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Midbrain dopamine neurons signal reward value, their prediction
error, and the salience of events. If they play a critical role in
achieving specific distant goals, long-term future rewards should
also be encoded as suggested in reinforcement learning theories.
Here, we address this experimentally untested issue. We recorded
185 dopamine neurons in three monkeys that performed a multi-
step choice task in which they explored a reward target among
alternatives and then exploited that knowledge to receive one or
two additional rewards by choosing the same target in a set of
subsequent trials. An analysis of anticipatory licking for reward
water indicated that the monkeys did not anticipate an immedi-
ately expected reward in individual trials; rather, they anticipated
the sum of immediate and multiple future rewards. In accordance
with this behavioral observation, the dopamine responses to the
start cues and reinforcer beeps reflected the expected values of
the multiple future rewards and their errors, respectively. More
specifically, when monkeys learned the multistep choice task over
the course of several weeks, the responses of dopamine neurons
encoded the sum of the immediate and expected multiple future
rewards. The dopamine responses were quantitatively predicted by
theoretical descriptions of the value function with time discounting
in reinforcement learning. These findings demonstrate that dopa-
mine neurons learn to encode the long-term value of multiple fu-
ture rewards with distant rewards discounted.
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Suppose you try to win a tennis match. If you are an experienced
player, you may plan long-term tactics for six-game sets that

maximize your concentration and effort in themost critical games,
usually in the middle of the set, to maintain an advantage over
your opponent and reserve your resources for the other games of
the set and match. On the contrary, if you are a beginner, you will
probably just concentrate on winning each single game and will be
exhausted halfway through the match. Therefore, assigning long-
term reward values for individual actions is a learned intelligence
for the successful achievement of distant goals.
Reinforcement learning theories propose an algorithm for

subjects to learn to take actions that are most likely to yield
maximum amount of total future rewards (1). For long-term
judgment, a “value” is assigned to the current state of the subjects
as an expected total future rewards, where kth future reward is
discounted by γk. Here, γ is a discount factor between 0 and 1 that
weights the relative contribution of future rewards to value. The
values of the current and the subsequent states are linked through
temporal difference (TD) error, in such a manner as follows:

Current TD error ¼ current rewardþ γ$value of next state
− value of current state

[1]

Dopamine neurons convey the reward value signals of external
events (2–4), their expectation errors (2, 3, 5–8), and signals of

the motivational salience of external stimuli (5, 9, 10). The dis-
counted value of a single reward that is expected after some delay
is represented by neuronal activity in the cerebral cortex (11–13)
and dopamine neurons (14, 15) in rodents and primates, and, as
shown with functional brain imaging, in the cerebral cortex and
striatum in humans (16, 17). It is also reported that the activity of
target neurons of dopamine signals in the striatum represent the
reward values of action options (18, 19) and chosen actions (19,
20) during behavioral tasks in which experimental animals learn
to choose options with a higher reward probability on a trial-and-
error basis and to keep choosing the option even if those choices
sometimes lead to no reward. Therefore, an important question
is the extent to which the dopamine neurons represent the TD
error of multistep choices for rewards. Previous studies examined
dopamine neuron activity by using classical and instrumental
conditioning tasks for a single reward (2, 3, 8, 10, 21, 22). Some
studies used multistep choice paradigms in which the subject’s
estimated reward is based on the histories of actions and out-
comes (4–7, 15, 23, 24). However, none of these studies have
examined whether and how dopamine neurons encode the TD
error signals in multistep tasks for multiple future rewards.
To address this issue, we recorded the dopamine neuron ac-

