim, MS, Hans Johnson, PhD,
and Thomas Wassink, MD (University of Iowa); John Ashburner, PhD (Functional Imaging
Lab, London); Steve Potkin, MD (University of California, Irvine); and Arthur Toga, PhD
(University of California, Los Angeles). Striatal: Elizabeth Aylward, PhD (Chair, Seattle
Children's Research Institute). Surface Analysis: Eric Axelson, BSE (University of Iowa).
Shape Analysis: Christopher A. Ross (Chair), MD, PhD, Michael Miller, PhD, and Sarah
Reading, MD (Johns Hopkins University); Mirza Faisal Beg, PhD (Simon Fraser
University). DTI: Vincent A. Magnotta, PhD (Chair, University of Iowa); Karl Helmer, PhD
(Massachusetts General Hospital); Kelvin Lim, MD (University of Ulm, Germany); Mark
Lowe, PhD (Cleveland Clinic); Sasumu Mori, PhD (Johns Hopkins University); Allen Song,
PhD (Duke University); and Jessica Turner, PhD (University of California, Irvine). fMRI:
Steve Rao, PhD (Chair), Erik Beall, PhD, Katherine Koenig, PhD, Michael Phillips, MD,
Christine Reece, BS, and Jan Zimbelman, PhD, PT (Cleveland Clinic); and April Bryant
(University of Iowa).

Motor: Kevin Biglan, MD (University of Rochester), Karen Marder, MD (Columbia
University), and Jody Corey-Bloom, MD, PhD (University of California, San Diego) all Co-
Chairs; Michael Geschwind, MD, PhD (University of California, San Francisco); Ralf
Reilmann, MD and Zerka Unds (Muenster, Germany); and Andrew Juhl, BS (University of
Iowa).

Psychiatric: Eric A. Epping, MD, PhD (Chair), Nancy Downing, RN, MSN, Jess
Fiedorowicz, MD, Robert Robinson, MD, Megan Smith, PhD, Leigh Beglinger, PhD, James
Mills, MS, Kristine Rees, BA, Adam Ruggle, Stacie Vik, BA, Janet Williams, PhD, Dawei
Liu, PhD, David Moser, PhD, and Kelly Rowe (University of Iowa); Karen Anderson, MD
(University of Maryland); David Craufurd, MD (University of Manchester); Mark Groves,
MD (Columbia University); Anthony Vaccarino, PhD and Ken Evans, PhD (Ontario Cancer
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Biomarker Network); Hugh Rickards, MD (Queen Elizabeth Psychiatric Hospital); Eric van
Duijn, MD (Leiden University Medical Center, Netherlands); Irina Antonijevic, MD, PhD,
and Joseph Giuliano (CHDI); Phyllis Chua (The University of Melbourne, Royal Melbourne
Hospital); and Kimberly Quaid, PhD (Indiana University School of Medicine).

Core Sections
Statistics: James Mills, MEd, MS, Dawei Liu, PhD, Jeffrey Long, PhD, Wenjing Lu, Kai
Wang, PhD, and Ying Zhang, PhD (University of Iowa).

Recruitment/Retention: Martha Nance, MD (Chair, University of Minnesota); Anne
Leserman, MSW, LISW, Nicholas Doucette, BA, Mycah Kimble, BA, Patricia Ryan, MSW,
LISW, MA, Kelli Thumma, BA, Elijah Waterman, BA, and Jeremy Hinkel, BA (University
of Iowa).

Ethics: Cheryl Erwin, JD, PhD, (Chair, McGovern Center for Health, Humanities and the
Human Spirit); Eric A. Epping, MD, PhD Janet Williams, PhD, Nicholas Doucette, BA,
Anne Leserman, MSW, LISW, James Mills, MS, Lynn Schaul, BA, and Stacie Vik, BA
(University of Iowa); Martha Nance, MD (University of Minnesota); and Lisa Hughes, MEd
(University of Texas Medical School at Houston).

IT/Management: Hans Johnson, PhD (Chair), R.J. Connell, BS, Karen Pease, BS, Ben
Rogers, BA, BSCS, Jim Smith, AS, Shuhua Wu, MCS, Roland Zschiegner, Erin Carney,
Bill McKirgan, Mark Scully, and Ryan Wyse (University of Iowa); Jeremy Bockholt
(AMBIGroup).

Program Management
Administrative: Chris Werling-Witkoske (Chair), Karla Anderson, BS, Kristine Bjork, BA,
Ann Dudler, Jamy Schumacher, Sean Thompson, BA, Leann Davis, Machelle Henneberry,
Greg Ennis, MA, and Stacie Vik, BA (University of Iowa).
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Figure 1.
AUC as a function of duration using CAPs as the baseline predictor. Unadjusted AUC is
depicted by a solid line, and bootstrap-adjusted AUC is depicted by a dashed line.
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FIG. 2.
Hypothesized diagram for HD progression.
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Table I

Parameter estimates, standard errors (SEs), and 95% confidence intervals (CIs) for the model of Equation (3).

Parameter Estimatea SE 95% CI

α 4.4196 0.3364 3.7602, 5.0790

β −0.0065 0.0007 −0.0079, −0.0051

C −33.6600 0.7046 −35.0409, −32.2790

log(σ) −0.8451 0.0710 −0.9843, −0.7060

a
p < 0.0001 for all estimates.
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