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In order to survive, self-serving agents in various kinds of complex
adaptive systems (CASs) must compete against others for sharing
limited resources with biased or unbiased distribution by conduct-
ing strategic behaviors. This competition can globally result in the
balance of resource allocation. As a result, most of the agents and
species can survive well. However, it is a common belief that the
formation of a herd in a CAS will cause excess volatility, which
can ruin the balance of resource allocation in the CAS. Here this
belief is challenged with the results obtained from a modeled re-
source-allocation system. Based on this system, we designed and
conducted a series of computer-aided human experiments includ-
ing herd behavior. We also performed agent-based simulations and
theoretical analyses, in order to confirm the experimental observa-
tions and reveal the underlying mechanism. We report that, as
long as the ratio of the two resources for allocation is biased en-
ough, the formation of a typically sized herd can help the system
to reach the balanced state. This resource ratio also serves as the
critical point for a class of phase transition identified herein, which
can be used to discover the role change of herd behavior, from a
ruinous one to a helpful one. This work is also of value to some
fields, ranging from management and social science, to ecology
and evolution, and to physics.

experimental econophysics ∣ computational econophysics ∣ market-directed
resource-allocation game ∣ minority game ∣ agent-based model

Most of the social, ecological, and biological systems that in-
volve a large number of interacting agents can be seen as

complex adaptive systems (CASs), because they are characterized
by a high degree of adaptive capacities to the changing environ-
ment. CAS dynamics and collective behaviors have attracted
much attention among physical scientists (1–3). In order to sur-
vive, self-serving agents in these CASs must compete against
others for limited resources with biased or unbiased distribution
by conducting strategic behaviors. This competition can globally
result in balanced or unbalanced resource allocation. Examples
of such phenomena involve many species like human beings. For
instance, drivers select different traffic routes, people bet on
horse racing with odds, and so on. In general, the allocation of
the resources in a CAS could reach a balanced state due to the
preferences and decision making ability of agents, as revealed by
investigating a resource-allocation problem (4). In practice, how-
ever, it will sometimes fail to reach the balanced state. For this,
one important reason is due to the formation of a herd. In fact,
herding extensively exists in collective behaviors of many species
in CASs, including human beings. Though human decisions are
basically made according to individual thinking, people tend to
pay heed to what others are doing, emulate successful persons,
or those of higher status, and thus follow the current trend. For
example, young girls often copy the clothing style of some famous
stars named as trendsetters in the fashion world. Similarly, re-
searchers would rather choose to work on a topic that is currently
hot in the scientific society. As a result, large numbers of people
may act in concert, and this unplanned formation of crowds is
called herd behavior (5). Locally speaking, either the irrationality
(6, 7) or rationality (8–10), of an individual agent can be the cause
of herd behavior. The global view of herding often implies the
ruin of balance by causing excessive volatility in the resource

allocation system. Accordingly, herd behavior is commonly seen
as a tailor-made cause for explaining bubbles and crashes in a
CAS with the existence of extremely high volatility. But is this
“common sense” always right? Based on results of this study,
we argue that herd behavior should not be labeled like the killer
of balance and stability all the time. Here we focus on the effect of
herding on the whole CAS for resource allocation, because it is
most important for as many agents (involving human beings) as
possible to survive in various kinds of CASs like social, ecological
or biological systems. Therefore, we shall not study or consider
the details on how to reach a herd through contagion and/or
imitating. In fact, our results are not dependent on the process
of herding formation.

Experiment
We design and conduct a series of computer-aided human experi-
ments, on the basis of the resource-allocation system (4, 11–13),
in order to study the necessary conditions for a CAS to reach the
ideal balanced state. Using this kind of experimental settings
will allow us to investigate the herd behavior in a well regulated
abstract system for resource allocation, which reflects the funda-
mental characteristics of many CASs (14–17). Human partici-
pants of the resource-allocation experiment are students
recruited from several departments of Fudan University. Before
the start of experiments, a leaflet (as shown in SI Text: Part I) was
provided which explains configurations of the experiment and
actions of the participants. There are two rooms (Room 1 and
Room 2) and the amounts of resource in these two rooms are
M1 and M2 (≤M1), respectively. As the experiment evolves, M1