tivity of monkeys performing a multistep choice task as a model of
the achievement of a distant goal in the natural environment
(Fig. 1A). The monkeys first explored a set of three targets to find
the rewarding one and then exploited this knowledge to receive
one (i.e., two-step choice task) or two (i.e., three-step choice task)
additional rewards by choosing the same target (Fig. 1B). During
the exploration trials, the average reward probability (correct
choice rate) increased from approximately 20% for the first
choice (N1) to 50% for the second choice (N2) and to approxi-
mately 80% for the third choice (N3). During the exploitation
trials (R1 and R2), the probability was almost 100% because the
monkeys simply repeated the last rewarded choices (Fig. 1C).
Thus, the monkeys obtained a total of two or three rewards by
searching for and choosing a single target in a set of several trials.
The next set was restarted following an interposed resetting signal
(SI Text). We recorded dopamine neuron activity before and after
monkeys learned the multistep choice task over several weeks,
and examined whether the dopamine responses represent TD
errors through learning.
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Results
Reward Expectation During Multistep Choices for Rewards. To ex-
amine the monkey’s reward expectation during individual trials
of the multistep choice task, we recorded the anticipatory licking
that preceded the reinforcer beeps for reward (Fig. 2A) as a be-
havioral measure in monkeys BT and CC (2, 10, 22). A previous
study in our laboratory showed that the start cue responses of
dopamine neurons vary in parallel with the latency of the mon-
key’s start cue-evoked behavioral responses (5). The start cue
reaction times in the present study, however, did not reflect the
expected multiple future values, and the reaction times during
the first choice (N1) were longer than the other trial types. In-
stead, during the exploration trials, the monkeys made longer
and more frequent anticipatory lickings when the reward prob-
ability of the trials became higher (N1, 30%; N2, 48%; and N3,
79% in monkey BT; N1, 20%; N2, 47%; and N3, 75% in monkey
CC). If the monkeys chose a target followed by no reward in
the N2 trials, they might be aware that the remaining one would
be a rewarding target. In this sense, the N3 trials were different
from the other exploratory N1 and N2 trials. However, the

monkeys chose a rewarding target in the N3 trials at much lower
probabilities (75–90%) than 100%. Thus, we categorized the N3
trials as exploration trials.
Remarkably, anticipatory licks occurred for a shorter time and

less frequently during the exploitation trials (R1 and R2) than
during exploration trials (N1, N2, and N3), even though the re-
ward probability was almost 100% (Tukey–Kramer test, P < 0.05
for N1 vs. N3 trials; P < 0.05 for N3 vs. R1 trials in monkey BT;
P < 0.01 in all cases except between trials N1 and R2, N2 and N3,
and R1 and R2 in monkey CC; Fig. 2 B and C). Therefore, there
was a large discrepancy between the magnitude of anticipatory
licking and the probability of immediate reward (Fig. 2C). Why
did anticipatory lickings decrease during the exploitation trials?
One possibility was that the monkeys expected not only the im-
mediate reward but also the distant rewards to be obtained
within the next few trials. Monkey BT may have expected two
rewards, and monkey CC may have expected three rewards from
the beginning of the exploration trials, an immediate reward
during the N1, N2, or N3 trials, and distant rewards during the
exploitation trials. When the first reward had been obtained in
an exploration trial, the monkeys would expect the one or two
rewards that remained in the exploitation trials.
To test this possibility parametrically, we estimated the aver-

age duration of anticipatory licking by using the “value function”
of reinforcement learning theories (1, 8, 21), which defines the
value of the current state as the sum of the expected future
rewards discounted by the number of trials required to obtain
them (SI Text). The discount factors were estimated to maximize
the correlation coefficient (R) between the simulated value
function and the normalized licking duration (Fig. 2D). We used
second derivatives of R to examine how quickly the fit decreases
around the γ-value that gave the best fit (SI Text). The black
superimposed lines in Fig. 2C show the estimated value func-
tions, which accurately approximated the normalized average
durations of anticipatory licking in both monkeys (γ = 0.65 for
monkey BT, γ = 0.66 for monkey CC). These results suggested
that the monkeys made individual choices while expecting the
sum of immediate and future rewards rather than expecting the
immediately available rewards alone (other possibilities are de-
tailed in SI Text).

Dopamine Neurons Encode Long-Term Reward Value as Expected Sum
of Future Rewards. We recorded a total of 185 dopamine neurons
in the substantia nigra pars compacta (SNc) and ventral teg-
mental area (VTA) of the three monkeys (Fig. S1). The activities
of 51 of these neurons were examined under three-step choices

Fig. 1. Behavioral paradigms of multistep actions for rewards in monkeys.
(A) Sequence of events during the multistep choice task. (B) Schematically il-
lustrated structure of the three-step choice trials to obtain three rewards at
different times. (C) Average correct choice rates (mean and SD, 29 d in monkey
SK and 35 d in monkey CC, during the advanced stage of learning) against five
types of three-step choice trials (N1, N2, N3, R1, and R2) in two monkeys.

