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Abstract

The main virulence factor of Streptococcus pneumoniae is the capsule. The polysaccharides comprising this capsule are
encoded by approximately 15 genes and differences in these genes result in different serotypes. The aim of this study was
to investigate the sequence diversity of the capsular genes of serotypes 6A, 6B, 6C, 19A and 19F and to explore a possible
effect of vaccination on variation and distribution of these serotypes in the Netherlands. The complete capsular gene locus
was sequenced for 25 serogroup 6 and for 20 serogroup 19 isolates. If one or more genes varied in 10 or more base pairs
from the reference sequence, it was designated as a capsular subtype. Allele-specific PCRs and specific gene sequencing of
highly variable capsular genes were performed on 184 serogroup 6 and 195 serogroup 19 isolates to identify capsular
subtypes. This revealed the presence of 6, 3 and a single capsular subtype within serotypes 6A, 6B and 6C, respectively. The
serotype 19A and 19F isolates comprised 3 and 4 capsular subtypes, respectively. For serogroup 6, the genetic background,
as determined by multi locus sequence typing (MLST) and multiple- locus variable number of tandem repeat analysis
(MLVA), seemed to be closely related to the capsular subtypes, but this was less pronounced for serogroup 19 isolates. The
data also suggest shifts in the occurrence of capsular subtypes within serotype 6A and 19A after introduction of the 7-valent
pneumococcal vaccine. The shifts within these non-vaccine serotypes might indicate that these capsular subtypes are filling
the niche of the vaccine serotypes. In conclusion, there is considerable DNA sequence variation of the capsular genes within
pneumococcal serogroup 6 and 19. Such changes may result in altered polysaccharides or in strains that produce more
capsular polysaccharides. Consequently, these altered capsules may be less sensitive for vaccine induced immunity.
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Introduction

Streptococcus pneumoniae, the pneumococcus, is responsible for

infections such as meningitis, pneumonia and otitis media. The main

virulence factor of the pneumococcus is its polysaccharide capsule. It

protects the bacteria against phagocytosis and plays an important role

in colonization of the upper airways [1]. Based on the reaction of the

capsule polysaccharides with antisera, over 90 serotypes are

recognized [2,3,4]. The sugars of the polysaccharides and the linkage

between these sugars differ for each of the serotypes. The genes

encoding the polysaccharides are located within the capsular gene

locus and have a similar arrangement in most serotypes. The locus is

positioned between the genes dexB and aliA [5,6]. At the 59 end, next

to dexB, the genes for regulation and translocation are located. These

genes, designated wzg, wzh, wzd and wze, are relatively conserved in all

serotypes [7]. The genes involved in the synthesis of the

polysaccharide and encoding glycosyltransferases, flippases and

polymerases are located downstream of the regulatory genes. The

wzx encodes flippase which is responsible for the transport of the

sugars across the cytoplasmic membrane. Wzy codes for the

polymerase-activity responsible for the synthesis of the polysaccha-

rides in the so-called wzy-dependent pathway [8,9]. Virtually all

different polysaccharides are synthesized by this pathway except

serotype 3 and 37 polysaccharides which are synthesized by the

synthase-dependent pathway, using the synthase-encoding gene tts

which is located elsewhere on the chromosome [6,10].

For some serotypes the sequence of the capsular locus was already

available [5,6,11,12] but in 2006 the sequences of the capsular locus

for the known 90 serotypes were published simultaneously [7].

Recently, new serotypes were recognized based on the DNA

sequence of the genes in the capsular locus, for example serotype 6D

[2]. Nowadays, serogroup 6 consists of serotype 6A, 6B, 6C and 6D.

The difference between serotype 6A and 6B is claimed to be based

on only a single nucleotide in wciP [13]. Two other polymorphisms

in wciP have been found to be associated with serotype 6A or 6B, but

there is uncertainty whether they are serotype specific [14,15]. The

polysaccharides from serotype 6A and 6B isolates differ in the way

rhamnose is linked to ribitol. The capsular locus of serotype 6C is

similar to serotype 6A, except for wciN which is altered and is 200

base pairs shorter in serotype 6C than in serotype 6A [4]. The

glucose in serotype 6A polysaccharide is substituted by galactose in

serotype 6C [16]. The capsular locus of serotype 6D is similar to

that of serotype 6B but it contains the same altered wciN gene found

in serotype 6C [2].

