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Abstract

The human immunodeficiency virus type 1 (HIV-1) accessory protein viral protein R (Vpr) is a major determinant for virus-
induced G2/M cell cycle arrest and cytopathicity. Vpr is thought to perform these functions through the interaction with
partner proteins. The NMR structure of Vpr revealed solvent exposed hydrophobic amino acids along helices 1 and 3 of Vpr,
which could be putative protein binding domains. We previously showed that the hydrophobic patch along helix-3 was
important for G2/M blockade and cytopathicity. Mutations of the exposed hydrophobic residues along helix-1 were found
to reduce Vpr-induced cell cycle arrest and cell death as well. The levels of toxicity during virion delivery of Vpr correlated
with G2/M arrest. Thus, the exposed hydrophobic amino acids in the amino-terminal helix-1 are important for the cell cycle
arrest and cytopathicity functions of Vpr.
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Introduction

The HIV-1 accessory protein Vpr has many well-characterized

functions and properties during HIV-1 infection that appear to

be dependent on binding to partner molecules [1,2]. Vpr is

incorporated into budding HIV-1 virions [3], and within cells, Vpr

mostly localizes to the nucleus [4]. These two properties are

thought to allow Vpr to facilitate infection of non-dividing cells, by

mediating the nuclear translocation of the viral pre-integration

complex [5,6]. This is accomplished through an interaction with a

member of the nuclear transport pathway, importin-a [7].

However, the necessity for Vpr during infection of macrophages

is controversial because a recent study has shown no difference in

the infectivity of viruses lacking Vpr versus wild-type viruses [8]. In

addition, in chemically growth-arrested cells, Vpr was found to be

non-essential for infection [9]. Vpr has been reported to increase

the transcriptional activity from the HIV-1 long terminal repeat

(LTR) promoter, as well as several other promoters, through the

binding of cellular transcription factors, such as Sp1 [10,11,12].

The HIV-1 mutation rate during reverse transcription is reduced

by a binding of Vpr with uracil DNA glycosylase 2 and the

incorporation of the latter into viral particles [13,14]. However,

besides bringing UNG2 into viral particles, Vpr is also able to

reduce cellular levels of the enzyme by directly delivering it to an

E3 ubiquitin ligase containing DCAF-1, DDB1, and Cul4

[15,16,17]. Vpr is a major effector of HIV-1 cytopathicity

[18,19,20,21]. Finally, Vpr is able to halt the proliferation of

infected CD4+ T cells by causing cell cycle arrest at the G2/M

phase [22,23,24,25].

Vpr is a very small protein of only 14 kD (96 amino acids) and

has no known enzymatic activity, no recognizable domains in the

NCBI database, and no structural homologues in the Protein Data

Bank (PDB), so the molecular basis of its actions is not completely

understood [26]. Vpr functions are thought to depend on binding

with partner proteins [1,2]. The NMR structure of full length Vpr

provides some insights into the possible mechanism of Vpr activity

[27]. Vpr forms a bundle of three a-helices folded around a

hydrophobic core with flexible termini. The structure reveals

solvent exposed hydrophobic amino acids along helices 1 and 3 of

Vpr [27]. In principle, hydrophobic patches seek to be solvent

inaccessible and therefore we conjecture that a hydrophobic

substance, perhaps another protein, likely interacts with these

patches. Therefore, we hypothesized that these hydrophobic

patches serve as protein interaction sites that might be important

for Vpr functions.

Separate regions within Vpr have been shown to be critical to

many Vpr functions [28]. Incorporation into budding virions has

been mapped to the amino (N)-terminal half of Vpr, particularly

the amphipathic helix-1 [29,30,31,32,33]. Vpr helices 1 and 2

have also been shown to be important in the nuclear localization

of Vpr [29,30,33,34,35], which depends on an interaction

between Vpr helix-1 and importin-a, an integral component of
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the nuclear import pathway [7]. However, a number of studies

have highlighted a role for the carboxyl (C)-terminal portion of

Vpr in nuclear localization, as well [4,36,37]. The ability of Vpr

to increase transcription from the viral LTR promoter was

mapped to the C-terminal half [38,39]. Historically, the region

containing helix-3 and the flexible C-terminus of Vpr has been

shown to be necessary for G2/M cell cycle arrest [29,30,40].

