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We measure the deceleration of liquid nitrogen drops floating at
the surface of a liquid bath. On water, the friction force is found
to be about 10 to 100 times larger than on a solid substrate, which
is shown to arise from wave resistance. We investigate the influ-
ence of the bath viscosity and show that the dissipation decreases
as the viscosity is increased, owing to wave damping. The mea-
sured resistance is well predicted by a model imposing a vertical
force (i.e., the drop weight) on a finite area, as long as the wake
can be considered stationary.

capillary waves ∣ Leidenfrost effect

The drag on floating bodies has three main contributions (1):
skin friction, inertial drag associated with vortex emission, and

wave drag. In experiments, extracting each contribution from a
global drag measurement is often difficult (2, 3). In the special
case of hovercrafts, wave drag plays the major role and its mag-
nitude has been determined by ref. 4. For a large vessel, surface
waves are dominated by gravity and the author shows that the
drag scales as p2

ffiffiffi
S

p
∕ρg (S is the area of the cushion and p is

the pressure under the hovercraft), and it reaches a maximum
for a Froude number V∕

ffiffiffiffiffiffiffiffiffiffiffi
gS1∕2

p
close to unity (V is the hovercraft

speed). Here, we study capillary hovercrafts made of liquid nitro-
gen drops floating in a Leidenfrost state on the surface of water.

Leidenfrost drops are usually created when a liquid is depos-
ited on a plate hot enough to induce a strong evaporation (e.g.,
water on a plate at 250 °C), leading to the formation of a vapor
layer between the drop and the plate (5, 6). This vapor film, of
thickness between 10 and 100 μm, insulates the drop, allowing
lifetimes as long as 1 min for millimetric drops (7). It also dra-
matically reduces the friction on the drop in this perfectly non-
wetting situation. Here we study Leidenfrost drops sliding on a
liquid surface and investigate the role of surface deformation
on friction.

Experimental Setup
We use millimetric liquid nitrogen drops—in a Leidenfrost state
at ambient temperature—arriving with some prescribed velocity
onto a bath of water or silicone oil of density ρ, surface tension γ,
and kinematic viscosity ν (Fig. 1). Using a fast video camera,
we record the drop motion from above. A typical sequence is
shown in Fig. 2A for a drop of diameter D ≈ 3 mm. Its radius
is then comparable to the capillary length for liquid nitrogen
an ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

γn∕ðρngÞ
p ¼ 1.1 mm (γn ¼ 8.8 mN∕m and ρn ¼ 808kg∕m3

are liquid nitrogen’s surface tension and density). From the
images, we measure the position x of the drop as a function
of time t (Fig. 2B). First, we note that the duration of an experi-
ment is less than 1 s, much smaller than the typical 1-min evapora-
tion time of the drop: The drop volume remains almost constant,
contrasting with other recent experiments made with nitrogen
drops on liquids (8). Second, the curve is smooth, despite the
fact that experimentally some shape oscillations of the drop can
be observed in the recorded videos. The amplitude of these
oscillations does not vary much during the duration of an experi-
ment, viscous dissipation within the drop taking place on a much
longer time (of order D2∕νn ≈ 50 s with νn ≈ 2 · 10−7 m2∕s the

kinematic viscosity of liquid nitrogen). Third, we observe that
x changes with time in a rather unusual way. At short time
(t < 0.05 s) and long time (t > 0.18 s), the drop motion is nearly
uniform, as indicated by straight lines A and C in Fig. 2B, of
slopes 40 cm∕s and 17 cm∕s, respectively. Between these two
regimes, the drop clearly slows down with a typical deceleration
of 170 cm∕s2 as shown by line B in Fig. 2B. We repeat similar
second-order polynomial fits (x ¼ α2t2 þ α1tþ α0) on pieces of
different trajectories (t1 < t < t2), which allows us to measure
the deceleration Γ ¼ j dVdt j ¼ −2α2 for an average velocity V ¼
α2ðt1 þ t2Þ þ α1. The results are shown in Fig. 3, where we present
a series of data for ΓðV Þ for D ≈ 3 mm. We compare these mea-
surements (solid symbols) to the deceleration on a solid plate
(hollow symbols). The velocity dependence of the deceleration
on a solid substrate is roughly linear, as suggested by the dotted
line in Fig. 3; this friction can be due to dissipation in the vapor
film or in the surrounding air, which should also exist for a drop
moving on a liquid surface. However, we observe in the latter
case a complex behavior, which corresponds to the trajectory of
Fig. 2B.