The capsular gene loci of serogroup 19 were among the first to

be fully investigated [17]. The capsular genes of serotype 19F are

quite similar to those of 19A and also serotype 19B and 19C have
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quite similar capsular genes. The differences between serotype

19A and 19F in the polysaccharides is based on the linkage

between trisaccharides and wzy is thought to account for this

difference in linkage [17,18]. The serotypes 19B and 19C contain

an additional side chain compared to serotypes 19A and 19F and

have additional genes encoding these side chains [17].

In a study to assess the pneumococcal population in the pre-

vaccination era in the Netherlands, capsular sequence typing

(CST) revealed discrepancies between the phenotypic and

genotypic serotyping within serogroup 6 [19]. CST is a molecular

typing method to assess the serotype of a pneumococcal isolate and

is based on a 506 base pairs sequence of the wzh gene. Serotype 6B

and 19F are included in 7-valent pneumococcal conjugate vaccine

(Pfizer Inc., Philadelphia, PA; PCV7), the vaccine that is currently

used in the Netherlands. Epidemiological data show that serotype

19A is increasing in the USA [20] and also in the Netherlands

after implementation of the vaccine in the national immunization

program (unpublished data). This, in combination with the

discrepancies found using CST between the phenotypic and

genotypic serotyping within serogroup 6 prompted us to study

these serotypes to gain insight in the sequence variation of the

capsular loci within these serotypes and the role in vaccine induced

immunity.

Materials and Methods

Isolates
Pneumococcal isolates from blood or cerebrospinal fluid in

2004, 2005, 2008 and 2009 were from patients with invasive

pneumococcal disease and collected by the Netherlands Reference

Laboratory for Bacterial Meningitis (NLRBM, Amsterdam, the

Netherlands). Serotyping was performed at the NLRBM using the

Quellung reaction as previously described [21,22]. For molecular

analyses bacteria were grown in 1 ml brain heart infusion broth

with 0.5% yeast-extract overnight at 37uC and 5% CO2. Of each

culture 500 ml was heated for 10 min at 95uC and these lysates

were either used directly or stored at 220uC until use.

For comparison of the number of isolates within capsular

subtypes in the pre- and post-vaccine era, only the strains isolated

by 9 large medical microbiology laboratories, referred to as the

sentinel laboratories, were used. This pneumococcal collection

represents approximately 25% of all cases from Dutch patients

with invasive pneumococcal disease in the Netherlands that

occurred in the years 2004–2005 and 2008–2009.

Sequencing of the complete capsular gene loci
The capsular loci of 25 isolates of serogroup 6 and 20 isolates of

serogroup 19 were sequenced. Primer design was based on

reference sequences [4,7] and performed with Kodon 3.6 software

(Applied Maths, Sint-Martens-Latem, Belgium). The PCR mix-

ture of 20 ml contained Hotstartaq mix (Qiagen, Hilden,

Germany), 10 mM of primer and 2 ml lysate diluted 1:10 in sterile

water. The PCR reaction was 15 min 96uC, 35 cycles of 30 sec

96uC, 1 min 50uC and 3 min 72uC followed by 10 min 72uC and

for products ,1 kb the PCR reaction was the same except 1 min

72uC instead of 3. PCR products were purified with ExosapIt (GE

Healthcare Life Sciences, Chalfont St Giles, U.K.) according to

manufacturer’s protocol. One ml aliquots of the purified PCR

products were used in the sequence reaction on an AB 3730

genetic analyzer using Big Dye Terminator technology (Life

Technologies Corporation, Carlsbad, CA). The sequences of the

complete capsular gene loci are deposited in Genbank (www.ncbi.

nlm.nih.gov/Genbank) with the accession numbers JF911487–

JF911531.

Screening for serogroup 6 and 19 capsular subtypes
If one or more genes varied in 10 or more base pairs from the

reference sequences published by Bentley et al. [7] and Park et al.

[4], the isolate was designated as a capsular subtype. This

threshold of 10 base pairs was arbitrarily chosen to allow for

sufficient differences leading to amino acid substitutions. All

serogroup 6 (n = 184), serotype 19A and 19F isolates (n = 195) in

our collection were screened using allele-specific PCRs to identify

the capsular subtypes. The allele-specific PCRs for serogroup 6

were created for the variable parts of wzy and rmlC, for serotype

19A for the variable parts of wzg, rmlC, rmlB and rmlD and for

serotype 19F for the variable parts of wzg, wze, wchA and rmlB. For

serogroup 6, the variations within the wzg and rmlA genes were

assessed by sequencing.

