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Spontaneous directed motion, a hallmark of cell biology, is unusual
in classical statistical physics. Here we study, using both numerical
and analytical methods, organized motion in models of the cytos-
keleton in which constituents are driven by energy-consuming mo-
tors. Although systems driven by small-step motors are described
by an effective temperature and are thus quiescent, at higher order
in step size, both homogeneous and inhomogeneous, flowing and
oscillating behavior emerges. Motors that respond with a negative
susceptibility to imposed forces lead to an apparent negative-
temperature system in which beautiful structures form resembling
the asters seen in cell division.

nonequilibrium structures | symmetry breaking | emergent phenomenon |
soft condensed matter

pontaneous directed motion driven by active processes is cru-

cial to biology. Such motion is only possible because the cell is
a far-from-equilibrium many-body system. The cytoskeleton of
eukaryotic cells is built, maintained, and adaptively reorganized
through active transport and force generation powered by ATP
hydrolysis. Oscillations of the mitotic spindle during cell division
(1) and cytoplasmic streaming (2) dramatically illustrate that the
cell is not at equilibrium. Driven motions of cells are also impor-
tant at higher levels of organization in living things ranging from
mechanosensation (3) to the developmental processes in which
the genetic code unfolds to create a multicellar organism (4).
Sustained spontaneous collective motion is quite remarkable in
many-body physics. Superfluidity and superconductivity are ex-
amples of metastable states of motion made possible by quantum
statistics. The biological example provided by the cytoskeleton is
seemingly quite different, leading not to infinitely long-lived
states but to ones that go away when the cell is depleted of fuel
and dies. Nevertheless, like the quantum examples, the motion of
the cytoskeleton is an emergent many-body phenomenon reflect-
ing broken symmetries.

Here we explore the origin of spontaneous collective motion
for systems of many interacting biomacromolecules with motor-
driven active processes using a systematic perturbative expansion
of the many-body master equation treating nonequilibrium
motorized processes. We model the motors as generating a time
series of isotropic kicks on the constituents of a many-body
assembly. Earlier (5) we showed that quite generally the corre-
sponding master equation, when expanded to the lowest order
in the kick step size, yields an effective temperature, T, which
explicitly depends on the total motor activity and on the way in
which motors respond to imposed forces. A system described by
an effective temperature alone (6-8) cannot undergo sponta-
neous directed motion unless it is quantum mechanical so that
spatial and momentum degrees of freedom are coupled by the
uncertainty principle. Pursuing the expansion to higher order,
however, reveals the possible emergence of spontaneous directed
collective motion quite generally from a quiescent homogeneous
state, albeit one with rigidity owing to broken translational sym-
metry, as in a glass. The underlying dynamic instability is induced
by a sufficiently strong internal agitation in terms of kick step size.

15184-15189 | PNAS | September 13, 2011 | vol. 108 | no. 37

This provides a general mechanism for spontaneous flows in an
active assembly of interacting constituents.

Combining a linear stability analysis with a trial solution of
the many-body master equation allows us to identify possible
dynamic phases that depend on the motor kick step size and
susceptibility. We find that for sufficiently large kicks and high
activity, susceptible motors (i.e., motors whose kick rate depends
on the forces exerted on them) can generate spontaneous flow,
whereas adamant motors, indifferent to imposed forces, would
merely drive fluidization of an active system. We have also carried
out simulations on a minimal cytoskeleton model incorporating
motor dynamics to compare with our analytical predictions. The
simulations not only verify the predicted phase diagram, but also
highlight how the combination of network connectivity with
motor susceptibility determines the formation of nonequilibrium
structures. The simulations show an oscillatory phase separation
at intermediate network connectivity and formation of aster-like
patterns/bundle-connected poles when driven by motors with
negative susceptibility (i.e., motors that move against the force,
energetically uphill). The latter corresponds to a negative-tem-
perature system where interesting structures emerge much like
vortex condensation in two-dimensional turbulence (9-11).

We are far from the first to try to understand the physics of
spontaneous collective motion in biology. Jilicher and Prost (12)
studied a one-dimensional stochastic model that assumed an
underlying ratchet potential already breaking translational sym-
metry. Motor cooperativity then leads to a dynamical phase tran-
sition to spontaneous directed motion despite the system’s spatial
symmetry. Thinking of the cytoskeleton, an assembly of filamen-
tous polar polymers actively connected by cross-linkers, as an
active polar gel has allowed the construction of continuum the-
ories, based on conservation laws and symmetry considerations,
which also generate active flows (13-16). Pattern formation in
active fluids has also been discussed based on a reaction-diffu-
sion-advection mechanism (17).