First, the deceleration on water is much higher than on a
solid. For V ≈ 40 cm∕s, Γ is as low as 10� 1 cm∕s2 on a solid
(two orders of magnitude smaller than the acceleration due to
gravity g), whereas it is 200� 50 cm∕s2 on water. Second, for
drops on the water bath, one can notice a sharp increase of the
drag between V ¼ 15 and V ¼ 25 cm∕s (Γ is then multiplied by
30). For higher velocities, the drag slowly decreases, contrasting
with the measurements on a solid.

Wave Resistance
The sharp increase in the drag around 20 cm∕s suggests that the
measured friction results from wave resistance (9, 10). When a
drop moves at a constant velocity V on the surface of water, it
generates a stationary wake of capillary–gravity waves, provided
that V > cmin ¼ ð4gγ∕ρÞ1∕4 (11). This wake can be seen in the

Fig. 1. Sketch of the experiment: a liquid nitrogen drop of diameter D is
thrown tangentially onto a liquid bath and filmed from above. The initial
velocity is selected by the slope α of the solid plate used to throw the drop.
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magnified view of the moving nitrogen drop in Fig. 2C. For water,
with ρ ¼ 103 kg∕m3 and γ ¼ 72 mN∕m, we have cmin ≈ 23 cm∕s.
When V > cmin, the waves carry away energy from the moving
drop, which results in an additional drag. This is the so-called
wave resistance, well known for objects larger than the capillary
length a ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

γ∕ðρgÞp
(2.7 mm for water), yet modified here by the

influence of surface tension (12).
More quantitatively, we can compare these results to a model

proposed by Raphaël and de Gennes where the object is re-
placed by a pressure field moving at a constant velocity at the
fluid surface (9). Here we assume the applied pressure is uniform
on a circle of radius b: The Fourier transform of the pressure field
is F:φðkbÞ with F the imposed vertical force and φðkbÞ ¼ 2J1ðkbÞ∕
ðkbÞ where J1 denotes the first order Bessel function of the first
kind. In the case of a viscous fluid, the wave resistance is given by
(13)

R ¼ F2

ð2πÞ2ρ
Z

d2k
�

ikjφðkbÞj2k
ω0ðkÞ2 − 4ν2k3qþ ð2νk2 − ik · V Þ2

�
: [1]

In this expression, q2 ¼ k2 − iV · k∕ν, and ω0ðkÞ2 ¼ gkþ γk3∕ρ
is the capillary–gravity wave dispersion relation in the deepwater
approximation. In our experiments, the liquid tank is a few cen-
timeters deep, larger than the millimetric wavelengths of the
wake created by the drop (visible in Fig. 2C). Both F and b are
related to the drop size. In particular, F is the drop weight* (be-
tween 10 and 100 μN) and b is the vapor film radius. To estimate
these parameters from the measurement of the outer diameter
of the (deformed) drops, we have calculated the shapes of non-
wetting drops on a solid plate and deduced the drop weight F.
We also assumed that the contact area of the nonwetting drop
corresponds to the circle of radius b.

Eq. 1 was studied extensively by Raphaël and de Gennes in
the limit ν → 0 (9). In this inviscid regime, one expects no wave
resistance below cmin. At cmin, they predict a discontinuity of

the wave resistance equal to R ¼ F2∕ð2 ffiffiffi
2

p
γaÞ for objects much

smaller than the capillary length—as for real hovercrafts, the
wave drag varies as the square of the vertical force (4). For objects
of finite size, but still in the limit b < a, interferences between
waves emitted from different points of the drop/liquid interface
lead to a suppression of the wave resistance for V ≳

ffiffiffiffiffiffiffiffiffiffi
γ∕ρb

p
(or equivalently V∕cmin ≳

ffiffiffiffiffiffiffiffi
a∕b

p
) (9): Small bodies undergo a

maximum resistance for V
ffiffiffiffiffiffiffiffiffiffi
ρb∕γ

p
of order one, a capillary ana-

logue of the Froude number. This peak wave resistance might
account for the swimming velocities chosen by some floating
insects (14, 15).

This behavior is consistent with our observations: For low
velocities (V < 15 cm∕s), the friction is weak and comparable
to that on a solid, but it sharply increases in the vicinity of
V ≈ 23 cm∕s. Fig. 3 shows that the data for D ¼ 3.00� 0.25 mm
are well fitted by the drag calculated for a 3.2-mm drop. This
small difference in diameter is not surprising, because the calcu-
lation of the drop shape, neglecting the substrate deformability,
underestimates the weight and the apparent contact area (16).
The estimated deceleration is even closer to the data if we take
into account the dissipation in the vapor film and in the surround-
ing air. For 3-mm drops, these frictional effects are simply esti-
mated from a linear fit of the deceleration on the solid plate
(dotted line in Fig. 3).