Fig. 2. Reward expectation during multistep actions
measured by anticipatory licking. (A) The anticipatory lick-
ing movements for the 800-ms period before the reinforcer
beeps (SI Text) in monkey CC are color-coded. (B) The av-
erage proportion of trials in which the amplitude of an-
ticipatory licking exceeded the threshold (50% maximum)
is plotted against the time to the reinforcer beeps in the
two monkeys. (C) Bar graphs of the normalized licking
duration (100–800 ms period before the beeps, mean and
SEM; 32 sessions in monkey BT and 75 sessions in monkey
CC; SI Text) against trial type. The average reward proba-
bility (dashed green line) and the best-fit value function
derived from reinforcement learning algorithm (solid
black line, γ = 0.65, R = 0.71, P = 0.29 in monkey BT; γ = 0.66,
R = 0.74, P = 0.16 in monkey CC) are superimposed. (D) The
parameter space landscape of correlation coefficients be-
tween the experimental and simulated licking duration
in which R is plotted against γ. The values of the second
derivatives of R are −27 for monkey BT and −6.1 for
monkey CC.
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for three rewards in monkeys SK and CC (Table S1). The neu-
rons responded to the start cue of individual trials with brief
increases in discharges above the baseline rate of four to five
spikes per second, as shown in the activity of an example neuron
presented in Fig. 3A. Average responses of the 25 dopamine
neurons in monkey CC and 26 neurons in monkey SK became
gradually larger from the N1 to N2 and N3 trials for the first
immediate reward, in parallel with the increase in the reward
probability of the trial (Fig. 3 B and C). In contrast, responses
during the R1 and R2 trials for the second and third rewards
were much smaller than the responses that would have reflected
the high reward probabilities during these trials. Responses in
the N3 trials were significantly greater than the responses in all
the other trials (Tukey–Kramer test, P < 0.01 in monkey CC and
P < 0.05 in monkey SK), which made an inverted “V” shape in
the reward probability–dopamine response plot. Because antic-
ipatory licking during the multistep choice task suggested that
the monkeys may have anticipated the sum of the immediate and
the future rewards from the beginning of a series of choices (Fig.
2), the dopamine responses may have reflected this anticipation.

To validate this hypothesis, we examined the magnitude of the
dopamine responses by using the value function of reinforcement
learning theories as the sum of the expected multiple future
rewards (volume × probability) discounted by the number of
future steps to obtain them in monkeys CC and SK (Fig. 3 B, C,
and E). We also manipulated the number and magnitude of the
future rewards to test the value function (i.e., TD) model of
dopamine responses. Both monkeys obtained one reward during
the exploration trials. During the subsequent exploitation trials,
there were two rewards for monkey CC and one or two rewards
for monkey SK. When the total number of rewards was reduced
from three to two with a fixed amount in monkey SK, the do-
pamine responses in the R1 trials were still much lower than the
responses for the first reward in the N3 trial (Mann–Whitney U
test, P < 0.001; Fig. 3D). The magnitudes of dopamine responses
were accurately approximated by the estimated value functions
during both conditions (Fig. 3 C and D). The volumes of the
three rewards (one during exploration and two during exploita-
tion trials) were fixed for monkey CC (0.35 mL), but the volume
of the distant rewards (R1 and R2, 0.2 mL) was smaller than that
for the immediate rewards (N1, N2, and N3, 0.35 mL) in monkey
SK. Our hypothesis was that the discount factor might be smaller
when the volume of distant rewards was reduced. Indeed, the
discount factor was smaller when the distant reward was reduced
(γ = 0.31; Fig. 3C) than when it was fixed (γ = 0.68; Fig. 3D). In
monkey CC, the neuronal discount factor (γ = 0.65) was almost
identical to the behavioral discount factor that was estimated by
the anticipatory licking (γ = 0.66; Fig. 2C, Right; licking was not
measured in monkey SK), which indicated that the dopamine
responses may faithfully represent the expectation of long-term
multiple rewards. In support, there was a large discrepancy be-
tween the dopamine responses and the probability of immediate
reward (i.e., value function with γ of 0.00; Fig. 3B, dashed line).
It is also notable that the correlation coefficients between value
function and dopamine neuron firing sharply decreased around
the estimated γ-value (Fig. 3E), indicating stable and reliable
estimation of γ.
In monkeys BT and CC, we examined the dopamine neuron