Thus these distinct portions of Vpr appear to differentially

regulate Vpr functions, likely through the binding of different

partner molecules.

Recently, we published a structure-function based study

exploring the role of the exposed hydrophobic residues along Vpr

helix-3 in cell cycle arrest, nuclear localization, Vpr dimerization,

and cell death [18]. This first look at the role of this hydrophobic

patch found that these residues are indeed important for G2/M

arrest. However, the role of these amino acids in cytotoxicity is less

clear. The levels of death were proportional to the levels of cell cycle

arrest induced by hydrophobic patch mutants during virion delivery

of Vpr. However, when these same mutants were expressed during

HIV-1 infection, the levels of cell death were similar to wild type

Vpr, likely due to a G1 arrest of the infected cells as opposed to G2/

M blockade [18].

Although the N-terminal helix-1 of Vpr has not been previously

associated with cell cycle arrest, we hypothesized that the exposed

hydrophobic patch along this a-helix could serve as a protein

interaction region with a partner protein necessary for this

function. We performed a similar structure-function based

approach to test the involvement of the helix-1 exposed

hydrophobic residues in cell cycle arrest and cytopathicity [18].

Mutation of these amino acids reduced G2/M arrest and

cytopathicity during virion delivery of Vpr. Similar to our previous

study [18], cell cycle arrest and cell death were correlated when

Vpr was delivered by non-replicative virions. These data suggest

that the hydrophobic patch along Vpr helix-1 is important during

cell cycle arrest and cytopathicity, probably serving as a protein

binding region.

Methods

Cell lines
HEK293T (293T) cells and Jurkat 1.9 cells [18,41,42] were

maintained in RPMI 1640 (Lonza) that was supplemented with

10% fetal calf serum, 50 mM b-mercaptoethanol, 2.4 mM L-

glutamine, and 100 U of penicillin-streptomycin/ml.

HIV virus stock and virion delivery of Vpr
HIV-1 viral stocks were produced in 293T cells by transfection

using ExGen 500 according to the manufacturer’s instructions

(Fermentas). Virion delivery of Vpr has been previously described

[18,41,43,44]. A plasmid encoding a reverse transcriptase mutant

with the vpr gene deleted (pNL4-3e-n-GFPRTm, VprD22-86; a gift

from E. Freed, National Cancer Institute, NIH) and a plasmid

encoding the VSV-G envelope protein (pLVSV-G) were trans-

fected into 293T cells to produce VSV-G pseudotyped virions.

Plasmids encoding WT and mutant Vpr were co-transfected in

order to transcomplement the Vpr-deficient virus. Jurkat cells were

infected in 12-well plates in the presence of Polybrene (5 mg/ml;

Sigma-Aldrich). Virus was adsorbed for 30 min at 37uC in 5%

CO2, and then the plates were centrifuged for 30 min at 8006g at

room temperature.

Transfection
An Electro-Cell manipulator (BTX) apparatus was used to

transiently transfect Jurkat cells by electroporation. A total of

46106 cells were resuspended to a concentration of 106106

cells/ml with 10 to 15 mg of DNA in a 4-mm gap cuvette (Bio-

Rad Laboratories) and electroporated at 260 V and 1,060 mF.

Transfected cells were transferred to fresh supplemented RPMI

and assayed after 3 days. A plasmid encoding the green fluorescent

protein (GFP) was cotransfected at a 1:5 ratio to the Vpr

expression plasmid to identify transfected cells. The human codon-

optimized Vpr plasmid, hVpr [18,41], was used to express WT

Vpr. Mutations of W18 and L22 were generated using a PfuUltra

II (Stratagene) site-directed mutagenesis protocol.

