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Abstract

Surveillance systems tracking health patterns in animals have potential for early warning of infectious disease in humans,
yet there are many challenges that remain before this can be realized. Specifically, there remains the challenge of detecting
early warning signals for diseases that are not known or are not part of routine surveillance for named diseases. This paper
reports on the development of a hidden Markov model for analysis of frontline veterinary sentinel surveillance data from Sri
Lanka. Field veterinarians collected data on syndromes and diagnoses using mobile phones. A model for submission
patterns accounts for both sentinel-related and disease-related variability. Models for commonly reported cattle diagnoses
were estimated separately. Region-specific weekly average prevalence was estimated for each diagnoses and partitioned
into normal and abnormal periods. Visualization of state probabilities was used to indicate areas and times of unusual
disease prevalence. The analysis suggests that hidden Markov modelling is a useful approach for surveillance datasets from
novel populations and/or having little historical baselines.
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Introduction

Approximately 75 percent of emerging infectious diseases (EIDs)

in people are estimated to have originated in animals (i.e.,

zoonoses) [1–2]. Strategies to limit the impact of zoonotic EIDs

can be broadly categorized as intervention at one or more of three

levels: (i) controlling infections in people; (ii) blocking transmission

of pathogens from animals to people; and/or (iii) preventing or

controlling disease in animals [3]. Despite significant effort and

funds targeting the first strategy, the global public health

community continues to be caught off guard by EIDs. It is now

recognized that the third strategy, control of disease in animals,

may hold considerable potential for prevention of zoonotic EIDs

[4]. To achieve this strategy, early detection of disease in animals is

critical.

Surveillance for EIDs is confronted with the challenge of

tracking something that has not yet happened. This has lead to the

development of methods to track indicators of emergence or

outbreaks such as risk factor surveillance and syndromic

surveillance [5]. Surveillance systems using novel (pre-diagnostic)

data sources that track healthcare-seeking behaviour have become

widespread in human health surveillance with an aim to detect

both intentional (bioterrorist) and naturally-occurring infectious

disease outbreaks. Data representing early stage disease-related

behaviours (e.g., staying home from work – absenteeism data)

may have predictive value and promote detection of disease at

the earliest possible stage. However similar data is generally not

available for animals. EID surveillance systems must rely on pre-

diagnostic, syndromic, or clinical diagnoses to gather early

warning signals. Syndromic surveillance for early outbreak

detection often uses automated data collection and ongoing

analysis for statistical signals to monitor patterns in health

outcomes in near real-time to detect early signals of diseases

outbreaks [6–7]. Analysis of conditions frequently seen by field

veterinarians but rarely recorded or tracked can be thought of

as similar to a syndromic surveillance approach, in that the data

represent novel and unknown populations and may have early

warning value for emerging diseases. The data presented in this

study is from a system which recorded clinical diagnoses of

field veterinarians [8]. This system was developed as a proto-

typical complementary system to national disease reporting in Sri

Lanka.

One of the drawbacks of pre-diagnostic, syndromic and clinical

diagnostic data sources is that they incur an increased chance of

false alarms [9]. With pre-diagnostic data sources, the data do not

represent actual cases of disease, but variables related to disease -

such as over-the-counter pharmaceutical sales [10], web site

queries [11], or ambulance dispatch records [12]. Such data
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sources exhibit non-disease-related variations that need to be

adjusted for in order to establish an accurate baseline level of risk.

Similarly, clinical diagnoses data exhibit unknown variations that

relate to how the data are collected. In many instances, making

these adjustments is straightforward. For example, day of the week

effects – that is, higher rates on certain days of the week - are

features of many types of surveillance data. These higher rates

could contribute to an outbreak signal when really the factors

driving the increase are unrelated to disease, such as the greater

propensity for people to visit the doctor on Mondays as compared

to Fridays. With veterinary sentinel data, variability may be

dependent on the sentinels themselves rather than the disease

process. Therefore, with new and poorly understood surveillance

data sources, developing a detailed understanding of baseline

patterns (i.e., normal variation) is essential prior to conducting

statistical analysis for cluster or outbreak detection.

Public health is increasingly looking towards surveillance of

changing disease patterns in animals to enhance prediction and

understanding of where and when EIDs in humans are likely to

occur. Prediction of pre-emergence changes in pathogen dynamics

in animals may hold the greatest potential of early detection in

humans, and is therefore a central goal of EID surveillance [13]. A

major challenge however, is the collection of appropriate data on

animal health/behaviour [14]. For livestock populations, veteri-

narians may serve as an important source of information.