responses to conditioning stimuli (CSs) under a classical condi-
tioning paradigm (Fig. S5A) in which the CSs that signaled dif-
ferent reward probabilities appeared in an unpredictable order.
This paradigm does not distinguish single-step from cumulative
coding because the trials are independent. Both anticipatory
licking (Fig. S5B) and the magnitude of the dopamine responses
to the CSs (Fig. S5 C and D) faithfully represented the single
reward value that was assigned to the stimuli.

Dopamine Neurons “Learn” to Encode Long-Term Reward Expecta-
tion During Multistep Choices for Rewards. Although the encoding
of the long-term value of a series of actions is a key component
process for achieving distant goals on a trial-and-error basis, it is
unlikely that dopamine neurons have this ability without experi-
ences. To examine whether the dopamine responses are estab-
lished through learning, we studied responsiveness of dopamine
neurons whenmonkeys learned the multistep choice paradigm for
multiple rewards over a period of several weeks. We recorded the
activities of 76 dopamine neurons (51 neurons from monkey SK
and 25 neurons from monkey CC) over the course of learning the
three-step choices among three alternatives. Before learning, the
monkeys had mastered a simple version of the multistep choices:
three rewards through three-step choices between two alter-
natives. Then, they started to learn the upgraded version to obtain
the first of three rewards by searching for a rewarding target
among three alternatives. The correct choice rate during the N3
trials increased day by day in both monkeys (Fig. 4A), but the
correct choice rates in the other trials were stable over the course
of learning (Fig. S6). The slow change in the correct choice rate
during the N3 trials may result from the process of adaptively
switching the task strategy. First, the monkeys were required to
discard the simple strategy of choosing a different target from the
last-tried unrewarded one and choosing the same target as the
last-tried rewarded one that had been appropriate for the pre-
vious task of three-step choices between two alternatives. Then,

Fig. 3. Dopamine neurons encode long-term value as a sum of expected
future rewards. (A) Example responses of a dopamine neuron to the illumi-
nation of the start cues in individual trials of the three-step choice task in
monkey CC. The bin size of the spike density histogram is 15ms. Hatched areas
are the time windows for the analyses shown in B. (B) Bar graphs of ensemble
average of dopamine responses (mean and SEM) above the baseline in
monkey CC during the time windows (50–290 ms after the start cue) shown in
A. The best-fit value functions (γ = 0.65, R = 0.71, P = 0.18, solid line) and re-
ward probability of trials (γ = 0.00, R = 0.29, P = 0.68, dashed line) are
superimposed. The numbers in parentheses represent the reward probability
for the given trial type. (C) Same as in B but for monkey SK (40–240 ms after
the start cue). The best-fit value function (γ = 0.31, R = 0.99, P < 0.01) is
superimposed (Fig. S2B). (D) Same as in B but for monkey SK (70–260 ms after
the start cue) in the two-step choice task with a fixed amount of reward. The
best-fit value function is superimposed (γ = 0.68, R = 0.71, P = 0.29). (E) Plots of
the parameter space landscape of correlation coefficients. The value of sec-
ond derivative of R is −5.8 for monkey CC, −2.2 for monkey SK in the three-
step choice task, and −36 for monkey SK in the two-step choice task.
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they needed to acquire a new strategy to estimate the value of
three options while updating these values based on the previously
tried N1 and N2 trials and their outcomes (i.e., reward history),
and to choose the highest-value option.
For convenience, the learning process was divided into two