Assays for cell cycle and cell viability
DNA content analysis was performed by propidium iodide (PI)

staining. Cells were fixed with 1% paraformaldehyde in phos-

phate-buffered saline (PBS) for 10 min at room temperature,

washed in PBS, and incubated in 70% ethanol for at least 30 min.

Cells were washed again in PBS and stained with DNA staining

solution (5 mg of PI/ml, 50 mg of RNase/ml, and 0.45 mg of

sodium citrate/ml in PBS) at room temperature for 30 min.

Stained cells were examined using a FACSCalibur flow cytometer

(Becton Dickinson), and a constant number of cells were

measured. Viability of infected cells was assessed by the exclusion

of the vital dye propidium iodide, measured for a constant period

of time (30 sec) per sample. All flow cytometric data were analyzed

by using FlowJo software (Tree Star, Inc.).

Immunoblotting
Jurkat cells, 293T cells, and concentrated virus stocks were lysed

in a 2% sodium dodecyl sulfate (SDS) buffer (2% SDS and 10%

glycerol in 60 mM Tris-HCl [pH 7.5] with 1 U/ml of DNase

[Benzonase nuclease; Novagen] and Complete protease inhibitor

cocktail [Roche]) for at least 30 min at 4uC. A bicinchoninic acid

assay (Pierce) was used to determine protein concentration of the

lysates. Equal masses of protein were loaded onto a 4 to 20% Bis-

Tris SDS gel (Bio-Rad Laboratories) for SDS-polyacrylamide gel

electrophoresis, and protein was transferred to nitrocellulose using

a semidry transfer apparatus (Bio-Rad Laboratories). Nitrocellu-

lose blots were blocked in 5% nonfat milk in 0.1% PBS-Tween 20

(PBS-T). Blots were probed with primary antibody overnight at

4uC, followed by secondary antibody conjugated to horseradish

peroxidase diluted 1:5,000. All antibodies were diluted in 5%

nonfat milk in PBS-T. After each antibody incubation, blots were

washed three times in PBS-T. The bands were imaged by using

enhanced chemiluminescent or SuperSignal West Dura substrates

(Pierce). Densitometry was performed using ImageJ software

(NIH). The primary antibodies used include Vpr antiserum (a gift

from K. Strebel), p24-capsid (AIDS Research and Reference

Reagent Program; 6457), and b-actin (Sigma-Aldrich; A1978).

Results

The core of the Vpr protein (amino acids [AA] 17–77) is

comprised of three a-helices folded around a hydrophobic core

[27]. Figure 1A shows the boundaries of Vpr helix-1 (AA 17–33),

helix-2 (AA 38–50), and helix-3 (AA 56–77) [27]. The animo

(N)- and carboxyl (C)-termini were found to be flexible and

unstructured (Figure 1). Along helices 1 and 3 of Vpr are several

solvent-exposed hydrophobic amino acids (Figure 1, red for amino

acids of helix-1 and blue for those of helix-3). The rest of the Vpr

surface is hydrophilic, with only a few sporadically spaced

hydrophobic amino acids partially exposed to the solvent

environment (Figure 1C, E, and G). Using a previously successful

strategy [18], we employed a structurally based mutagenesis

approach to disrupt the hydrophobic patch on Vpr helix-1. The

Vpr Helix1 Functions in G2/M Arrest and Cell Death

PLoS ONE | www.plosone.org 2 September 2011 | Volume 6 | Issue 9 | e24924



residues tryptophan (W) 18 and leucine (L) 22 were mutated to

alanine (A) (small, non-polar), serine (S) (polar), or glutamic acid

(E) (charged, highly hydrophilic) in order to disrupt the chemical

nature of the hydrophobic patch to varying degrees. Although L26

is also exposed to the surface of the protein, the side chain has

lipophilic interactions with the core of the protein as well [27]