However, using veterinary clinical diagnoses instead of results

from diagnostic laboratory tests, the traditional data source in

animal health surveillance, carries similar inherent risks to novel

data sources in human surveillance systems: false alarms and

unknown baseline variations.

There have been rapid advances in the development of

appropriate methods of analysis for surveillance data [5,15–16].

The detection of clusters in time [17], space [18], and space-time

[19–20] are now routine analysis run in many surveillance systems

(e.g., Heffernan et al. [21]). The majority of methods for cluster

detection can be classified as hypothesis tests that evaluate the risk

of some disease or syndrome within a subset defined by space/

time, against some expected value estimated to be the normal state

of the process. An alternate class of methods focuses on estimation

of the expected value using statistical models. A modelling

approach can incorporate known demographic risk factors such

as age and occupation, or environmental risks such as sources of

pollution that affect disease outcomes. Models have been used

widely in influenza surveillance to account for seasonal dynamics

[22], as well as long-term trends in retrospective analysis of

chronic diseases [23].

Hidden Markov models (HMM) have recently been developed

for disease surveillance applications [24–29]. A Markov model

can be used to examine the probability of transition from one state

(e.g., normal variation) to another state (e.g., abnormal variation).

In a hidden Markov modeling framework, the data are related to

a discrete-valued unobserved Markov process, and the dynamics

of this latent process are inferred from the observed data. In

disease surveillance applications, it is typical to assume that the

latent process is a first-order Markov chain, with the values or

states of this chain relating to mixture components corresponding

to separate distributions for the observed data. (e.g., counts

from separately parameterized Poisson distributions). In health

surveillance applications, these states can represent the overall

condition of the target population such as ‘endemic’ and

‘epidemic’, or ‘normal’ and ‘flu season’. A transition probability

matrix governs transitions between the states over time. An

advantage of HMMs for surveillance is that historical data are not

required to train the model. Inferences about each of the states

can be learned directly from available data, and in a Bayesian

setting, the prior distributions. This is an attractive feature for

new surveillance systems with short durations that lack baseline

data.

In the first application of HMMs to surveillance, Le Strat and

Carrat [24] demonstrated a Poisson HMM for poliomyelitis that

estimated weekly counts of cases at the national level as a mixture

of two Poisson distributions. Recent examples of HMMs being

used in disease surveillance include healthy and unhealthy states

related to health services utilization from medical insurance data

[28] and outbreak and non-outbreak states of influenza [25].

In this paper, we report on a study investigating baseline

patterns in an animal-based infectious disease surveillance system

in Sri Lanka [8]. Data were collected for a period of a year

describing clinical diagnoses of cattle, buffalo and poultry, in 4

regions of Sri Lanka. Field veterinary surgeons employed by the

Department of Animal Production and Health submitted surveys

via mobile phone to a central database. As these data describe

syndromes and diagnoses not formerly tracked in Sri Lanka, there

are no validation data available. We employ a modelling approach

to examine different features of the data using hidden Markov

models [24]. The objectives of the current study were to determine

the sources of variation in animal-based EID surveillance in Sri

Lanka, establish baseline rates for overall surveys, and explore

spatial and temporal variability in commonly reported cattle

diseases.

Methods

Data Sources
The Infectious Disease Surveillance and Analysis System

(IDSAS) was established in January 2009 as part of a collaboration

between the authors and the Department of Animal Production

and Health in Sri Lanka [8]. The system tracked syndromes and

clinical diagnoses in cattle, buffalo, and poultry, in four districts of

Sri Lanka. Forty government-employed field veterinary surgeons

(FVS) from four administrative districts (Figure 1) participated as

data collectors using mobile phone-based surveys coupled with

global positioning systems (GPS). FVSs were instructed to submit

surveys via email to a central surveillance database for every

encounter with one of the target species. The data used in the

present study represent the period January 1st 2009 to December

31, 2009, and the average monthly submission rate was

approximately 11 surveys per month per FVS. All data obtained

from farm and clinic visits made by veterinarians participating in

the project remained the sole property of the Sri Lanka

Department of Animal Production and Health and were used by

the authors with full consent for research purposes.

Each survey submitted by a FVS represented one visit to a farm

or one examination in clinic of at least one of the three species.