and M2 are kept fixed and unknown to all the participants. For
each experiment round, each participant has to choose one of the
two rooms to enter. Those who go into the same room should
share alike the virtual resource (M1 or M2) in it. Apart from
human participants, there are also imitating agents joining the
experiment. All the imitating agents are generated by a computer
program, because their decisions are simply made by mimicking
human participants’ behaviors. In particular, each imitating agent
will randomly select a group (of size five) of human participants at
every experiment round, and then follow the choice of the best
participant (who has the highest score) in the group for the next
round. In each round of the experiment, the number of human
participants and imitating agents in Room 1 is denoted as N1 and
the number in Room 2 as N2. Therefore the total number of
human participants and imitating agents can be counted as
N ¼ N1 þ N2. The human participants or imitating agents who
earned more than the global average ðM1 þM2Þ∕N are regarded
as winners of the round, and the room which the winners had
entered as the winning room. The total number of human parti-
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cipants or imitating agents can also be expressed as N ¼ Nnþ
Nm. Here Nn is the total number of human participants who
make decisions by their own, and Nm is the total number of
imitating agents who do not have their own ideas. The ratio be-
tween imitating agents and human participants is defined as
β ¼ Nm∕Nn. More details about the experiment can be found at
the end of the main text.

The resource-allocation experiments are conducted repeatedly
with different values of M1∕M2 and β. The modeled system is
designed as an open system in which the number of human par-
ticipants Nn is fixed while the number of imitating agents Nm is
increased in an implicit manner. As shown in the previous study
(4), the heterogeneity of preferences is an indispensable factor
for the whole system to reach the balanced state. Hence the
preferences of human participants need to be checked under the
influence of imitating agents. For a human participant in the
experiment, his/her preference is evaluated as the average rate
that he/she chooses to enter Room 1. Preferences of the 44
participants are plotted in Fig. 1 with different M1∕M2’s and/or
β’s. Fig. 1A shows the preferences of human participants when
M1∕M2 ¼ 1 and the imitating agents are absent. Distinctions
among the preferences of human participants can be easily iden-

tified. For example, the fourth participant is strongly partial
to entering Room 2 while the sixth participant prefers Room 1
much more. It can be found in Fig. 1 B and C, that the human
participants still have diverse preferences even whenM1 becomes
much larger than M2. In addition, the heterogeneity of prefer-
ences remains even for the cases in which Nm ¼ Nn∕2 imitating
agents are involved; see Fig. 1G–I. Despite of this heterogeneity,
the average of participants’ preferences changes along with
M1∕M2. In other words, human participants have the ability to
adapt themselves to fit the environment.

Comparisons of the distributions of human participants’ pre-
ferences, as the resource distribution M1∕M2 is varied and/or the
imitating agents are involved, are shown in Fig. 1 D–F, J–L. From
Fig. 1 D and E, one can find that when M1∕M2 is not so biased,
human participants alone can do the analysis of the system so well
that they can make the whole system reach the balanced state.
Note that the preference distribution has a peak at 0.5 in Fig. 1D
and the participants’ preferences are mainly distributed around
0.75 in Fig. 1E. Both of the two observations can be deduced from
the resource distribution,M1∕M2 ¼ 1 andM1∕M2 ¼ 3. When the
imitating agents are involved, however, the two preference distri-
butions have some changes in Fig. 1 J and K. In particular, the
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Fig. 1. Data obtained from the human experiment. (A–C,G–I) Preferences of the 44 participants in sequence to Room 1 for the cases (A–C) without and
(G–I) with imitating agents, β ¼ ðA-CÞ 0 and (G–I) 0.5, for the resource distributions M1∕M2 ¼ ðA;GÞ 1, (B,H) 3, and (C,I) 20. Here, “Mean” denotes the average
value of the preferences of the 44 participants. (D–F,J–L) Distribution of the 44 participants’ preferences.
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peak almost disappears in Fig. 1J and the mean value of partici-
pants’ preference deviates from the resource distribution bias
in Fig. 1K. A possible reason for these changes can be inferred
as that human participants may get confused by the behavior of
imitating agents. Hence in this case the herd (which is formed by
imitating agents) indeed disturbs the system and weakens the
analyzing ability of human participants. Things are different if
M1∕M2 gets even larger, as shown in Fig. 1 F and L. Here the
involvement of imitating agents does not bring much change to
the preference distribution of human participants. One may say
that, in this case, herd behavior has no harmful effect on the ana-
lyzing ability of the human participants. Finally, it is interesting to
note from the same figure, that a minority of human participants
with preference to Room 2 can stay alive even in a highly biased
system (M1∕M2 ≫ 1) when the imitating agents exist.