stages, an early stage and a later, advanced stage when the cor-
rect choice rate in the N3 trials was greater than 80% of the
highest stable rate (100% in monkey SK, 84% in monkey CC) for
five consecutive days. The early stage comprised days 1 through
22 in monkey SK and days 1 through 26 in monkey CC. The
advanced stage comprised days 23 through 51 in monkey SK and
days 27 through 61 in monkey CC. The durations of anticipatory
licking in the early stage were not significantly different among
the five trial types (Tukey–Kramer test, P > 0.47 in all cases; Fig.
4B, Left), but there was a tendency for longer licking durations
in the trials with higher reward probabilities (i.e., during the
exploitation trials R1 and R2). During the advanced stage, in
contrast, the longest anticipatory licking occurred during the N3
trials, and the licking duration was much shorter during all the
other trials, especially in the R1 and R2 trials (Tukey–Kramer
test, P < 0.05 for N3 vs. all other trial types; Fig. 4B, Right). This
indicated that the monkeys had already acquired an explicit idea
not only about the probabilities of the first, immediate reward
but also about the distant two rewards.
The responses of dopamine neurons evolved over the course

of learning. In the early stage, the start cue responses were small
in most trials, as shown in the activity of an example neuron
recorded on day 12 of learning in monkey SK (Fig. 4C, Left, and
Fig. S2A) and the average activity of 25 neurons recorded during
the early stage (Fig. 4E). Although the responses during the first
choice (N1) tended to be small, there were no significant dif-
ferences among any of the trial types (Tukey–Kramer test, P >
0.05). In the advanced stage, dopamine neurons showed strong
responses in the N3 trials compared with the responses in the
other trial types, which resulted in an inverted V-shape distri-
bution, as shown in the activity of an example neuron recorded
on day 26 of learning in monkey SK (Fig. 4C, Right, and Fig. S2B;
Fig. 3C shows population data). The dopamine responses of two
example neurons in the early and advanced stages were accu-
rately approximated by the value functions with small (γ = 0.04)
and large (γ = 0.38) discount factors, respectively (Fig. 4 C and

D). The average responses of 25 neurons during the early stage
were also approximated with a smaller discount factor (γ = 0.00;
Fig. 4E) than during the advanced stage (γ = 0.31; Fig. 3C). The
dopamine neuron responses during the advanced stage were
characterized by larger responses for the first, immediate reward
in the N2 and N3 trials compared with the responses for the
second and third rewards in the R1 and R2 trials. This result
favored “active” mechanisms that have evolved to encode long-
term values over “passive” processes (i.e., a lowered enthusiasm
for the search for reward or habituation during the exploitation
trials). Therefore, the dopamine neurons learned to encode the
long-term value of not only the expected immediate reward but
also the distant rewards, as the monkeys learned the multistep
choice paradigm for rewards.
On the contrary, in the early stage of learning, the monkeys

may be uncertain about the nature of the sequence of the trials,
the long-term schedule, and where they were in the sequence
because of the limited experience. Because these factors reflect
an internal state, the monkeys appeared to pay attention to the
current choices but paid much less attention to future trials during
the early stages. Thus, the fact that dopamine responses during
early and advanced stages of learning were accurately approxi-
mated by value functions with small and large discount factors
does not necessarily reflect adaptive change of encoding time
scale. Through the process of learning, the monkeys may also
have developed an action policy to accomplish the multitrial
choices for long-term rewards and valuation of the long-term
rewards. However, the inverted V-shape distribution of the start
cue responses in well learned monkeys (Figs. 3 and 4) must have
evolved through the learning of the discounted sum of the mul-
tiple future rewards rather than through action policy learning.

Dopamine Neuron Coding of Prediction Error of Immediate and
Future Rewards. A considerable subset of dopamine neurons (16
of 25 neurons during the early stage, 21 of 26 neurons during the
advanced stage in monkey SK, and 25 of 25 neurons during the
advanced stage in monkey CC) also responded to reinforcer beep
sounds after rewarding and nonrewarding choices with increased
and decreased discharge rates, respectively (Fig. S3 A and B). At
the time of the beeps (i.e., conditioned reinforcers) that followed
individual choices, the error of reward prediction could be