Surveys were classified by routine visits (yes/no) and presence or

absence of an animal health issue. In the case of an animal health

issue, cases were given a syndrome group and a clinical diagnosis.

FVSs also had the option of classifying the cause of the health issue

as unknown. There were a total of 17 syndrome groups for cattle

and buffalo and 11 for poultry. Options for suspected diagnoses

were based on the syndromic grouping selected. For example,

under ‘‘lameness’’, possible diagnoses included Blackquarter,

Footrot, Osteomyelitis, as well as 22 others. Each FVS was

responsible for one geographic area called a range, so geographic

locations could be associated with each survey. Farm-level spatial

data collected with GPS were not used in this analysis, as we were

primarily interested in determining broad-scale sources and

patterns of variation in the IDSAS data.

Hidden Markov Model Zoonotic Disease Surveillance

PLoS ONE | www.plosone.org 2 September 2011 | Volume 6 | Issue 9 | e24833



Auxiliary data were collected to help account for non-disease

variation in IDSAS data. FVS-specific information such as sex and

the number of years since graduation from veterinary school was

collected when the FVS was enrolled in the project. There were

also specific dates when re-training was conducted and indicator

variables were used to represent these periods. The retraining

sessions increased enthusiasm and participation levels of the FVSs

as sharp increases in submissions were noted in exploratory

analysis of the data [8]. These factors represent what we term a

sentinel process; factors related to the FVS as disease sentinels, rather

than disease.

We obtained monthly temperature and precipitation data as

district averages from the Sri Lankan Department of Meteorology

as disease patterns in animals are often seasonal and may

Figure 1. Study Area Map. Map of Sri Lanka and study districts that were part of the Infectious Disease Surveillance and Analysis System.
doi:10.1371/journal.pone.0024833.g001
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therefore exhibit a relationship with local weather patterns or

seasons.

Analysis of Surveillance Data
In this study, we model animal health conditions as seen by

FVSs in Sri Lanka. We extend on the spatial Poisson HMM for

disease surveillance given in Watkins et al. [29], by simultaneously

accounting for covariates (described above) impacting the

observed data. The data collected by IDSAS can be conceptual-

ized as arising from two independent processes, the sentinel process,

and the disease process (Figure 2). We were interested in accounting

for variability related to the sentinel process, in order to learn more

about variability related to disease during the study.

To formulate our model, we let Yit denote the observed number

of submissions to the IDSAS system during week t by FVS i.

Underlying each observed count Yit is a latent variable Sit taking

one of two values, with Sit = 1 corresponding to ‘normal’

conditions and Sit = 2 corresponding to ‘abnormal’ conditions.

We conceptualize ‘normal’ as the baseline and ‘abnormal’ as

higher than baseline numbers of submissions. Conditioning on the

latent state Sit we assume the data are independently drawn from a

Poisson distribution

yitjSit*Pois(lSit) ð1Þ

with l1 being the mean number of submissions in the normal state,

and l2 the mean in the abnormal state (i.e., l2.l1). The sequence

of states occupied by the FVS i over time is represented through

the vector Si = (S1i,… STi,)9 and we assume each such sequence

evolves from its initial state S1i, according to a first-order

homogeneous Markov chain so that Pr{Sit|Sit-1,Sit-2,…,Si1}

= Pr{Sit|Sit-1}. The dynamics of this latent Markov model are

governed by three unknown parameters: PInit an initial state

probability governing the distribution of S1i, and two transition

probabilities P12 and P21, which represent the rates of transition

between the normal and abnormal states. Following the

parameterization in Watkins et al. [29], a Dirichlet prior

distribution for initial probabilities, and Beta prior distributions

on subsequent probabilities were employed. An outline of prior

distributions for model parameters is given in Table 1. In what

follows we shall denote this five parameter model (l1, l2, PInit, P12,

P21) for total submissions as HMM1.