(Figure 1C, E, and G). Therefore, mutations of L26 would

probably destabilize the entire protein. We attempted to minimize

any possible disruption to the secondary and tertiary structure of

Figure 1. The NMR structure of Vpr shows solvent exposed
hydrophobic residues along helices 1 and 3. (A) A wire and box
diagram of Vpr. The gray boxes represent the 3 helices of Vpr, and the
upper set of numbers denotes the boundaries of each helix. The lower
set of numbers identifies exposed hydrophobic residues along helix 1
and helix 3. (B) A tube diagram of the side view of the nuclear magnetic
resonance (NMR) structure of HIV-1 Vpr (PDB: 1M8L) indicating
hydrophobic amino acids exposed on the apparently solvent exposed
surfaces of helix 1 (red) and helix 3 (blue). (C) A space filling diagram of
the side view of HIV-1 Vpr using a hydrophobicity color scheme. The
exposed hydrophobic residues along helices 1 and 3 are colored as in
(B). Positively charged or polar amino acids with high hydrophilicity are
colored light blue. Purple residues are negatively charged with high
hydrophilicity. Polar amino acids with low to neutral hydrophobicity are
gray, and highly hydrophobic, nonpolar residues are brown. The a-

carbon peptide chain is black as in (B). (D) C-terminal end view of HIV-1
Vpr helical core indicating the hydrophobic patches colored as in (B). (E)
A space filling end view as in (D) colored as in (C). (F) Top view of HIV-1
Vpr helical core indicating the hydrophobic patches colored as in (B).
(G) Top view of HIV-1 Vpr using a space filling diagram colored as in (C).
doi:10.1371/journal.pone.0024924.g001

Figure 2. Hydrophobic residues on Vpr helix-1 are important
for incorporation into virions. (A) 293T cells were co-transfected
with pcDNA3-hVpr plasmids expressing WT or mutant Vpr (or the
empty vector control), pLVSV-G, and pNL4-3e-n-GFP RTm, VprD22-86 to
produce virus for virion delivery of Vpr. At day 2 the virus stocks were
harvested and the 293T cells were lysed. Western blot indicates protein
levels for WT or mutant Vpr (bottom). A western blot for b-actin is used
as a loading control (top). (B) Lysates were prepared from the virus
stocks in (A). Viral lysates were analyzed for protein levels of WT or
mutant Vpr by western blotting as in (A) (bottom). The HIV-1 p24 capsid
(p24 CA) is shown as a protein loading control (top). (C) Densitometry
of all bands in (B) was performed. The intensity of the Vpr protein band
was normalized to p24 CA and plotted as % Vpr incorporation relative
to WT Vpr for each mutant. The data are shown as the mean 6 the
standard deviation of three independent experiments.
doi:10.1371/journal.pone.0024924.g002
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Vpr by only mutating amino acids with outward facing side

groups.

In the previous analysis, some of the Vpr helix-3 mutants could

not be expressed [18]. Therefore, we first tested the expression of

the helix-1 mutants by western blot analysis as previously

described [41]. All Vpr mutants expressed at similar levels as

WT Vpr in HEK293T cells (Figure 2A). Since helix-1 of Vpr is

responsible for the incorporation into budding virions by binding

to the p6 region of Gag [30,31,32,45], we also studied the helix-1

mutants for Vpr incorporation by producing non-replicative virus

using a reverse transcriptase mutant and Vpr deficient strain of

HIV-1 (NL4-3e-n-GFPRTm, VprD22-86) and trans-complementing

Vpr with separate expression plasmids as previously described

[18,41]. Although expression was comparable in the 293T

producer cells, WT and mutant Vpr were differentially packaged

into virions (Figure 2B–C). We calculated the percent of Vpr that

is incorporated into the virions (relative to WT Vpr) by comparing

the relative intensities (by densitometry analysis of the western

blots) of the Vpr protein bands to the p24 capsid structural protein.

All of the Vpr helix-1 mutants were packaged into virions at

approximately 40–80% of the level of WT, except for L22E, which

was only ,20% compared to WT (Figure 2C).