Our experiment, where we prevent penetration of the under-
lying bath by the sliding object, thus appears to be a model system
for isolating the wave component of the friction. In addition, the
measured wave resistance is well described by Eq. 1, contrasting
with previous measurements where resistance was measured on
an immersed object (17–19): For instance, for an object immersed
at constant depth, the resistance discontinuity at V ¼ cmin
vanishes (13). In our experimental setup, the absence of vertical
motion of the drop implies that F simply is the weight of the drop.

In Fig. 4, we keep the same underlying liquid (water), whereas
the diameter of the drop is decreased fromD ¼ 2.5 mm (Fig. 4A)
to D ¼ 1.1 mm (Fig. 4D). For each diameter, we compare the
data to Eq. 1. We also estimate the deceleration due to the vapor
film and the surrounding air, extrapolating from a linear fit of the
low velocity measurements (V < 20 cm∕s) (dotted lines). This
contribution can be summed with the prediction of Eq. 1, to give
the dashed curves.

Figs. 3 and 4 show that the influence of the diameter D also
supports the wave resistance scenario. First, the vertical force F
increases with D: The maximum deceleration increases from 150
to 250 cm∕s2 as D is multiplied by 2, from 1.5 mm (Fig. 4C) to
3 mm (Fig. 3). Eq. 1 predicts that the resistance should be pro-
portional to the square of the drop weight F: The amplitude of

A B

C

Fig. 2. (A) Successive top views of a liquid nitrogen drop sliding on water.
The drop diameter is D ≈ 3 mm, and its initial velocity is 40 cm∕s. The interval
between two images is 80 ms. (B) Position x of the same drop, as a function of
time t. Straight lines A and C correspond to a velocity of 40 cm∕s and 17 cm∕s,
respectively. Line B is a second-order polynomial fit, corresponding to a
deceleration of approximately 170 cm∕s2. (C) A closeup of the drop moving
at a velocity V ≈ 25 cm∕s. Note the two wakes for the drop (1) in the air due
to water condensation and (2) at the surface of water. Scale bars in A and C
correspond to 1 cm.

Fig. 3. Deceleration Γ of a Leidenfrost drop of diameter D ¼ 3.00�
0.25 mm moving at a velocity V on a solid (open circle) or on a water surface
(solid circle). The solid line shows the prediction of wave resistance theory
(expressed in Eq. 1 and calculated for a diameter D ¼ 3.2 mm). The dotted
line is a linear fit to the data on a solid and estimates the other frictional
effects (dissipation in the underlying vapor film and in the surrounding
air). The dashed line is the superposition of the prediction of Eq. 1 and
the other frictional effects mentioned above.

*The vapor thrust also acts on the surface, but its contribution ρvu2b2 ≈ 10−4 μN is
negligible (ρv is the vapor density and the ejection velocity is u ≈ 1 cm∕s as deduced from
evaporation duration).
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the waves is expected to be proportional to F, and the resistance
scales like the energy radiated away, varying as the square of
the amplitude (9). One then expects the deceleration to be linear
with the drop mass. This implies a very strong sensitivity to the
diameter D, as the mass should scale as D3 for small drops
(D ≪ an) and as D2 for larger drops. As a consequence, down to

D ¼ 1.5 mm, it appears that most of the drag is due to wave
resistance. However, for the smallest drop (D ¼ 1.1 mm, Fig. 4D),
wave resistance becomes of the order of the other frictional
effects.

Second, the deformed area, of extension b, increases with D.
According to Eq. 1, wave resistance should reach a maximum for
V ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ∕ðρbÞp

, a decreasing function of D. In Figs. 3 and 4, we
indeed observe that the velocity corresponding to the maximum
deceleration decreases as D increases: The maximum is observed
for V ≈ 50 cm∕s for D ¼ 1.5 mm (Fig. 4C) and for V ≈ 30 cm∕s
for D ¼ 3 mm (Fig. 3).

The magnitude of the peak velocity is also consistent with Eq. 1
because

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ∕ðρbÞp

≈ 27 cm∕s for b ≈ 1 mm. Finally, as a conse-
quence of both finite size and vertical force influence, the sharp
increase of Γ with V seen in Fig. 3 (D ≈ 3 mm) disappears when
D ≈ 1 mm (Fig. 4D).