Fig. 4. Development of value coding
by dopamine neurons through learning.
(A) The adaptive increase in the correct
choice rate in N3 trials through the
learning of the three-step choice task
for 51 to 61 d. The advanced stage of
learning (correct choice rate > 0.8) is in-
dicated by shading. (B) Bar graphs of the
average duration of anticipatory licking
on day 10 (early stage) and day 37 (ad-
vanced stage) of learning in monkey CC
(mean and SEM, solid arrows in A). The
best-fit value functions in the early stage
(γ = 0.05, R = 0.90, P < 0.05) and in the
advanced stage (γ = 0.73, R = 0.69, P =
0.20) are superimposed. (C) Bar graphs
of start cue responses of an example
neuron recorded on day 12 (early stage)
and of another neuron on day 29 (ad-
vanced stage) in monkey SK (dashed
arrows in A). Superimposed line plots are
the best-fit value functions (γ = 0.04, R =
0.83, P = 0.08, day 12; γ = 0.38, R = 0.91,
P < 0.05, day 29). (D) Plots of the pa-
rameter space landscape of correlation
coefficients of the data in C. The values
of second derivatives of R are −1.7 dur-
ing the early stage and −3.0 during the
advanced stage. (E) Bar graphs of ensemble average responses of 25 dopamine neurons (mean and SEM). Superimposed plots show the best-fit value function
(γ = 0.00, R = 0.72, P = 0.18). Ensemble average responses during the advanced stage are shown in Fig. 3 B and C.
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assessed. An important issue here was examining whether the
magnitude of these responses represented the errors in the pre-
diction of the sum of the immediate and distant rewards or the
errors in the prediction of only the single, immediate rewards.
The dopamine responses to positive reinforcers during the early
stage of learning were fitted with a very small discount factor (γ=
0.00; Fig. S3C, Left; monkey SK), whereas those during the ad-
vanced stage were fitted with larger discount factors [γ = 0.31
(Fig. S3C, Right) for monkey SK; γ= 0.65 (Fig. S3D) for monkey
CC]. These results are consistent with the hypothesis that the
responses of dopamine neurons encode prediction errors of the
sum of the immediate and distant rewards during the advanced
stage through learning. Although dopamine neurons encoded the
TD error fairly well (R= 0.90, P < 0.05) during the early stage of
learning, it was more precise (R = 0.98, P < 0.01 in monkey SK;
and R= 0.99, P < 0.01 in monkey CC) and had a larger gain (i.e.,
stronger discharges at the same level of error, such as in the N1
trials) during the advanced stage.
Dopamine neurons exhibited decreased discharge rates after

negative reinforcers (17 of 25 neurons during the early stage, 14 of
26 neurons during the advanced stage in monkey SK, and 16 of 25
neurons during the advanced stage in monkey CC). The magni-
tudes of the responses in the N1, N2, and N3 trials monotonically
developed with the increase in the reward probability of trials
during the early and advanced stages in monkey SK, which was
consistent with the encoding of negative reward prediction errors
(Fig. S3E). The average responses in the R1 and R2 trials were
not reliably estimated because of the small number of trials.

Discussion
In the present study, we provided direct evidence that dopamine
neurons learn to encode the value of a series of actions as an
expected sum of immediate reward and future discounted re-
wards, and its error, which were both parametrically estimated as
the TD error in reinforcement learning theories. When values
are fully learned, TD error at the trial start cue equals to the
value of the cue for the next state, given that the value of the
current state is zero (21). Although this has been postulated in
theories, most previous studies on dopamine neurons used be-
havioral paradigms for a single reward. Experiments that used a
multistep choice paradigm for rewards in collaboration with
computational modeling allowed us to demonstrate the TD error
coding by dopamine neurons. When monkeys expected the small
magnitude of distant rewards in the advanced stage of learning,
neuronal discount factor was smaller than when fixed amount
of rewards were expected. Thus, the dopamine signals may play
a role as a critical underlying component of intelligence by which
humans and animals choose options that are expected to yield
a large accumulation of rewards through the course of future
works rather than adopt short-sighted action policies to work for
an immediate reward (25, 26).