To evaluate the performance of the whole system, we have
calculated efficiency (which, herein, only describes the degree
of balance of resource allocation), stability, and predictability
of the resource-allocation system. The efficiency of the whole
system can be defined as e ¼ jhN1i∕hN2i −M1∕M2j∕ðM1∕M2Þ. A
smaller emeans a higher efficiency in the allocation of resources.
The stability of the resource-allocation system can be described as
σ2∕N ≡ 1

2N∑2
i¼1hðNi − ~NiÞ2i, where hAi denotes the average of

time series A. This definition describes the fluctuation (volatility)
in the room population away from the balanced state, where the
optimal room populations ~Ni ¼ MiN∕∑Mi can be realized. The
predictability of the system is measured by the “uniformity” of the
winning rates in different rooms. The winning rate in Room 1 is
denoted as w1. It is obvious that if w1 is close to 0.5, choices of the
two rooms are symmetrical and the system is unpredictable. If the
winning rates were too biased, smart participants should be able
to predict the next winning room in the experiment. As shown
in Fig. 2, when M1∕M2 is small (M1∕M2 ¼ 1 or 3), adding some
imitating agents will lower the efficiency and cause large fluctua-
tions. On the other hand, when M1∕M2 get even larger
(M1∕M2 ¼ 20), the formation of herd can improve the efficiency,
the stability, and the unpredictability of the resource-allocation
system.

Agent-Based Modeling
An agent-based model is developed in order to fully understand
the preceding experimental results. Consider a situation where N
agents repeatedly join a resource-allocation system. Among these
agents, there are Nn normal agents (which correspond to human
participants in the preceding experiments) and Nm imitating
agents, so that the total number of agents can be calculated as
N ¼ Nn þ Nm. To play in the resource-allocation system, each
normal agent will take S strategies from the full strategy space
and compose a strategy book. A strategy for the resource-alloca-
tion experiment is typically a choice table which consists of two
columns. The left column is for the P possible situations, and the

right column is filled with bits of 0 or 1. Bit 1 is linked to the
choice for the entrance of Room 1, while bit 0 to that of Room
2. In the strategy book of a normal agent, strategies differ from
each other in the preference, which is defined as an integer
L (0 ≤ L ≤ P). To model the heterogeneity of preference, let
the normal agent pick up a preference number L first. Then each
element of the strategy’s right column is filled in by 1 with the
probability L∕P, and by 0 with the probability ðP − LÞ∕P (more
detailed explanations can be found in SI Text: Part II). The process
will be repeated S times, each time with a randomly chosen L for
each normal agent to complete the construction of its strategy
book. From the start of the resource-allocation experiment, each
normal agent will score all the strategies in its strategy book so as
to evaluate how successful they are to predict the winning room.
Following the hitherto best performing strategy in their strategy
books, normal agents are enabled to make decisions to enter one
of the two rooms, once the current situation is randomly given*.
Imitating agents in the model behave in a different way during the
process of decision making. Before each round of the play starts,
each imitating agent will randomly select a group of k (1 ≤ k ≤
Nn) normal agents †. Within this group, the imitating agent will
find the normal agent who has the best performance so far and
imitate its behavior in the following experiment round. It is
assumed that the imitating agents know neither the historical
record of the winning room nor the details of strategy books of
other group members. The only information for them to access is
the performance of the normal agents, that is, the virtual money
that these normal agents have earned from the beginning of the
experiment. If the number of imitating agentsNm kept increasing,
there would be more and more positive correlations among
agents’ decisions, which would trigger the formation of a herd in
the system.