Model
Here we model the stochastic nature of the motor kicking via

a master equation for the many-body probability distribution
function Y({r}.r) (18, 19):

SW({0) = (e + Lne)¥(171) (1

Here Lyp = Dy Y, V; - V; = DY, V; - (=V,U) is the usual many-
body Fokker-Planck operator describing passive Brownian
motion with D, denoting the ordinary diffusion coefficient at
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ambient temperature 7 and f = l/kBT The gradlents of the
many-body interaction potential U({r}) = U7 i, i) =
Z<U>u( 7;) give the local forces acting on individual particles,
where F; is the posmon of the ith particle and (---) denotes the
nearest neighbor pairs. Note that the potential U reflects an aver-
age over the solvent degrees of freedom and internal degrees of
freedom of the motors and is thus strictly speaking a free energy.
The effects due to nonequilibrium motorized processes are sum-

marized by an integral kernel LNE‘P( {r}e) = [IL; dr {r } -
(AP} - K{F} = {FHY {70, where K({r'} — {7}) en-

codes the probability of transitions between different particle
configurations per unit time. Motor kicking noise is a finite jump
process with a rate that depends on whether the free energy is
increased or decreased when a step is made:

k = k[®(AU) exp(—s,pAU) + O(-=AU) exp(—s,pAU)].  [2]

Here O is the Heaviside step function and AU = U (¥ + 1) l U(r)
is the free energy change due to the kick identified by a vector

I =In. The kick step size [ and the basal kicking rate x define
the dimensionless motor activity A:=«l’>/D,,, an analog of the
Peclet number in turbulent diffusion. This model rate couples
the chemical reactions leading to the motor activity to the local
mechanical forces acting on the motor being parametrized by the
susceptibility s, which may take different values for uphill (s,)
moves and for downhill (s;) moves depending on the biochemical
mechanism of the motors. When s — 1, the motors are suscepti-
ble, slowing down when they climb up against obstacles and
accelerating when they move energetically downbhill; in contrast,
s — 0 corresponds to completely adamant motors that kick at a
rate unperturbed by the free energy landscape.

Systematic Expansion and Stability Analysis

To examine the small kick size limit, we first expand the equation
in powers of / up to the quadratic order. The simplest case, iso-
tropic kicking and symmetric susceptibility (i.e., s, = s; = s) leads
directly to an effective Fokker—Planck equation (5):

—Y({rh) = Deffz{vihp = Vi [(=ViBertU)¥]}, [3]
where
1 x?
Dt = Dy (1 + ED_()) [4]
o= (14 s kb2
Bett/B) " = Tet/T = (1 +2dD /(1 +dD0 . [5]

These simple expressions (Eqgs. 3-5), valid for general spatial
dimensions d, have nontrivial implications. In the small kick limit,
the active system, although out of equilibrium, behaves as if it is at
an effective canonical equilibrium characterized by an effective
temperature T.. The effective diffusion constant Do (Eq. 4) is
enhanced by the active processes regardless of motor adamancy,
consistent with recent observations of enhanced cytoplasmic dif-
fusion (20). T (Eq. 5) is fully determined by the motor activity
A =k’ /D, and the motor susceptibility s; susceptible motors
with s > 1/2 yield T < T. When motor activity dominates over
thermal noise ( i.e., A > 1), the effective temperature diverges

Ter;/T ~1/(25) as s — 0. Thus, intense kicking by adamant
motors leads to a very high effective temperature just as observed
in experiments (21) and simulation studies (22, 23). A more de-
tailed discussion can be found in a separate work (5).

To probe the dynamic instability that may give rise to the spon-
taneous motion, we must go beyond the effective equilibrium and
expand to quartic order in / obtaining

Wang and Wolynes

—Y({rhe) = Deﬁz{V?‘P = Vi [(=VibeU)¥]}

+ 4 (cos* 0); x Y E(V" UMW), (6]

i

The functional F; is the divergence of a flux; i.e., F; = -V, T
where J? is the probablllty current due to active events on partlcle
i given by

= fvw +15 S v, (VzﬂU‘P) += VlﬂUV“P

(VﬂU) (A SN (VﬂU) (71

Whereas at quadratic order in /, a motor-driven system exhibits
enhanced diffusive dynamics at an effective equilibrium, at quar-
tic order, a net streaming flow becomes possible, as in models of
nonequilibrium gene switch (24).