Value Coding of Single Reward with Delays and Sum of Expected
Multiple Future Rewards. Previous studies have shown that the
discounted value of a single delayed reward is represented by
behavioral responses (27, 28) and neuronal activity (11, 12, 14, 15,
22) as a hyperbolic function (14, 29). A human imaging study (16)
examined brain areas for reward prediction using different time
scales in a Markov decision task that used a computational model-
based regression analysis. They showed graded maps of time
scales within the insula and the striatum; ventral parts of the
anterior regions were involved in the prediction of immediate
rewards (γ = 0), and dorsal parts of the posterior regions were
involved in the prediction of future rewards (γ = 0.99). The ex-
tremely large and small discount factors are in contrast to those in
the present study (0.00 < γ < 0.73). However, the time discounting
of the expected values may depend critically on the behavioral
context, and therefore on the behavioral tasks used, such as trial-
based discounting as performed in the present study and time-
based discounting as used in the previous work (16). In our
multistep choice task, the value discounting of the summed future
rewards should extend until the end of the exploitation trials.
However, we think it is significant that the discount factor that was

estimated from the monkey’s anticipatory licking for the expec-
tation of reward was almost the same as the discount factor that
was estimated from the dopamine neuron response in the same
monkey (γ = 0.66 and γ = 0.65, respectively, in monkey CC).
The temporal discounting in neuronal value coding may be

especially useful for the valuation and economic choices of the
reward events expected with short (e.g., within a few seconds)
and variable delays (22). An abnormal bias toward a small, im-
mediate reward in humans and animals, called impulsivity, has
been reported to result from impairments of dopamine and re-
inforcement processes that mediate the effects of the immediate
and delayed rewards (30–33). In contrast, the dopamine neuron
coding for the sum of expected multiple future rewards may
serve as an important brain mechanism that is involved in pursuit
of unseen distant goals by the assignment of values to individual
actions and, thus, the solving of temporal credit assignment
problems in reinforcement learning theories (1, 21). In this case,
the dopamine neuron coding may play crucial roles in the valu-
ation of a chain of reward events that is expected over a longer
time scale, such as several tens of minutes and hours (e.g., for
a tennis match), several days and months (e.g., in a prediction of
stock price changes), and even years (e.g., in life planning).
Dopamine neurons were previously shown to summate over

multiple bouts of reward that are separated by a short delay and
correctly treat these bouts as larger than a single reward (15).
However, this does not fully account for the core prediction of
reinforcement learning theory (i.e., the expected sum of future
discounted rewards) that is tested in the present study. Most
previous studies used TD learning models with exponential dis-
counting, except for one recent work (34) that tried a hyperbol-
ically discounted TD learning model. We used a standard TD
model with exponential discounting because it can describe the
learning recursively in a simple way. However, it would be an
interesting future study to see which of the two models better fits
the behavioral and dopamine neuron responses.
Previous studies have shown that dopamine neurons signal the

occurrence of salient events for visually cued reward schedules
(24) and the preference for advance information about upcoming
rewards (23). A previous study in our laboratory suggested that, in
monkeys, the responses of dopamine neurons to task start cues
may be related to their motivation to work for the reward (5),
based on the observation that the neuronal responses were neg-
atively correlated with the task start times of individual trials
under the same reward probability. However, it was not clear
whether the dopamine neuron coding of motivation was based on
an immediately expected reward or the sum of immediate and
future rewards. The present study extended the previous study
by finding that the behavioral coding estimated by anticipatory
licking and the dopamine neuron coding of the value encompass
the expected sum of immediate and future rewards. Furthermore,
in the classical conditioning task, when the long-term expectation
of multiple future rewards was not possible, dopamine neuron
activities encoded the value of CSs in current trials. Therefore,
our findings have directly demonstrated that dopamine neurons
signal the sum of immediately expected reward and future, dis-
counted rewards depending on the behavioral contexts.
A question arises regarding why the information about the sum