Genotyping
Multiple-locus variable number of tandem repeat analysis

(MLVA) was performed as described in detail by Elberse and

Nunes et al. [23]. Briefly, 8 variable number of tandem repeat loci

were amplified in 2 multiplex PCRs in which one of the primers of

each primer pair carried a distinct fluorescent label. The PCR

products were mixed with a fluorescently labeled size standard

(Life Technologies Corporation, Carlsbad, CA) and sized on an

automated sequencer (AB 3730 genetic analyzer). Multi locus

sequence typing (MLST) was performed as previously described

[24,25].

Data Analysis
Alignment of the sequences was performed with Kodon 3.6.

Data analysis and clustering were performed using Bionumerics

version 6.5 (Applied Maths, Sint-Martens-Latem, Belgium).

Tables with the MLVA profiles were imported from the

Genemarker software into Bionumerics and the profiles were

clustered using a categorical similarity coefficient and displayed in

a minimum spanning tree. In a minimum spanning tree circles

indicate the types. The size of the circle indicates the number of

isolates with that particular MLVA type. The lines linking 2 types

in the tree denote variants that differ from each other in a single

VNTR locus (single locus variants). For the minimum spanning

trees all entries from the database were used (n = 3592, database

composition on December 20th, 2010) but only the serogroup 6

and 19 isolates were depicted. For assignment of MLVA

complexes, the entire in-house MLVA database (available at

www.mlva.net) was interrogated and the MLVA types with a

single entry were excluded from the complex assignment. MLVA

types belonged to a MLVA complex if their profiles differed in

only a single VNTR locus. MLVA complexes were assigned as

such only if they contained at least 3 MLVA types and a minimum

of 9 entries. The discriminatory ability of the MLVA was

measured using the Simpson’s index of diversity (SID) and 95%

confidence intervals were calculated as proposed before [26,27].

Results

Diversity in the capsular genes of serogroup 6 and 19
The entire capsular locus of 11 serotype 6A isolates was

sequenced and capsular subtypes were identified using the

criterion of 10 or more nucleotide differences in one or more

capsular genes from the reference sequence [4,7]. Six distinct

capsular 6A subtypes could be identified (Fig. 1, designated 6A I–

VI). Major differences were found in wzg and in the rhamnose-

genes, rmlA, rmlC and rmlB. Two isolates had sequences identical to

the reference isolate with the exception of a single nucleotide and

were called capsular subtype 6A-IV. An additional 64 serotype 6A

Sequence Diversity in Pneumococcal Capsular Genes
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isolates from our pneumococcal collection were screened by allele-

specific PCRs and sequencing of the wzg and rmlC genes which led

to another 6 new capsular subtypes (Table 1). The most frequently

found capsular subtypes were 6A-I and 6A-II (23 and 22 isolates,

respectively). The genes with the highest degree of sequence

variation were wzg, rmlA and rmlB. The diversity index of serotype

6A capsular subtypes was 0.799 (0.747–0.850).

The serotype 6B isolates appeared to comprise a more

homogeneous group (diversity index: 0.143 (0.046–0.240) than

serotype 6A (Fig. 1 and Table 1). Ninety-three percent (87 of the

94 serotype 6B isolates) of serotype 6B isolates within our

collection belonged to capsular subtype 6B-I. The main differences

were found within the wzg gene and the rml genes. Remarkably,

virtually all capsular genes in the 3 capsular subtype 6B-III isolates

within the collection differed to a large extent from those in the

reference sequence and from the capsular genes of other serotype

6B capsular subtypes. Screening of the serotype 6B isolates with

allele-specific PCRs and specific gene sequencing resulted in a

single additional new capsular subtype only. Based on the allele-

specific PCRs, capsular subtype 6A-III and 6B-I were indistin-

guishable but according to the sequences of the entire capsular

genes, there was a difference of 19 base pairs between the capsular

subtypes.