In an earlier study of the stability and dynamics of a motorized
assembly, Shen and Wolynes (18) pictured the motors as introdu-
cing a modification to the Debye—Waller factors of the localized
particles. They found an expression of the deviation of the total
localization strength @ from its thermal value o in terms of the
motor properties. Thermal self-consistent phonon theory (25)
gives o for a central particle that depends on the a of all its
neighbors. Combining these two aspects allows a self-consistent
determination of mean-field («, @) solutions allowing an identi-
fication of static stability limits. Assuming s, = s; = s, the second
moment closure (19) reduces to a simple expression (@ — a)/a =
(s — 1/2) exp[s(s — 1)al?]xl?> /dDy. Thus, for s =1/2 (T = T),
chemical noise does not modify the mechanical stability (@ = «);
for s < 1/2 (T > T), stability is weakened (a < a); whereas
for s > 1/2 (T < T), stability is enhanced (a > a).

For spontaneous collective motion, there must be a nontrivial
dynamic first moment that indicates a moving fiducial lattice.
The second moment still has its steady-state value describing
vibrations about the fiducial configuration. We thus write down
a trial function of the master equation as a collection of Gaus-
sians with moving centers and a steady variance:

Y({ri};

where w; = r; — ﬁ,— denotes the displacement of particle i from its
equilibrium position R;, 1i;(t) = (W;|?¥) defines the dynamic first
moment of particle i, and the total localization strength a of
individual particles is inversely related to the second moment.

To account for the neighbor-coupling effects, we adopt the
coupled-oscillator expansion of the effective potential, V,,
used earlier by Stoessel and Wolynes (26). Here the gradient
of the general many-body free energy becomes V;pU =
Yienn ViViBV e (Ry) - (Wi —147j), where R; =|R; —R;| denotes
the equilibrium separatlon between the central partlcle i and
its nearest neighbor j. The curvature then follows V?pU =
Yienn. Tr[V VipV.(R;)] = 2da. The mechanical localization
strength is defined by a= (1/2d)ZJV2 BV .(R;). Higher-order
gradients of AU vanish at this level of couphng A nonzero o
reflects a (possibly amorphous) state of broken translational
invariance, as in a gel. Applying the first moment closure
0,(Wi|W) = (| (Lgp + Lng)¥) to Eq. 6 with the Gaussian ansatz
(Eq. 8) as well as the coupled-oscillator expansion of the effective
potential leads to coupled equations for the ni;s.

To investigate the emergence of directed motion, we carry out
a linear stability analysis about the nonmoving state (i.e., #i; = 0).
In view of the biological relevance of one-dimensional scenarios,
such as the filament sliding in motility assay (27) and flow in the
cell cortex (28), we focus here on the 1D case. Consider a spatially
varying trial solution of the form

@) = I (a/x) 2= a0 [8]
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Fig. 1. Phase diagram for possible dynamic states. The parameter plane indicates the motor kick step size / and the motor susceptibility s. The model
cytoskeleton used to obtain « and & is characterized by cross-link density p = 0.8, relaxed length of the filaments L, = 1.2, and stretching stiffness gy = 5.
From A to C, the network connectivity varies with P, = 0.2, 0.5, and 1, respectively. Dy = 0.1 and x = 20. In the flowing regime, there are stable nontrivial
(o, @) solutions and positive ry; in the diffusive/relaxational regime, although there are stable nontrivial (o, @) solutions, there is a small negative ry; in the
fluidized regime, finite (o, @) solutions are unstable. As network connectivity rises, the flowing phase region expands, whereas the fluidized state region

shrinks. The logarithm of the normalized growth rate ry/k? for flowing instability is color-coded, showing the increase of instability with / and s.

m;(t) = Rlmen HkR), 91

where m denotes the amplitude of the first moment, k the wave-
number of the spatial modulation, and r; the growth rate. Even
if kicks are isotropic and the interaction Hamiltonian preserves
rotational symmetry, spontaneous symmetry breaking occurs,
giving flow in a specific direction.