of future rewards is coded at the start cue even if it is available
at the time of the previous outcome. Indeed, the dopamine re-
sponses to action outcomes represented the prediction error of
summed future rewards (Fig. S3). However, the responses of do-
pamine neurons to the task start cue signaled the sum of multiple
future rewards. There are probably multiple potential reasons
that explain the coding of the expected long-run value signal at the
start of trials in the context of our behavioral task. Temporal un-
certainty may play a significant role. The time intervals between
the previous outcome and the start cue of the current trials were
substantial, and they were not fixed, but varied considerably, be-
tween 6.5 s and 8.5 s. This prevented the monkeys from predicting
the precise timing of the start cue. Moreover, measurements of
anticipatory lickings after the start cue (Fig. 2) suggested that
monkeys used the information about the sum of future rewards
that they had obtained from the previous outcome to perform the
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current choice. It would be helpful to signal the occurrence of
the start cue of individual trials for the goal-directed behavior.
This view is consistent with previous results that showed that the
start cue responses of dopamine neurons are modulated by the
“previous outcomes” (6, 7). Nevertheless, in the multistep choice
paradigm of the present study, response magnitudes of the first
exploitation (R1) trials were not different depending on how the
first reward was obtained during the exploration trials; rewarded
at the first exploration trial (N1), after one exploration trial with-
out reward (N2), and after two exploration trials without reward
(N3). Two-way ANOVA considering the last rewarded trial (N1,
N2, and N3) and the index of neurons in our data set revealed
no significant main effect of the last trial type [F(2,1157) = 2.15;
P= 0.12 in monkey CC; F(2,1111) = 2.53, P= 0.08 in monkey SK
in the three-step choice task]. This supported our results that the
prediction of future rewards is the driving force of the inverted V-
shape distribution of dopamine responses rather than the post-
dictive evaluation of past rewards.

Value Coding and Uncertainty of Reward and Decision. We quanti-
tatively examined the possible involvement of uncertainty of re-
ward availability (2). Because the maximum neuronal responses in
the N3 trials occurred at reward probabilities much higher than
50% in the two monkeys that participated in the three-step choice
task (75% in monkey CC and 90% in monkey SK; Fig. 1C), it is
unlikely that uncertainty was amajor determinant of the dopamine
responses in our multistep choice paradigms. Even when reward
uncertainty was greatly reduced in a control task in which monkeys
were instructed which a single target to choose (Fig. S4A), the
maximum responses in theN3 trials did not undergo any significant
changes despite almost 100% reward probability (Mann–Whitney
U test, P = 0.89; Fig. S4B). In addition, anticipatory, tonic in-
creases in firing until the potential time of a probabilistic reward,
which was previously reported to represent reward uncertainty (2),
was not observed in the classical conditioning paradigm during the
delay period between the CS presentation and the occurrence of
reinforcer (Fig. S5E). One possible explanation for this discrep-
ancy may be the differences in behavioral conditioning: in our
paradigm, themonkeys depressed the “hold” button before the CS
was presented, but in the previous report (2), the monkeys were

conditioned in a standard classical conditioning paradigm without
arm movement (SI Text explains another possibility).

Methods
The experiments were approved by the Animal Care and Use Committee
of the Kyoto Prefectural University of Medicine and were in accordance with
the National Institutes of Health Guide for the Care and Use of Labora-
tory Animals.

Three Japanese monkeys sat in a primate chair. They made multistep
choices for rewards (Fig. 1A). The monkeys depressed a start button after it
was illuminated. Then, three target buttons were simultaneously turned on,
followed by the “go” stimulus after a short delay. The monkeys released the
start button and depressed one of the three target buttons. If the chosen
target was a rewarding one, a high-pitched beep sounded as a positive re-
inforcer and a drop of reward water was delivered; if the target was not
a rewarding one, a low-pitched tone (a negative reinforcer) sounded and no
reward was given. When the monkeys had hit a rewarding button, they
could obtain one (two-step choice task) or two (three-step choice task) ad-
ditional rewards by repeatedly choosing the same button as in the last trial.
Therefore, the monkeys made a series of choices. The first choice explored
among three alternatives in a trial-and-error manner; then, this knowledge
was exploited for one (monkey BT) or two (monkeys CC and SK) more re-
wards (Fig. 1B). This instrumental, reward-pursuing choice task mimics
somewhat the natural foraging behavior of monkeys.

We examined whether and how the responses of dopamine neurons to
the start cue and the magnitude of anticipatory licking represented future
reward values by estimating the value function of reinforcement learning
theories as the sum of immediate and expected multiple future rewards
discounted by the number of steps to obtain them (further details are
provided in SI Text).
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