Simulation Results of the Agent-Based Modeling
Agent -based simulations are carried out in an open system con-
dition, in reference to the experiments. (Please refer to SI Text:
Part III to see the results for a closed system.) Following the ana-
lysis of experimental results, we first investigate the simulation
results for the preferences of normal agents. Clearly, Fig. 3 shows
distributions of the preferences similar to those shown in Fig. 1.
The qualitative agreement indicates that our agent-based model-
ing has taken into account the heterogeneity of preferences with
a reasonable modeling of the decision making process for the
human participants. (We had also investigated the preferences

A B C

Fig. 2. Experimental results for (A) efficiency e, (B) stability σ2∕N, and (C) predictabilityw1 of the modeled resource-allocation system, with human participants
Nn ¼ 50. β ¼ 0 and 0.5 correspond to imitating agents Nm ¼0 and 25, respectively. Each experiment lasts for 30 rounds.

*Here the situation is not the history of winning rooms. Broadly speaking, it can be
explained as a mixture of endogenous and exogenous system information. Results
obtained with the real history bit-strings have no essential difference with the current
study, though the use of random information makes the theoretical analysis easier.

†This process corresponds to the case of primary imitators. In fact, in the real system, there
might exist multilevel imitations where some imitators can copy other imitators’ behavior.
Similar conclusions could be achieved.
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of normal agents in an alternative way by analyzing the Shannon
information entropy; see SI Text: Part IV) Next, efficiency, stabi-
lity, and predictability of the whole modeled system are calcu-
lated according to the definitions made in the experimental
study. The change of system behavior along with the variation of
the resource ratio M1∕M2 is shown in Fig. 4. Differently colored
symbols in the figure represent results obtained under different
values of β. As shown in Fig. 4A, when the resource distribution
is comparable (M1∕M2 ≈ 1), the averaged population ratio hN1i∕
hN2i can always be in concert with M1∕M2 no matter imitating
agents are involved or not. On the other hand, as the resource
distribution gets more and more biased (M1∕M2 increases), sur-
prisingly the whole system tends to reach the balanced state only
if more imitating agents (larger β) join the system. Fig. 4B shows
the change of efficiency of the resource-allocation system. The
tendency is that when the resource ratio gets more biased, a
larger size of herd is needed to realize a higher efficiency of the
resource distribution. From both the subfigures, the so-called
“M1∕M2 phase transition” (4), where M1∕M2 plays the role of
control parameter, can also be identified. As shown in Fig. 4C,

the increase of the number of imitating agents will cause larger
fluctuations in the low M1∕M2 region. However, as M1∕M2

increases, more imitating agents can yield higher stability of the
resource-allocation systems. Comparing system behaviors for
the cases of β ¼ 0 and β ≠ 0, the M1∕M2 phase transition also
indicates the change of role for the herd behavior, namely, from
a ruinous herd into a helpful herd. It is clear that the critical point
of the M1∕M2 phase transitions get larger when the number of
imitating agents increases. Denoted as ðM1∕M2Þc hereafter,
the critical point refers to the M1∕M2 value where the minimum
of σ2∕N is achieved. This definition together with the mechanism
for the increase of ðM1∕M2Þc will be further discussed in the the-
oretical analysis of the model. Finally, the effect of herd behavior
on the predictability of the resource-allocation system is shown
in Fig. 4D. When more imitating agents are introduced to the
system for largeM1∕M2, the prediction of the next winning room
becomes more difficult as winning rates for the two rooms are
more symmetric. Notice that the system behavior under various
conditions found herein by the agent-based simulations echoes
with the observations in the experiment.