We first characterized the cell cycle arrest activity of the helix-1

mutants by using virion delivery of Vpr (Vprv) as previously

described [18,41]. We titrated the amount of WT Vprv to provide

matched control levels of Vpr for the mutants. All of the mutants

Figure 3. Hydrophobic residues on Vpr helix-1 are important for virion-delivered Vpr cell cycle arrest. WT or mutant Vpr proteins
(denoted by the single letter amino acid changes) were delivered (Vprv) into Jurkat cells. Virions containing WT Vpr were titrated (md, medium) so
that a matched Vpr protein control could be compared to the mutants. (A) Western blot of the Jurkat cells for WT and mutant virion-delivered Vpr
(bottom). b-actin is shown as a protein loading control (top). (B) Histograms of cell cycle analysis at 41 hr post-infection show DNA content of PI-
stained cells by flow cytometry. All samples represent 10,000 cellular events. G1 and G2/M populations were modeled using the Watson Pragmatic
cell cycle model, and the G2,M/G1 ratio in each infection is shown. The data are representative of three experiments.
doi:10.1371/journal.pone.0024924.g003
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were delivered into the Jurkat cells at similar levels as the medium

dose of WT Vprv (G2,M/G1 = 4.6) by western blot analysis

(Figure 3A). Interestingly, mutation of W18 to any of the substitute

residues (A, S, or E) greatly reduced the Vpr-induced G2/M arrest

(Figure 3B). Glutamic acid had the greatest effect (G2,M/

G1 = 1.4), as predicted, since the negatively charged glutamic

acid should disrupt the chemical nature of the hydrophobic patch

to the greatest degree. W18 may assist the binding to a partner

protein through stacking interactions of the aromatic ring

structure, which could explain why all mutations of this residue

had a pronounced effect. The alanine substitution of L22 had no

effect on Vprv cell cycle arrest. However, the L22S (G2,M/

G1 = 3.2) and the L22E (G2,M/G1 = 1.7) mutations reduced the

G2/M arrest (Figure 3A).

Transient transfection can also be used to evaluate Vpr-induced

cell cycle arrest [18,41]. Equivalent expression of the mutants was

confirmed by western blot analysis, and all of the mutants were

expressed at a similar level as the WT sample relative to the

loading control (Figure 4A). The same cell cycle trend was found

with transfection as with virion delivery. All substitutions for W18

reduced cell cycle arrest. Whereas the L22A mutation had

minimal effect, mutations to S and E both showed less

accumulation of cells in G2/M than WT (Figure 4B). These

results indicate that the exposed hydrophobic patch on Vpr helix-1

Figure 4. Exposed hydrophobic residues on Vpr helix-1 are important for transfected Vpr G2/M arrest. Jurkat cells were co-transfected
with pcDNA3-hVpr plasmids expressing WT or mutant Vpr (or the empty vector control) and pEGFP-N1 as a transfection marker at a ratio of 5:1. (A)
Western blot of the Jurkat cells for WT or mutant Vpr (bottom). A western blot of b-actin was used as a protein loading control (top). (B) Histograms
of cell cycle analysis at 61 hr post-transfection show DNA content of GFP+, PI-stained cells by flow cytometry. All samples represent 10,000 cellular
events. G1 and G2/M populations were modeled using the Watson Pragmatic cell cycle model, and the G2,M/G1 ratio in each transfection is shown.
The data are representative of three experiments.
doi:10.1371/journal.pone.0024924.g004

Vpr Helix1 Functions in G2/M Arrest and Cell Death

PLoS ONE | www.plosone.org 5 September 2011 | Volume 6 | Issue 9 | e24924



is important for cell cycle arrest function, corroborating the virion-

delivered Vprv system.