Viscous Liquids
We also investigated the influence of the bath deformability by
performing experiments with drops of fixed diameter D ≈ 3 mm
on silicone oils of various viscosities, ranging from ν ¼ 5 mm2∕s
to ν ¼ 1;000 mm2∕s. On such liquids, we have γ ≈ 20 mN∕m and
ρ ≈ 970 kg∕m3, so that a ≈ 1.5 mmand cmin ≈ 17 cm∕s. In Fig. 5A,
we report two trajectories for the same initial velocity (40 cm∕s)
and for the two extreme viscosities (ν ¼ 5 and 1;000 mm2∕s). We
clearly observe that the deceleration is much lower on the more
viscous oil: The traveled distance is about twice as large. This is
due to the fact that wave resistance vanishes if viscous effects
dominate inertia, i.e., when the damping rate ν∕λ2 is higher than
the propagation rate V∕λ. This occurs for ν > λV ∼ acmin∼
300 mm2∕s. Indeed, no waves are observed on the more viscous
oil (Fig. 5C, to be compared to Fig. 5B).

Fig. 6 shows the deceleration curves ΓðV Þ on the viscous
oils (ν ¼ 100, 300, and 1;000 mm2∕s). We present here both
experimental and theoretical results, because Eq. 1 also predicts
the resistance due to the bath for higher viscosity liquids, a
case not considered in ref. 9. The agreement between theory
and experiments stills holds on these viscous liquids.

In the limit of small objects (b ≪ a) and large viscosities
(ν ≫ Vb), Eq. 1 can be rewritten in the explicit form

R ¼ 4

3π2

�
F2

γb

�
Gð2 CaÞ; [2]

where Ca ¼ ηV∕γ is the capillary number (with η ¼ ρν) and

GðxÞ ¼ 2

x

�
1 −

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p
�
: [3]
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B
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D

Fig. 4. Influence of drop diameter D on the deceleration ΓðVÞ. The solid line
shows the theoretical predictions (calculated for D ¼ 2.5 mm, 2.1 mm,
1.5 mm, and 1.3 mm, respectively). The dotted line indicates an estimation
of dissipation in the vapor film and the surrounding air, extrapolated from
a linear fit on the low velocity measurements (V < 20 cm∕s). The dashed line
is a superposition of wave resistance and these other frictional effects.

A B

C

Fig. 5. (A) Position x as a function of time t for a liquid nitrogen drop on
silicone oils. The two lines correspond to two different viscosities:
ν ¼ 5 mm2∕s (solid line) and ν ¼ 1;000 mm2∕s (dashed line). The drop dia-
meter is kept constant (D ≈ 3 mm), and the initial velocity is 40 cm∕s.
(B and C) Close view of the same drop: (B) ν ¼ 5 mm2∕s and V ≈ 30 cm∕s;
(C) ν ¼ 1;000 mm2∕s and V ≈ 40 cm∕s.

15066 ∣ www.pnas.org/cgi/doi/10.1073/pnas.1106662108 Le Merrer et al.



Even if Eq. 2 is valid only for b ≪ a, it captures the main features
of the deceleration curves shown in Fig. 6, for which b ∼ a. More
precisely, Eq. 3 has two limits:GðxÞ ∼ x at small x, andGðxÞ ∼ 1∕x
at large x. These limits correspond to two scaling laws for Eq. 2, at
small and large capillary numbers (i.e., velocities smaller or larger
than γ∕η), which can be understood as follows.

The friction is due to viscous dissipation in the bulk. Because
of the stress boundary condition on the free surface, no shear is
exerted here and the main velocity gradient is extensional: As it

moves at a velocity V , a drop both pushes (at the front) and pulls
(at the rear) the liquid at the deformed interface (Fig. 7). If ξ
is the depth of the deformation, the fluid velocity normal to the
interface is ðξ∕bÞV , and the velocity gradient normal to the
surface is ðξ∕bÞV∕b. The volume of moving fluid scales as b3,
so the viscous dissipation is D ∼ ηðξV∕b2Þ2b3. Thus, the viscous
horizontal resistance R ∼D∕V scales as ðξ∕bÞ2ηVb.

It should be noted that the value of ξ depends on how fast
the drop moves. The depth derives from a competition between
the weight F, the viscous vertical resistance ηb dξ

dt, and, for a small
object b ≪ a, the capillary force. As the drop falls into the liquid,
the fluid surface increases by a quantity ξ2, which results into the
capillary restoring force γξ. The falling viscous time therefore
scales as ηb∕γ and has to be compared to the advection time
b∕V . The two times are equal for V ∼ γ∕η, which explains the
Ca dependency of Eq. 2.