In the long-wavelength limit one finds

2
om; = % { D BV (Ry)(R; ~ R,-)Z}f(l,s; a.a)m, [10]

J

where

f(ls;a.a) = =Dy — skl> + s*l*a
2
s 1 2
— s3I {5 +o= Z[a%ﬁVe(R,»j)} } [11]
j

Because dm; =rym;, the growth rate is proportional to
K (Ls;a,a) up to O(k?). 1t follows that a strictly uniform state
(k = 0) would not undergo small-amplitude dynamic instability
regardless of the motor activity and susceptibility, but the non-
moving state is barely stable in the absence of spatial modulation.
Moreover, the sign of f(/,s; a,@) determines the stability behavior
for small but finite k. When the kick step size [ is small, f is
negative, indicating diffusive relaxation toward the nonmoving
state. As [ increases, instabilities grow: f (and thus r;) becomes
positive, signifying a collective flow in a spatially modulated state,
when [ exceeds a threshold value y, given by

L 1422 (1= s{2+ 25 D [V (Ry)})
j

At high motor activity such that a>a and x> aD,,
2 ~1/(sa) + Do/ (sx). Thus, high susceptibility s and kicking rate
x and large o lead to a low instability threshold (see Fig. S1 for
a detailed illustration). Note that assuming a statistically homo-
geneous structure will remove the i dependence of f and /;,. For
the case of asymmetric susceptibility (s, # s,), the factor (s, —s,)
accompanies all the cubic-and-above odd powers in [ in the
expansion, leading to a smaller threshold kick size compared
to that for the symmetric case where corrections start at quartic
order in /.

We carried out the self-consistent calculation described earlier
on a minimal model of the cytoskeleton as a cat’s cradle (29, 30)
to determine (o, @) and used this to obtain the growth rate for a
model network consisting of nonlinear elastic filaments charac-
terized by relaxed length L, and stretching stiffness By built on
a three-dimensional random lattice of cross-links at density p.
The network connectivity P, is defined as the fraction of near-
est-neighbor pairs of cross-links connected by filaments. The unit
of length is the average separation between the neighboring
cross-links.

In Fig. 1 we show the phase diagrams for possible dynamic
states as a function of kick size / and susceptibility s for several
values of the network connectivity. In all the cases, there are two
stability boundaries, one for small s (s < 1/2), one for large s
(s > 1/2). In the low-s regime, as / reaches a critical value, I*(s)
(blue dotted line), finite solutions for (a, @) become unstable,
i.e., the system becomes fluidized. In the high-s corner, when [
exceeds a threshold value /;, (lower boundary of the color-coded
region), instability occurs for small but finite kK modes indicating
the emergence of modulated flowing states. In this region, stable
finite (o, @) solutions exist with @ being considerably larger than
a, reflecting the enhancement of stability by susceptible motor
kicking. Note that as motor susceptibility increases, the threshold
kick step size decreases. In the rest of the diagram, a and a are

B = - [12] comparable and the negative growth rate indicates diffusive
2(sa)(1 - s{g+ 4;5: z[alz BV o(R;; I modes. (Close to detailed balance, s = 1/2, diffusive modes per-
j sist over the entire relevant range of /.)
diffusive C flowing

A fluidized B

initial }# later

initial

J=‘ ’ later

initial JE‘

Fig. 2. Network structure for various dynamic phases. (A) Fluidized phase with s = 0. An initially relaxed (Left) network rapidly tenses up (Right) under com-
pletely adamant motor kicking. Localization strength of the nodes vanishes, and there is no net flow. (B) Diffusive phase with s = 0.2. Spots of concentrated
tense/floppy filaments are visible. Nodes exhibit enhanced diffusive motion with a finite localization strength. No spontaneous flow occurs. (C) Flowing phase
with s = 1. Network structure remains homogeneous despite the spontaneous flowing motion, reflecting the enhanced rigidity of the structure and coherence
of motion by susceptible motor kicking. L, = 1.2, fy =5, P. = 0.5, and / = 0.25. Red lines stand for tense filaments and green lines for floppy filaments.
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Fig. 3. Temporal development of the phase separation. At intermediate
connectivity P, = 0.3 and under susceptible motor kicking (s = 1) with a
considerable step size / = 0.25, the initially homogeneous system (A) phase
separates into oscillating clumps and voids (B-D). Notice that the relaxed
filaments (green) become concentrated within the planar clumps as well as
the presence of highly stretched interclump filaments (red). L. = 1.2, gy = 5.