This model can be extended through the incorporation of

covariates and this is typically done in one of two ways. First, we

can allow the covariates to model variation in the Poisson

parameters corresponding to the normal and abnormal states,

where stationary between-state transition probabilities are as-

sumed. Alternatively, covariates can be incorporated into an

HMM via the transition probability matrix itself [30], resulting in

an inhomogeneous HMM. For example, Wall and Li [28] present

a HMM for medical service utilization data where covariates

relate to transitions between healthy and unhealthy states via a

logistic regression. In the model here, the former approach is

adopted, maintaining stationary transition probabilities. Covari-

ates were included in the model by relating each Poisson mean to a

state-dependent baseline rate mSit, and a vector of FVS (i.e. spatial)

Figure 2. Data Generating Processes. Conceptual model of data generating processes in the Infectious Disease Surveillance and Analysis System
in the context of hidden markov models. The hidden states of interest are the normal or abnormal state of animal health as seen by field veterinary
surgeons. Observed data may include weekly submission counts, or counts of specific reported diagnoses.
doi:10.1371/journal.pone.0024833.g002

Table 1. Description of prior distributions and
hyper-parameters for model parameters.

Model Parameter Prior Distribution Description

HMM1,2 m1 Normal(0,0.01)* Mean state 1

HMM1,2 m2 Normal(0,0.01)* Mean state 2

HMM1,2 PInit Dirichlet(0.5,0.5) Initial Probability

HMM1,2 P Beta(0.5,0.5) Probability transition
matrix

HMM1,2 Y Poisson(l) Observed count data

HMM2 X Normal(0,0.001)* Covariate coefficients

*Parameterized as mean and precision (1/variance, as in WinBUGS). For disease-
level models, a Normal(0,10) prior was used to accommodate very small
expected counts.
doi:10.1371/journal.pone.0024833.t001
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and time specific covariates X, via a log-link Poisson regression:

log(lit)~msit
zbXit ð2Þ

where b is the corresponding vector of regression coefficients

which is assumed constant between the two states. The baseline

rate, or intercept, is ‘switched’ between the normal and abnormal

states based on the current state of the Markov chain.

The inclusion of covariates allows for spatial information to be

included in the model. The four districts in which IDSAS operated

were selected primarily to capture variation in environment,

climate, and agricultural practices. For true outbreaks of disease or

changes in pattern of disease, we might expect similar submissions

among FVSs in the same district. To account for similarity of

conditions within district versus other districts, submissions from

FVSs in common districts were summed. The count yit of

submissions for FVS i at time t was added to counts for all FVS

in the same district.

yit �~
X40

j~1
j=i

yjt{1Dij ð3Þ

where Dij is an n6n matrix with 1 s indicating FVSs in the same

district and 0 otherwise. This information was included in a

temporally lagged variable, representing the count of district wide

submissions in the previous time period. We report results for the

model with covariates included as HMM2.

All models were run on the individual submission counts to

generate an understanding of the factors affecting the IDSAS data.

To investigate the patterns of individual diseases, the four most

frequently reported suspected diagnoses in cattle were investigated.

Cattle are one of the primary livestock species assessed and treated

by FVSs in Sri Lanka and as such constituted the majority of

submissions. For the disease-specific models, covariate effects for

sentinel-level variables were taken from estimates from the total

submissions model, as we expect to these be constant factors

effecting submissions equally. Disease-related variables (tempera-

ture, precipitation, and temporally lagged district-wide submis-

sions) were estimated separately for each disease. Additionally,

because natural disease prevalence varies by district, each district

has separate mean rates for normal and abnormal states.

Models were implemented in a Bayesian setting with posterior

distributions sampled using Markov chain Monte Carlo (MCMC)

with implementation in WinBUGS [31]. Bayesian modelling is a

convenient choice for developing HMMs as sensitivity to

distributional assumptions can be easily assessed, and a full

probability distribution is obtained for model parameters in the

posterior distribution. In all analyses, two parallel MCMC chains

were run for a 1000 iteration burn-in period followed by a

production run of 4000 iterations. Convergence of the samplers to

the corresponding stationary distributions was assessed using both

visual inspection of the posterior sampling history, and the

Gelman-Rubin statistic [32].

Model goodness-of-fit was evaluated using posterior predictive

checking [33]. Simulated draws from the posterior distribution

P(theta|Y) of model parameters were used to simulate replicate

data sets Yrep from the posterior predictive distribution P(Yrep|Y),

which were used to compute the deviance (P[Yrep|theta];

computed as 22* log-likelihood) for each of 999 posterior and

predictive draws. The deviance was then computed for the

observed data, and the proportion of pairs (P[Y|theta],

P[Yrep|theta]) where P[Yrep|theta].P[Y|theta] is the posterior

predictive p-value. Here, extreme p-values (i.e., 0.05.p.0.95 )

yield evidence of a poorly fitting model.