The previous study on the helix-3 hydrophobic patch (I63, I67,

and I74) found a correlation between cell cycle arrest and

cytopathicity for the mutants using virion delivered Vprv [18]. We

examined the helix-1 mutants for a similar correlation. WT and

mutant Vpr was delivered into Jurkat cells, and the cell cycle

profile and viability of these cells were assessed over time as

previously described (Figure 5) [18]. Similar to the previous report,

we found that wild type Vprv reduced the cell viability to

approximately 65% over the course of infection (Figure 5B). G2/

M arrest correlated with the toxicity of the helix-1 mutants during

virion delivery (Figure 5C). The L22A mutant, which has

comparable cell cycle arrest function as WT, also showed similar

cell death activity (Figure 5). The other mutants exhibited reduced

cytopathicity proportional to the reduction in cell cycle arrest. The

Figure 5. Vpr G2/M arrest correlates with cell death induced by virion delivery. (A) WT or mutant Vpr proteins (denoted by the single letter
amino acid changes) were delivered (Vprv) into Jurkat cells, and separately Jurkat cells were co-transfected with pcDNA3-hVpr plasmids expressing
WT or mutant Vpr (or the empty vector control) and pEGFP-N1 as a transfection marker at a ratio of 5:1. Infected and transfected cells were analyzed
for DNA content of the PI-stained cells by flow cytometry. G1 and G2/M populations were modeled using the Watson Pragmatic cell cycle model, and
the G2,M/G1 ratios were plotted on the x-axis. (B) The viability of the Vprv-treated cells was monitored over time by flow cytometry (detection of
PI-negative, forward-scatter high events), and the percentage of viable cells is plotted over time. These data are representative of three experiments.
(C) The G2,M/G1 ratios and viability of Vprv-treated cells at 165 hour post-infection from three independent experiments were plotted.
Each measurement is color-coded as in (B). Spearman’s rank test was used to determine the correlation.
doi:10.1371/journal.pone.0024924.g005
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W18E and L22E mutants showed the most pronounced reduction

in toxicity, corresponding with the most attenuation of G2/M

arrest (Figure 5). Although cell cycle arrest correlated with cell

death among the Vpr mutants, some discrepancies still existed. For

example, Vpr L22S caused more arrest than both W18A and

W18S (Figure 5A); yet L22S caused less death than W18A/S

(Figure 5B). These results suggest that the exposed hydrophobic

residues along Vpr helix-1 are important for cytopathicity, and

that G2/M arrest frequently correlates with cell death, similar to

the results with the helix-3 mutants [18].

Discussion

Vpr likely functions by binding with partner proteins [1,2,28],

and our lab has previously shown a role for the exposed

hydrophobic patch along Vpr helix-3, an expected protein-protein

interaction site, in the G2/M cell cycle arrest and cell death

functions [18]. Here, we present an analysis of another expected

protein binding domain, the hydrophobic patch of Vpr helix-1, for

Vpr-induced G2/M arrest and cytopathicity, as well as virion

incorporation. Although, the expected defect in virion incorpora-

tion was observed with the mutations we created, this is the first

examination specifically of the hydrophobic patch residues. The

L22E mutant was particularly impaired in virion incorporation,

suggesting that the introduction of a negative charge at this site

inhibits the binding of Vpr to the p6 region of the Gag

polyprotein. We found that the exposed hydrophobic amino acids

W18 and L22 are important for both G2/M arrest and

cytopathicity, and that these two properties of Vpr are correlated.

We found that specific mutants of W18 and L22 reduced cell

cycle arrest to varying degrees in both virion delivery of Vpr and

transient transfection. The differences between the mutations to A,

S, and E at each position were most apparent with Vprv due to the

higher degree of cell cycle arrest caused by this technique. However,

even though the differences were smaller using transfection, the

same trend was seen between the mutants (Figures 4 and 5A). The

correlation between G2/M arrest and Vpr-induced death caused by

Vprv is similar to our previous study of Vpr helix-3 [18]. However,

analysis of the helix-3 mutants in the context of HIV-1 infection did

not show reduced cytopathicity. This was due to a G1 arrest caused

by the mutant Vpr. Even though the infected cells exhibited a more

normal DNA content profile, the cells were still inhibited from

proliferating [18]. It would be interesting to test whether the helix-1

mutants relieve G2/M arrest but promote a G1 arrest during HIV-

1 infection, and thus still kill the infected cell.