In the figures, we color-code the logarithm of the normalized
growth rate r/k* for the flow instability; the growth rate in-
creases with / and s. Comparing the diagrams for different values
of connectivity, we see that as P. increases, the region corre-
sponding to the fluidized state shrinks, because increasing the
number of bond constraints stabilizes the system against fluidiza-
tion. On the other hand, the region corresponding to flow ex-
pands toward lower / (and lower s slightly), suggesting that as the
mechanical feedback increases (larger a due to higher P,), a smal-
ler kick is able to trigger the flowing instability when the motors
are susceptible.

Simulations

To check these predictions we performed dynamic Monte Carlo
(31) simulations on the model cytoskeleton (29, 30). In these
simulations we generated initially a three-dimensional random
lattice of volumeless nodes (mimicking the cross-linking proteins)
and connected the nearest-neighbor nodes (defined by the first
shell of the pair distribution function) with nonlinear elastic
bonds (30) (mimicking the filamentous proteins) at a given prob-
ability P.. Thermal steps obey Brownian dynamics (32), whereas
chemical moves follow the stochastic process defined by the mod-
el kicking statistics (Eq. 2). The simulations reveal an interesting
interplay of network connectivity with the motor susceptibility
dramatically affecting structural development.

At a relatively high network connectivity, P, ~ 0.5 (average
coordination number z =~ 6), force transmission through the
bonds is efficient and the network structure remains statistically
homogeneous in the presence of the motor-driven processes.
Nevertheless, varying motor susceptibility drastically changes the
dynamics.

rate of growth (s=0.5)

Wang and Wolynes

Fluidized state: Under completely adamant kicks (s = 0) with a
moderately large step size (I > [*), nodes rapidly become flui-
dized. Elastic stretching of the bonds imposes no constraint on
the node motion resulting in vanishing localization strength and
zero net flow (7 = 0). Consequently, as shown in Fig. 24, almost
all the initially floppy bonds (in green) get stretched (in red) and
the network becomes very tense.

Flowing state: At the other extreme, however, under suscepti-
ble kicks (s = 1) with above-threshold step size /> I, a self-
sustained flow develops and the nodes vibrate about a steadily
moving fiducial lattice (see Fig. S2 for statistical characteristics
of the flowing state) both for regular lattices and for random
structures. Apparently disorder in the structure, inherent in the
quenched connectivity or dynamically generated through initial
random motions, gives rise to local force asymmetry. Sufficiently
large kicks then trigger dynamic instability of the quiescent state;
the resultant nucleation and propagation of local coordinated
motion, mediated by force transmission and orchestrated by
susceptible motor kicking, finally leads to a global concerted move-
ment of the whole lattice. High motor susceptibility promotes
cooperativity, resulting in “rigidity” of the structure and coherent
collective motion. As can be seen in Fig. 2C, the network structure
remains homogenous without significant local distortions.

Diffusive state: When the motors are only moderately suscep-
tible (s: 0.2-0.5) but not sufficiently cooperative to drive sponta-
neous flow, the system exhibits enhanced diffusive relaxation
toward the effective equilibrium characterized by T, leading
to a homogeneous network structure with modest local density
fluctuations. The magnitude of density fluctuations and the ten-
seness of the network depend on the susceptibility. At relatively
low susceptibility (s < 0.3), homogeneously distributed spots of
concentrated tense or floppy filaments are visible (Fig. 2B); as
the susceptibility rises (s ~0.5), density fluctuations get weaker
and the network becomes more homogeneous with a lower de-
gree of stretching, closely resembling the flowing state (Fig. 2C).
At relatively high connectivity, the simulations thus verify the
possible dynamic phases predicted by the analytical theory.

At intermediate connectivity P.=~0.3 (z=~3-4) network
connectivity is sufficient for tension percolation, yet local force
asymmetry becomes significant and widespread over the network.
Now under susceptible motor kicks with a considerable step size,
dramatic spatial heterogeneity emerges and oscillations of the
network in a particular spontaneously chosen spatial direction
occur (Fig. 3 and Movie S1). Apparently the overall tenseness of
the structure is reduced by collapsing the network into clumps at
the cost of a few highly stretched interclump filaments. Fig. 3 C

rate of growth (s=0.55)