Results for the state variable are reported for two thresholds.

The posterior mean state for each FVS/week pair (a total 2080)

yield values ranging from 1.0 for ‘normal’ to 2.0 for ‘abnormal’

and values in between. We set a lower threshold of 1.50 to define

membership in state two, and an upper threshold of 2.00. In all

modelling results reported, coefficients with 95% credible intervals

covering zero are excluded.

Simulation Study
A simulation study was developed to evaluate model perfor-

mance. Data from two Poisson models were simulated onto a

10610 spatial grid representing disease-reporting units in a

hypothetical surveillance system (n = 100). Three covariates were

also simulated for each area. The normal state (i.e., state 1) Poisson

model was as follows

lit~exp(1:8z1:3X1z3X2) ð4Þ

and the abnormal state model (i.e., state 2) was

lit~exp(2:7z1:3X1z3X2) ð5Þ

Relationships for covariates X1 and X2 were the same between

states but the intercept shifted from 1.8 during the normal state to

2.7 in the abnormal state. The purpose of the model is to detect

shifts in state based on observations and simultaneously charac-

terize the relationships between the mean and the covariate

variables. We also evaluated whether the model could determine

different covariate effects in different states, by changing the

abnormal state model to include a third covariate:

lit~exp(2:7z1:3X1z3X2{1:6X3) ð6Þ

In the simulation study analysis, spatial information (neighborhood

relationships) was not used, but could easily be incorporated

through a conditional autoregressive random effect, pooling

observations from neighbouring areas, or including region-specific

dummy variables.

The normal state model was used to generate counts for 52 time

periods (i.e., one year at weekly intervals) based on a normal

distribution with a mean determined by Equation 4 and a

standard deviation of 1. Different types of spatial patterns

(outbreaks 1–5, see Figure 3) were created to establish areas

where counts were replaced with counts estimated from the

abnormal state model (Equation 5). Thus distinct spatial areas and

time periods where counts and covariates in state two were created

against a baseline of state one. In the second scenario, estimates for

the abnormal state were obtained from Equation 6. Model

performance was then evaluated as the percentage of correctly

classified states.

Results

Simulation Study
The HMM model correctly classified 99.7% of the observations

in the shifted intercept scenario. Out of 5100 (51 time

periods6100 spatial units) observations (first week is not used

because inference is based totally on initial values), 5088 were

classified with the correct state. The 12 incorrectly classified states

all occurred in outbreak five (see Figure 3), where all units were in

the abnormal state, so all were errors of omission (i.e., incorrectly

Hidden Markov Model Zoonotic Disease Surveillance
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classified as normal). The coefficient estimates were similar to the

true values for both variables, though the mean for the normal

state was slightly underestimated (Table 2). In contrast, in the

scenario with shifted mean and the addition of a third covariate

effect in the abnormal state model, the model failed to converge

completely. Posterior estimates for the intercept and covariate X1

were similar and converged (not reported), however estimates for

coefficients on X2 and X3 both failed to converge. The model was

run for 20,000 iterations. Convergence problems may be related to

model identification issues, and these issues need further

investigation, but are not uncommon with Bayesian mixture

models employing weakly-informative priors.

Animal Health Surveillance Submission Patterns
During the study period, there were a total of 5758 submissions

to the IDSAS system that reported an animal health issue. The

HMM1 without covariates yielded a total of 753 abnormal events

during the study period based on a posterior mean threshold of

greater than 1.5. When constrained to a higher degree of certainty

(posterior mean threshold of 2.00), the number of abnormal events

Figure 3. Simulated outbreak patterns in a hypothetical surveillance system. White cells generated under model for state one, and black
cells generated under model for state two. The count data that was simulated using outbreak one is also shown: dark colours indicate low counts and
lighter colours indicate high counts.
doi:10.1371/journal.pone.0024833.g003
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was 390 (Table 3). The mean submission rate for state one was

0.45 (sd = 0.10) submissions per FVS, per week, and in abnormal

periods the mean rate was 6.72 (sd = 0.05). When covariates were

added to the model (HMM2), the number of abnormal events

increased to 870 and 450 for the two threshold levels, while mean

rates adjusted to 0.34 (sd = 0.10) and 6.65(sd = 0.10) submissions

per FVS, per week for state one and two respectively. Covariate

effects are reported in Table 3. Positive association with

submission rates was limited to the variable indicating training

periods, while covariates identifying male and less experienced

FVS were negatively associated with submissions. Precipitation,

temperature, and district reports had no effect in the total

submissions model. The temporal patterns of abnormal events

relative to all submission counts for each FVS are outlined in

Figure 4. Using the upper threshold, the submission counts for

state one ranged from zero to six, and from four to 103 for state

two. The count densities plotted on a log scale are presented in

Figure 5. Posterior predictive model checking did not reveal strong

evidence indicating a lack of fit, with an overall posterior

predictive p-value of 0.13 obtained for the deviance goodness-of-

fit measure.