At low velocities (V < γ∕η), ξ reaches the equilibrium depth
F∕γ and the friction can be rewritten R ∼ ðF∕ðγbÞÞ2ηVb. In
Fig. 6A, we indeed see that the measured deceleration increases
linearly with V . Theoretical curves in Fig. 6 also show that this
linear variation becomes sharper if the bath is more viscous.

At high velocities (V > γ∕η), ξ is determined by the com-
petition between the imposed vertical force and the viscous ver-
tical resistance: ξ ∼ falling velocity × advection time ∼ ðF∕ðηbÞÞ
ðb∕V Þ ∼ F∕ðηV Þ. The faster the drop slides, the weaker the de-
formation is, so that the viscous force decreases with V : R∼
F2∕ðηVbÞ. This explains why Γ decreases at large V in Fig. 6,
for a reason that is very different from the low-viscosity mechan-
ism. In this regime, the friction is proportional to 1∕η: The more
viscous the substrate, the less frictional it is.

The maximum friction occurs for V ∼ γ∕η. This velocity is
independent of the drop size, because waves and interferences
do not play any role in this viscous regime. For ν ¼ 100 mm2∕s,
we find γ∕η ≈ 20 cm∕s, close to the value for which the decelera-

A

B

C

Fig. 6. Deceleration ΓðVÞ on viscous silicone oils for D ¼ 3.0� 0.5 mm.
The markers show experimental results, the solid line is for the theoretical
prediction (calculated for D ¼ 3 mm), and the dashed line also includes
other frictional effects, deduced from the deceleration measured on a solid
(Fig. 3) and shown by the dotted line.

Fig. 7. Sketch of the drop moving on a viscous liquid. The interface is de-
formed over the extension b and on a depth ξ. When moving at the velocity
V , the drop both pulls and pushes the liquid perpendicularly to the interface,
at a velocity u ∼ ðξ∕bÞV, which generates a viscous horizontal resistance
ðξ∕bÞ2ηVb.

A

B

Fig. 8. Deceleration ΓðVÞ for D ¼ 3.0� 0.5 mm on silicone oil baths of low
viscosity ν. The markers show experimental results, the solid line is for the
theoretical prediction (calculated for D ¼ 3 mm), and the dashed line also
includes other frictional effects, deduced from the deceleration measured
on a solid (Fig. 3) and shown by the dotted line.
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tion is maximum in Fig. 6A. We also expect the maximum force,
scaling as F2∕ðγbÞ, to be independent of the viscosity η. The the-
oretical curves of Fig. 6, corresponding to increasing bath viscos-
ities, show that the maximum Γ occurs for a decreasing velocity V
but tends to a constant value of the order of 150 cm∕s2.

In Fig. 8, we show both experimental and theoretical results
for drops sliding on the two least viscous oils, ν ¼ 5 and
20 mm2∕s. In this case, we observe a discrepancy between the
data and the model. The predicted deceleration is higher than
observed, which we understand as follows: The surface tension
of silicone oil is about three times lower than the tension of water.
Therefore, the expected wave resistance, scaling as F2 ffiffiffiffiffi

ρg
p ∕γ3∕2 at

V ¼ cmin (9), is higher on oil than on water. If the deceleration
due to waves becomes large, the calculation assuming a steady
wake does not hold. Transient effects should be taken into ac-
count when the deceleration rate is higher than the propagation
rate Γ∕V > V∕λ, that is, when Γ > V 2∕λ ∼ c2min∕a ∼ g. This might
explain the disagreement between the prediction and experi-
ments when Γ becomes larger than 300 cm∕s2 ∼ g∕3.

Conclusion
We showed that small levitating objects moving on a liquid are
mainly decelerated by the production of waves along the direction
of motion. This model system allowed us to specify a few unusual
properties of this special friction: (i) negligible resistance below a
critical velocity (of order 20 cm∕s); (ii) sharp increase (quasidis-
continuity) of the resistance above this velocity; (iii) decrease of
the friction with V at large velocity; (iv) decrease of the friction as
the bath is made more viscous, a consequence of wave damping.
However, the low velocity regime remains to be understood, in-
cluding the interaction among the vapor layer, the surrounding
air, and the drop movement. In addition, the wake created by
the moving drop could be characterized, using recently developed
tools for measuring liquid surface deformations (20, 21). The
theoretical description of wave resistance might also be im-
proved, by a more precise description of the deformation of
the drop/liquid interface (16), and by taking into account transi-
ent effects (22) in this decelerated motion.
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