Fig. 4. Dependence of growth rate upon localization
strength at different motor susceptibility. The 2D surface
and the contour map of the growth rate r, /k? for flowing
instability are displayed over the parameter plane ex-
tended by the localization strength « of individual particles
and the motor kick step size /. Dy = 0.1 and x = 20. (A)
s =0.5; (B) s = 0.55; (C) s = 0.6; (D) s = 0.7. For susceptible
motors with s > 0.6, the growth rate develops a nonmono-
tonic dependence on the localization strength at a suffi-
ciently large kick size, suggesting an optimal strength of
mechanical feedback for an efficient flowing motion.
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Fig. 5. Aster-like patterns/bundle-connected poles formed under kicks of
uphill-prone motors with a negative susceptibility. s, = -1, s, =0; L. = 1.2,
py =5, P. =0.5, and | = 0.25. A and B are snapshots of the system taken at
the same instant from different view angles.

and D display the planar clumps where the floppy filaments (in
green) concentrate and which are connected by highly stretched
interclump bonds (in red). Our previous analytical mean-field
study of an equilibrium nonlinear elastic network (30) already
suggests the possibility of phase separation in this system at a fi-
nite effective temperature; the pressure exhibits a nonmonotonic
dependence on the node concentration, leading to mechanical
instability of homogeneous states. [Phase separation induced
by contractile instability has also been predicted for active polar
gels (13).] When confined by boundaries, such as the cell mem-
brane, these oscillating clumps may become stationary wave pat-
terns with a characteristic length scale of modulation, reminiscent
of the mitotic spindles.

In the presence of susceptible motor kicking (s > 0.6), failure
of force percolation at lower values of the network connectivity
P. <0.2 (z < 3) also yields phase separation, but without any
collective motion (Movie S2). Conversely, when there are too
many bond constraints at P. > 0.6 (z > 7), there are significant
mechanical barriers that seem to slow down flow initiation and
to reduce flow speed.

The analytic stability analysis leads to a similar connection
between instability growth and the number of bond constraints
via the localization strength of individual nodes. In Fig. 4, we dis-
play the two-dimensional surface as well as the contour map of
the growth rate r,/k* given by Eq. 10 in the flowing regime
(rx > 0) as a function of localization strength a and kick size /
for a series of susceptibilities s. Close to detailed balance (i.e.,
s = 0.5) (Fig. 44), flowing instability emerges only at very high o
and large /, and the growth rate increases with a. At s = 0.55
(Fig. 4B), a plateau in the growth rate develops at relatively high
a. For susceptible motors with s > 0.6 (Fig. 4 C and D), the
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growth rate has a nonmonotonic dependence on a. As the loca-
lization strength of individual constituents increases, the flow
instability first speeds up and then slows down with a. There exists
an optimal localization strength (or network connectivity) for
most efficient flow. This is consistent with simulations (see
Movies S3-S7).

Biological motors can have slip bonds (33, 34) so that an ap-
plied force lowers the energy barrier for uphill moves. Slip-bond
behavior leads to a negative motor susceptibility, which in turn
leads to a negative effective temperature. This implies an intrinsic
thermodynamic instability. We investigated this thermodynami-
cally unusual situation. We consider the case fors, = —1, s, =0
where motors are insensitive to energetically downhill slope,
whereas they run faster when they go up against obstacles. Start-
ing with a disordered structure at a high connectivity (P. = 0.5),
the motorized network rapidly develops into a highly ordered and
tense structure, as shown in Fig. 5.

This interesting behavior is not hard to understand: Because of
the negative s,, consistent with the negative effective tempera-
ture, the kicks maximize the total energy by separating the
bonded nodes as far as possible from each other. The resulting
“aster-like” patterns closely resemble those formed by in vitro
reconstituted active gels (35), where unidirectional movement of
myosin II motors along the polar filament tracks toward the aster
core (concentrated “plus” ends of actin filaments) results in
considerable stress accumulation at the center, giving rise to the
so-called “novas of asters.” Clearly, motor susceptibility drama-
tically affects development of nonequilibrium structures.

In sum, we have derived an analytical expression for the
stability limits of quiescent active gels and proposed a mechanism
for spontaneous collective motion within a unified theoretical
framework. Simulations of a model cytoskeletal network further
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susceptibility dramatically affects the formation of nonequili-
brium structures: Force percolation and mechanochemical cou-
pling conspire to drive and maintain spontaneous flow, whereas
adamant motor kicks promote fluidization. Significant force
imbalance sensed by susceptible motors induces phase separation
into oscillating clumps. Uphill-prone motors with a negative
susceptibility give rise to a system at a negative effective tempera-
ture. Aster-like patterns form, resembling those seen in reconsti-
tuted active gels.
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