Commonly Reported Cattle Diseases
In total, there were 3943 reported cattle cases during the study

period. The most commonly reported diagnoses in cattle were

mastitis (543), ephemeral fever (234), babesiosis (212), and milk

fever (210). Monthly cases for each of the districts are given in

Figure 6, along with environmental variables maximum temper-

ature and total monthly precipitation.

Model results for the four most common diagnoses are outlined

in Table 4. As noted earlier, coefficients for sentinel-level variables

were set as estimated in the total-submission model, and only

covariate effects for temperature, precipitation, and district reports

were estimated for disease-level models. Overall, the effects of the

covariate variables in disease-level models were minimal, with rate

ratios ranging from 0.93 to 1.10. Temperature was positively

associated with reported diagnoses of all diseases. Precipitation was

not associated with diagnoses of any of the four diagnoses.

Temporally lagged district reports were negatively associated with

mastitis, babesiosis, and milk fever, and positively associated with

ephemeral fever.

The posterior mean states are presented in Figure 7 for each of

the four main disease categories. A possible outbreak of ephemeral

fever is evident in Anuradhapura towards the end of the study

period. Other periods of high submissions for babesiosis, milk

fever, and mastitis are found in the Nuwara Eliya district.

Discussion

Variation was modelled in data submitted to a mobile-phone

based infectious disease surveillance system in Sri Lanka. Results

indicate that submission varied according sentinel level factors,

and that HMMs are a convenient methodology to approach novel

sources of surveillance data. The average submission rate for

surveys varied by district, ranging from 0.34 surveys per week

during normal periods to in 6.34 surveys per week during

abnormal periods. The number of abnormally high submissions

increased when covariates were added to the model. Baseline

estimates for normal patterns of mastitis, babesiosis, and milk fever

were highest in Nuwara Eliya, the main cattle-dairy region in Sri

Lanka. The baseline estimate for the normal pattern of ephemeral

fever was highest in Anuradhapura, a region that experiences

seasonal droughts.

The number of new pathogens in animals and humans are

increasing and known infections are changing in pattern as natural

and social systems adapt to changes in climate. The role of animals

in emergence of new diseases is widely recognized [4], and

surveillance of EIDs via animal-based systems such as IDSAS

holds potential for detection and response at an early stage, yet

studying this in the absence of an actual EID is a major challenge.

While detecting an EID was the goal of the IDSAS system,

enhanced understanding of the pathogen distribution as seen by

veterinarians in the field represents an opportunity to both

establish what is normal, and subsequently detect patterns that are

unusual. This alone may be enough information to develop

processes to inspire further action and promote early detection

[34]. Further, the improved timeliness of IDSAS data as compared

to laboratory testing is another attractive feature of using clinical

diagnoses data for EID surveillance.

As this analysis has demonstrated, there are complex variations

driving surveillance data using novel sources such as field-based

veterinary surveys. In Sri Lanka, sentinel process factors such as

the sex and work experience of the submitter impacted submission

rates, as did periodic disruptions due to training and/or political

events. The advantage of a modelling perspective to surveillance is

that these sources of variation can be partitioned out in order to

generate a finer understanding of the disease process. Previous

analysis [8] using a subset of this data using the cumulative sum

statistic on aggregated weekly submission counts, detected

‘outbreaks’ during the end of July and August (,wk 30-31-38).

In the model outputs here, it is evident that the high submissions

during this period was confined largely to Nuwara Eliya. The

model here provides greater geographical and temporal granular-

ity while accounting for sentinel-specific non-outbreak variation.

However, there is also value in learning about the sentinel process.

This type of methodology could be used within ongoing

surveillance systems to identify demographic characteristics more

common amongst high submitters, and therefore serve to inform

the sentinel selection process and ongoing sentinel inclusion or

Table 2. Model results from simulation study for five different
outbreak scenarios occurring during a 52 week simulated
surveillance system.