A B

E

H I

K L

F

C

D

G

J

Fig. 3. Simulation results obtained from the agent-based simulations. (A–C,G–I) Preferences of the 50 normal agents to Room 1 for the cases (A–C) without
(β ¼ 0) and (G–I) with (β ¼ 0.5) imitating agents, and for the resource distributionsM1∕M2 ¼ ðA;GÞ 1, (B,H) 3, and (C,I) 20. We have run the simulations for 200
times, each over 400 time steps (first half for equilibration, the remaining half for statistics). (A–C,G–I) are typical results of one of the 200 runs. In (A–C,G–I),
“Mean” denotes themean value of the preferences of the 50 normal agents. (D–F,J–L) Distribution of the 50 normal agents’ preferences. Note that (D–F,J–L) are
obtained from the average over the 200 runs, and also the “Mean” in (D–F,J–L) denotes this average. Simulation parameters: S ¼ 4, P ¼ 16, and Nn ¼ 50.
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We summarize the simulation results here and make some
more comments to emphasize the significance of findings in our
study. The performance of the resource-allocation system consist-
ing of normal agents or human participants with the full decision
making ability is, in some cases, inferior to those including imi-
tating agents (who form the herd). This argument might seem
questionable at first sight. In particular, it may be argued that
the failure to reach the balanced resource allocation for large
M1∕M2 when β ¼ 0 is only due to the relatively small population
of the normal agents. However, it has been proved in the theo-
retical analysis [see the equation for the population in the next
section or Eq. S6 in SI Text: Part II] and the agent-based simula-
tion of resource-allocation systems (4) that the total number of
agents is indeed not a key factor. When the resource distribution
is not biased so much, the normal agents can play pretty well so
that the resource-allocation system behaves in a healthy manner
(efficient or balanced, stable and unpredictable). In such kind of
situations, adding imitating agents will only bring about a
“crowded system” in which larger fluctuations (volatility) turn
up. In this respect, our study shares some common features with
the Binary-Agent-Resource model (18, 19). In particular, the
“crowd effect” has been observed in these models and the inclu-
sion of imitating agents in our model can be explained as a special
kind of networking effects. Only if the resource distribution
becomes so biased that most of the normal agents cannot com-
pletely solve the decision making problem by referencing their
strategy books, adding the imitating agents could become a help-
ful factor in consuming the remained arbitrage opportunities in
the system. The discussion above explains the reason why the
herd behavior in the resource-allocation system can effectively
help the system to realize the balanced state and reduce instabil-
ity and predictability in the mean time.

Theoretical Analysis of the Agent-Based Modeling
To further understand the underlying mechanism for these
phenomena, we also conduct a theoretical analysis by deriving
the critical points ðM1∕M2Þc for the M1∕M2 phase transition
identified in the agent-based simulations. (For the details of
derivation, please refer to SI Text: Part II.) As a result of the the-
oretical analysis, the maximum of population ratio in Room 1

hR1ð¼ N1∕NÞimax can be obtained under the conditionM1 ≥ M2.
Its formula reads as the following (the meaning of the symbols
can also be found in SI Text: Part II),

hR1imax ¼ 1 −
1

ðβ þ 1ÞP∑
P

~L¼1

��
~L

P þ 1

�
s
þ β

�
~L

P þ 1

�
ks
�
;

where ~L stands for the preference of a normal agent’s strategy.
If hR1imax is not less than M1∕ðM1 þM2Þ, the system can fluctu-
ate around the balanced state. Otherwise, the system can never
reach the balanced state. Then some insightful comments can be
added:

• The state of the resource-allocation system depends only on
M1∕M2, β, k, P, and S. This state has no concern with Nn
or Nm.

• An optimized value of β may be calculated by setting
hR1imax ¼ M1∕ðM1 þM2Þ, which could make the system most
stable. After substituting this expression into the equation
for hR1imax, we can obtain numerical solutions for the critical

A

B D

C

Fig. 4. (A) hN1i∕hN2i, (B) e, (C) σ2∕N, and (D) w1 as a function of M1∕M2, for an open system in the agent-based simulations. Parameters: Nn ¼ 50, S ¼ 4,
P ¼ 16, k ¼ 5, and β ¼ 0, 0.5, 1.0, and 2.0. For each parameter set, simulations are run for 200 times, each over 400 time steps (first half for equilibration, the
remaining half for statistics). In (A), “slope ¼ 1” denotes the straight line with slope being 1.

Fig. 5. Critical points of theM1∕M2 phase transition, ðM1∕M2Þc , varyingwith
different population ratios β: simulation results (symbols) vs. theoretical
results (line). The simulation results are obtained from the data in Fig. 4 A
and C.
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points ðM1∕M2Þc of the phase transitions. Fig. 5 shows a good
agreement between the simulation results and those of theo-
retical derivation for the critical points.