The sequences of the complete capsular locus of 3 serotype 6C

isolates were identical. However, the rmlA and rmlB genes in these

isolates differed from those of the reference sequence described by

Park et al. [4]. The screening of the additional 12 serotype 6C

isolates within the collection yielded a single new capsular subtype.

No serotype 6D isolates were found in our collection.

Parts of the rmlA and rmlC genes within serogroup 6 were found

within all capsular subtypes, while other parts of the rmlA and rmlC

genes were specific for a capsular subtype (Fig. 2). This may

indicate that it is a possible recombination site within these genes.

The sequence of wzg of serogroup 6 isolates can be divided into 3

classes. Capsular subtype 6B-III consists of a single wzg class. The

remaining serogroup 6 capsular subtypes could be divided into 2

wzg classes, with 33 base pairs that were specific for each class. It

seemed that a hotspot for mutations was present from base pair

position 951–1116 within this gene. For example, the sequence of

wzg of capsular subtype 6A-III differed from the reference

sequence in 45 base pairs, and 78% (35) of the different base

pairs were found in the mutational hotspot.

Within the sequenced capsular gene clusters of 10 serotype 19A

isolates 3 capsular subtypes were identified (Fig. 3). Screening with

allele-specific PCRs identified no new capsular subtypes within

serotype 19A. Within our collection, 41, 38 and 35 isolates

belonged to capsular subtypes 19A-I, 19A-II and 19A-III,

respectively. The main differences between the capsular subtypes

were found in wzg, rmlC, rmlB and rmlD. The first 363 base pairs of

rmlC of the 19A capsular subtypes were identical to the sequence of

Figure 1. Schematic overview of the capsular gene loci of serogroup 6 isolates. The sequences were compared with the reference
sequences [4,7]. If 10 or more base pairs differed in one or more genes, a new allele number was assigned to the gene. The various alleles are
indicated with colors that differ from the dark blue colors used for the reference genes.
doi:10.1371/journal.pone.0025018.g001
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the reference 19F isolate (Fig. 2). Furthermore, the rmlD gene of

19A-I and 19A-II appeared to be in the opposite orientation

compared with the rml genes in all other sequenced capsular gene

clusters.

Within the 10 sequenced serotype 19F isolates 4 capsular

subtypes were identified. One capsular subtype, 19F-III, was

rather similar to the reference sequence of Bentley et al. [7].

Screening by allele-specific PCR identified 44, 26, 10 and a single

isolate belonging to capsular subtypes 19F-I, 19F-II, 19F-III and

19F-IV, respectively, but no new capsular subtypes within this

serotype.

Amino acid substitutions in the central region of the
capsular locus of serogroup 6 capsular subtypes

The amino acid substitutions caused by changes in the genes

involved in synthesis and export of the polysaccharides for the

serogroup 6 capsular subtypes are depicted in Fig. 4. Capsular subtype

6B-III was not included in this figure, because of the extensive

differences. Also, the capsular loci of serotype 6C differed significantly

from serotype 6A and 6B isolates in the wciN gene and therefore the

wciN gene for serotype 6C was named wciN6C. Within serotype 6A,

capsular subtype 6A-II had the most amino acid substitutions and

capsular subtype 6A-IV had no substitutions compared with the

reference sequence. In wchA most non-synonymous substitutions were

found in capsular subtype 6A-I and 6A-V. In the wciN and wciP genes,

a single non-synonymous substitution in 6A capsular subtypes was

identified. The wzy genes of capsular subtypes 6A-II and 6A-VI each

had a 10 nucleotides difference compared with the reference sequence

resulting in 6 amino acid changes.

Among the capsular subtypes of serotype 6B isolates only 4 non-

synonymous substitutions were identified; one in wzy and 3 in wzx.

Capsular subtype 6B-III was substantially different from the other

capsular subtypes (Table 2). In all 6B-III genes involved in

synthesis and export of the polysaccharides there were numerous

non-synonymous substitutions. Most of these changes in amino

acids were identified in wzy and wchA (29 amino acids), both

caused by 34 nucleotide mutations. The lowest number of changes

was found in wciP, and comprised 12 amino acid substitutions.

Three non-synonymous substitutions in wciN were identified in

the serotype 6C isolates compared with the 6C reference sequence

(Fig. 4). Also in wciO, wciP and wzy, 1 to 2 non-synonymous

substitutions were identified. In wzy, all serotype 6C isolates

showed a deletion of 3 residues at position 152 to 154 compared to

serotype 6A and 6B sequences (data not shown).