Parameter True value Posterior mean (95% credible interval)

m1 1.80 1.73 (1.71, 1.74)

m2 2.70 2.66 (2.63, 2.69)

X1 1.30 1.42 (1.29, 1.54)

X2 3.00 3.13 (3.03, 3.25)

doi:10.1371/journal.pone.0024833.t002

Table 3. Submission pattern model parameter estimates
reported as rate ratios.

Parameter Posterior mean (95% credible interval) Standard deviation

m1 0.34 (0.28–0.41) 0.10

m2 6.65 (6.05–7.29) 0.05

Training 1.19 (1.08–1.32) 0.05

Years 0.59 (0.55–0.63) 0.03

Male 0.90 (0.84–0.96) 0.03

doi:10.1371/journal.pone.0024833.t003

Hidden Markov Model Zoonotic Disease Surveillance

PLoS ONE | www.plosone.org 7 September 2011 | Volume 6 | Issue 9 | e24833



exclusion. In addition, exploration of the factors driving temporal

variation in submissions can help to guide sentinel retraining and

electronic prompts reminding sentinels to submit data.

When examining the results of the model HMM1 on total

submissions, we note a high number of abnormal events. When

variables are included in HMM2, the overall effect of the

important variables actually reduces expected mean submissions,

which results in more ‘unusual’ events. The question becomes,

what is the value of accounting for sentinel-level factors. Given

that alerts generated by surveillance systems typically overwhelm

the number that can actually be investigated [35], should

adjustments be biased downwards? The analysis here suggests

that adjustments are useful because they provide a more complete

understanding of the processes generating the surveillance data. In

the context of sentinels for disease surveillance, this might simply

be helping to identify characteristics that predict a more engaged

Figure 4. Submission counts and the number of unusual states per veterinarian. Total weekly submissions to the Infectious Disease
Surveillance and Analysis System during the study period and the number of unusual states, by field veterinary surgeon and district. The number of
weeks in state one (normal) is indicated in dark grey and the number of abnormal events in white.
doi:10.1371/journal.pone.0024833.g004

Figure 5. Submission count densities. Density of the log count of submissions in state one (dashed) and state two (solid).
doi:10.1371/journal.pone.0024833.g005
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sentinel relative to others. Another issue is that variables such as

sex and experience may have an overall effect, but cannot be

attributed to individuals. While states are discrete, state probabil-

ities can be visualized across space and time as in Figure 7, pro-

viding visual evidence of gradual changes after covariates have

been taken into account.

The simulation study presented here provides evidence that the

model performs well under the scenario where a shift in the mean

occurs and covariate effects remain fixed. In this simulation

scenario, both the mean and covariate effects were recovered well

by the model. This analysis lends support to the results obtained

from IDSAS data. We might therefore be able to conclude overall,

the means detected for each state-district combination in the

disease-level models represent baseline estimates of the weekly

prevalence of these diseases as seen by FVSs based on clinical

diagnoses and syndromic groupings. However, the low values

for these estimates (Table 4) make interpretation somewhat

cumbersome. The state one means for all four diseases range

from 0.09 for babesiosis in Anuradhapura to 0.32 for milk fever in

Nuwara Eliya, while state two means ranged from 0.63 for

babesiosis in Matara, to 3.51 for babesiosis in Nuwara Eliya. It is

important to quantify the differences in means between the

districts for the different diseases as it provides a starting point

from which to understand why these differences exist. The trade

off between data volume and data scale is characteristic of all

statistical analysis and especially impacts analysis of surveillance

data.

In developing this technique we chose to examine the four most

frequently suspected diagnoses in cattle. However there are

marked differences between babesiosis and mastitis in terms of

epidemiology, etiology, and clinical presentation that are worth

highlighting. Babesiosis is a tick-borne disease most commonly

characterized by fever, inappetance, lethargy, weakness, red-

tinged urine (hemoglobinuria), anemia and jaundice, though many

Figure 6. Monthly total cases for commonly reported diagnoses in each of the four districts. Anauradhapura (red), Nuwara Eliya (blue),
Matara (green), and Ratnapura (grey). Monthly averages for district-wide total precipitation and maximum temperature.
doi:10.1371/journal.pone.0024833.g006

Table 4. Model results for four commonly reported cattle diagnoses.