• It is easy to prove that ∂hR1imax∕∂β > 0, which means that β
and hR1imax are positively related. When β → ∞, the popula-
tion ratio will converge to hR1imax → 1 − 1

P∑
P
~L¼1

ð ~L
Pþ1

Þks. At this
limit, the model suggested here will be equivalent to the ori-
ginal resource-allocation model without the imitating agents
(4), except that in this case, each agent would occupy kS (in-
stead of S) strategies.

Discussion and Conclusions
We have revealed that, if the bias between the two resources
M1∕M2 were large and unknown to the participants, a herd of a
typical size could help the overall system to reach the optimal
state, namely, the state with a minimal fluctuation, a high effi-
ciency, and a relatively low predictability. The corresponding
ratio between the two resources also works as the critical point
of a class ofM1∕M2 phase transition. The phase transition can be
used to discover the role change of herd behavior, namely from a
ruinous herd to a helpful herd as the resources distribution gets
more and more biased. The main reason for this generalization
could be understood as follows. When a large bias exists in the
distribution of resource, the richer room will offer more arbitrage
opportunities so that it deserves to be chosen without too much
deliberation. Because imitating agents learn from the local best
human participant or normal agent, the herd formed by these
agents will certainly be more oriented to the richer room. To bal-
ance a highly biased resource distribution, in fact, it correspond-
ingly needs a suitable number of participants who have a highly
biased orientation in their choices. But every coin has two sides.
Normal agents will be confused if too many imitating agents are
involved. Because in that case, normal agents have to estimate
not only the unknown system but also the behavior of the herd.
The effect of herd behavior would become negative again under
these situations. We emphasize that these arguments are quite
general. In particular such arguments are independent of the pro-
cess of herding. In SI Text: Part V, results of a different agent-
based model, in which imitating agents follow the majority of
the linked group, rather than the best normal agent, are shown.
Similar results are achieved indeed.

This work is also expected to be important to some fields,
ranging from management and social science, to ecology and evo-
lution, and to physics. In management and social science, admin-
istrators should not only conduct risk management after the
formation of herd, but also need to consider system environment
and timing to see whether the herd is globally helpful or not.
In ecology and evolution, it is not only necessary to study the

mechanism of herd formation as usual, but also to pay more
attention to the effect of herding on the whole ecological system
and/or evolution groups. For physics, this work not only presents
the existence of phase transition in such a complex adaptive
system, but also proposes a new equilibrium theory. Namely, in
the presence of symmetry breaking, a complex adaptive system is
likely to reach the equilibrium state only through the perfor-
mance of typically sized clusters.

About the Computer-Aided Human Experiment
All the experiments are carried out in an online manner. Human
participants can get the necessary information only from their
computer terminals. The desktop designs of the experiment-con-
trol computer program are shown in Fig. S1. The control panel
for the experiment coordinator is configurated as panel (A), and
that for human participants as panel (B). At the beginning of the
experiment, the coordinator input the value ofM1∕M2 and β, and
set the time length (60 s) for the human participants to make their
decisions. When all the human participants have logged in, the
coordinator can click the “start” button to start the experiment.
After all the participants have made their choices, the coordina-
tor clicks the “reset” button to end the current round and set
anew. On panel (B), buttons with numbers of 1 and 2 are used
to choose Room 1 and Room 2. The left of the panel displays the
current score (a) of the participant and the current experiment
round (t). To keep every participant conducting the experiment
independently, procedures and rules of the experiment are de-
signed carefully so that possible direct or indirect communica-
tions can be shut off. For example, participants can only make
their own choices by clicking the button instead of raising their
hands. This limitation could make sure that participants cannot
get information from sounds, expressions, or gestures of the
others. There is also no need for the experiment coordinator
to announce the result of winning room. Participants can only
deduce the winning room from the change of their scores on
the desktop panels. In addition, no human participants had been
kicked off (please refer to SI Text: Part I) during the experiments.
For all the experiments with M1∕M2 ¼ 1, 3, and 20, the total
number of human participants was kept to be 50. Among those,
44 human participants played through all the three experiment
sessions. On the other hand, we had member-changes for the re-
mained six participants.
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