Vpr is thought to mediate all of its known functions through the

binding of partner molecules [26,28]. We and others have shown

that Vpr binds to the 14-3-3 family of scaffold proteins [42,46].

This interaction induces a large molecular complex nucleated on

the 14-3-3 protein that consists of a number of cell cycle regulatory

proteins [42]. Recently, multiple groups have found that Vpr

binds to an E3 ubiquitin ligase comprised of DCAF1/VprBP,

DDB1, Cul4, and Roc1 [16,47,48,49,50,51,52]. Vpr is proposed

to recruit an unknown but critical cell cycle component into the E3

ligase complex and induce the abnormal degradation of that

unknown cell cycle protein. This mechanism has already been

shown to occur for the UNG2 protein [15,16,17]. Perhaps the

hydrophobic patch of Vpr helix-1 and/or helix-3 participates in

the interaction between Vpr and any of these partner proteins.

Thus, it would be interesting to examine the role of exposed

hydrophobic residues along these a-helices (W18, L22, I63, L67,

and I74) in Vpr-dependent molecular complexes.

A close examination of our data and the results of the helix-3 study

reveals that none of the mutants completely abrogated G2/M arrest

[18]. However, all of these mutants only substitute a single residue. It

is possible that a single change in either of the hydrophobic patches is

not enough of a disruption of the chemical nature of the putative

protein interaction site. Therefore, testing combinations of mutants,

such as W18A and L22A, may further reduce cell cycle arrest and cell

death cause by Vpr. Another possibility is that the exposed

hydrophobic amino acids along both Vpr helices could actually

comprise one protein interaction site. The hydrophobic side groups

do orient to the same outward ‘‘half’’ of the core of Vpr (Figure 1).

However, the ‘‘ridge’’ of arginines along helix-3 (Figure 1C, E, and G)

would likely disrupt the continuity of a single large hydrophobic

patch. Perhaps mutations in both patches are necessary to completely

inhibit the G2/M arrest function.

We have previously shown that HIV-1 causes a necrotic death

of the host CD4+ T cells and T cell lines [53,54]. The accessory

proteins Vpr and Vif are independently able to cause this

cytotoxicity [19]. Interestingly, both Vpr and Vif are able to

induce a G2/M cell cycle arrest, suggesting that cell cycle arrest

may be the cause of HIV-induced necrosis [19,42]. In fact,

mutants of the exposed hydrophobic residues of Vpr helix-3 cause

a G1 cell cycle arrest in the context of HIV-1 infection. This G1

arrest still leads to the death of the host cell, indicating that any

inhibition of proliferation of HIV-1 infected cells will cause the

death of the cell [18]. It would be interesting to test whether the

helix-1 mutants also induced a G1 arrest in the context HIV-1

infection leading to cell death. Further investigation into the exact

mechanism linking cell cycle arrest to cytopathicity could provide

possible targets for therapies that would reduce the depletion of

CD4+ T cells during HIV-1 infection.

We found that the exposed hydrophobic amino acids W18 and

L22 are important for both G2/M arrest and cytopathicity, and

that these two properties of Vpr are correlated. Although this is

not the first study to implicate the amino-terminal region of Vpr in

cell cycle arrest, there are unresolved questions in the previous

mutagenesis findings. Mutations of hydrophobic core residues,

such as A30L [29] and H33R [40], would likely cause misfolding

of the protein around the core [27]. Introduction of proline

residues into the first a-helix, such as the E21,24P mutation [30],

would destroy the helical structure of that region, and probably

alter the entire global structure of Vpr [26]. We cannot be certain

that the W18 and L22 mutations that we introduced did not

significantly alter Vpr structure without further structural

examination. However, these residues do not interact with the

hydrophobic core of the protein, and disruption of the local

secondary structure by the substitute residues is unlikely.

Therefore, this is the first study showing a role for the helix-1

hydrophobic patch in Vpr-induced G2/M arrest and cytotoxicity.
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