Anura-dhapura Nuwara Eliya Matara Ratnapura
Temp-
erature

Precipi-
tation

District
Reports

Model m1 m2 m1 m2 m1 m2 m1 m2

Mastitis 0.22 1.00 0.30 3.48 0.19 1.15 0.12 1.07 1.10 1.00 0.96

Ephemeral Fever 0.22 1.04 0.11 1.34 0.10 0.81 0.09 1.67 1.04 1.00 1.04

Babesiosis 0.09 0.79 0.24 3.51 0.08 0.63 0.13 1.05 1.10 1.00 0.93

Milk Fever 0.10 0.76 0.32 2.51 0.10 0.87 0.09 0.78 1.06 1.00 0.93

Posterior mean estimates are per week, per field veterinary surgeon, reported as rate ratios. Maximum daily temperature and total precipitation are computed for each
district and month. District reports are the number of cases within the district in the previous week.
doi:10.1371/journal.pone.0024833.t004
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cases are asymptomatic. Recovered cases become asymptomatic

carriers, and duration of infection can be up to years. There is a

large degree of variability in susceptibility between cattle breeds.

Transmission of babesiosis is dependent on a bite from an infected

Ixodes tick, and patterns in disease prevalence in cattle are

dependent in part upon the prevalence of Babesia spp. in the

vector and in the prevalence of the tick species itself [36]. In

contrast, mastitis, defined simply as inflammation of the udder,

can be caused by a variety of bacterial and fungal pathogens. It is

often characterized by a drop in milk production, and when

clinically evident may be accompanied by gross changes to milk or

systemic illness. It can be caused by both contagious and

environmental pathogens. Incidence and prevalence is impacted

by a variety of individual animal characteristics, as well as

environmental variables. Given these differences, it is worth

considering whether examination of their occurrence using the

same method is appropriate, and whether covariates should be

fixed across suspected diagnoses.

Visualizing the probability of state two in Figure 7 on a FVS/

weekly basis provides some evidence for the stability and

confidence in the model inferences. The outbreak of ephemeral

fever in Anuradhapura is on face value, more unusual, than for

example patterns of mastitis in Nuwara Eliya. This is because

based on what we know about ephemeral fever, transmitted by

biting insects and often highly correlated with periods of rain, we

expect, and are more concerned with ‘outbreaks’, than for mastitis,

Figure 7. Posterior mean of the state variable. The model-adjusted posterior mean state for each field veterinarian surgeon by week, in each of
the study districts for commonly reported cattle diagnoses. Red indicates state one and white indicates state two, and yellow intermediate values for
a) Milk Fever, b) Ephemeral Fever, c) Babesiosis, and d) Mastits.
doi:10.1371/journal.pone.0024833.g007
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which is an endemic and pervasive condition. However, outbreak

levels of mastitis may in fact represent clusters which also represent

another, possibly unknown pathogen. The goal is to understand

and establish the normal pattern for the population, so that

unusual events can be quickly spotted and explored.

The reliability of inference in a models based framework will

depend on the adequacy of the modeling assumptions, in practice,

there are invariably important missing variables, and relationships

often change over time in unforeseen ways. There are important

limitations to the study that should be noted. Firstly, there exists

the possibility of selection bias in our models. As we relied on

farmers to report cases to veterinarians, perceived negative

repercussions of reporting a severe or unusual disease could lead

to underreporting of these types of cases by farmers. This would

skew our data towards common and non-epidemic diseases. A

second source of potential selection bias relates to the use of

government veterinarians as data providers: while FVSs are

significant animal health care providers, there are also private

veterinary clinics in Sri Lanka, and commercial operations

sometimes employ their own veterinarians. Cases assessed by

private veterinary practitioners were not captured by the IDSAS

system. Another limitation of the data is that biotic risk factors

such as density dependence and interactions with wildlife were not

tracked. These represent important drivers of zoonoses emer-

gence. Going forward we hope to identify data sources that will

help factor in these processes into our modelling approach.

Visualizing patterns of the state variable over time provides a

quick diagnostic tool to identify changes in pattern. Also, because

we are working within a Bayesian setting and have a full

distribution for model parameters, we can make similar plots for

the posterior uncertainty using posterior standard deviation. The

modelling analysis here offers a robust framework for analysis of

surveillance data with short temporal spans and multiple processes

driving submissions, as is often the case with participant-generated

data.
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