In wciP, amino acids that distinguish serotype 6A from serotype

6B were found at position 192, 195 and 254 (Table 3). The

serotype 6C isolates were identical in these positions to serotype

6A isolates. In a single serotype 6A isolate a non-synonymous

substitution in position 192 was identified that was not consistent

with the other serotype 6A isolates. This isolate belonged to

capsular subtype 6A-IX, the only isolate identified within this

subtype. The genetic background of this isolate is related to isolates

within the MLVA complex comprising 6A-II and 6C-I isolates.

Amino acid substitutions in the central region of the
capsular loci of serogroup 19 capsular subtypes

The serogroup 19 isolates differed only in a few amino acid

residues from the reference sequences (data not shown). In

capsular subtype 19A-I a single non-synonymous substitution in

wchA, wchP and wzy was identified. In the capsular subtypes 19A-II

and 19A-III there was a single non-synonymous substitution in

wchA and in wzy, but the positions of the substitutions differed

between both capsular subtypes. The wze gene of capsular subtype

Table 1. Capsular subtypes within the serogroup 6.

Sequencing
(bp.)1 PCR1

n Subtype wzg rmlA wzy rmlC

Serotype 6A (n = 75) 23 6A-I 4 (18) 3 (52) 1 1

22 6A-II 5 (14) 2 (64) 2 1

10 6A-III 1 (45) 1 (27) 1 1

7 6A-IV 6 (01) 5 (00) 1 1

4 6A-V 4 (18) 4 (16) 1 1

1 6A-VI 5 (13) 2 (64) 2 2

3 6A-VII2 1 (53) 7 (65) 1 1

1 6A-VIII2 5 (14) 1 (27) 2 1

1 6A-IX2 5 (14) 4 (16) 2 1

1 6A-X2 9 (18) 3 (52) 1 1

1 6A-XI2 5 (14) 1 (27) 2 1

1 6A-XII2 8 (16) 1 (27) 1 1

Serotype 6B (n = 94) 87 6B-I 1 (53) 1 (30) 1 1

3 6B-II 7 (17) 4 (40) 1 1

3 6B-III 3 (159) 6 (135) 3 3

1 6B-IV2 3 (159) 5 (52) 3 1

Serotype 6C (n = 15) 12 6C-I 2 (02) 2 (31) 23 1

3 6C-II2 2 (02) 3 (00) 23 1

1The various alleles are indicated with different numbers. Base pair difference
compared to the reference sequences [4,7] are indicated between brackets.

2Subtype identified by screening only.
3Differences between the serotype 6C and 6A wzy gene could not be detected
with this PCR.

doi:10.1371/journal.pone.0025018.t001

Figure 2. Mosaic structure indicating possible horizontal
transfer within the rmlA and rmlC genes. Schematic overview of
the rmlA and rmlC genes of serogroup 6 and 19. The various colors
indicate similar sequences within the genes.
doi:10.1371/journal.pone.0025018.g002
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19F-III was identical to the reference sequence but in capsular

subtypes 19F-I, 19F-II and 19F-IV this gene was 2 amino acids

shorter. Furthermore, capsular subtype 19F-I and 19F-II had 3

non-synonymous substitutions and 19F-IV had 4 non-synonymous

substitutions in this gene compared with the reference sequence.

The wchA gene of capsular subtype 19F-II and 19F-IV differed in

24 non-synonymous amino acid substitutions from the reference

sequence. A few non-synonymous substitutions were identified in

wchO, wchP, wzy and wzx in all of the 19F capsular subtypes.

Genetic background compared with capsular subtypes
MLST and MLVA were performed on the isolates for which the

capsular loci were completely sequenced. Both MLST and MLVA

were performed because MLST is still considered the gold

standard and MLVA can be easily performed on large scale.

The correlation between MLST and capsular subtype was high for

serogroup 6 subtypes, with some exceptions. The MLST profiles

of the capsular subtype 6A-II isolates differed in a single locus (4

base pairs) from each other (Table 4). The MLVA profiles of these

Figure 3. Schematic overview of the capsular gene loci of serogroup 19 isolates. The sequences were compared with the reference
sequences [7]. If 10 or more base pairs differed in one or more genes, a new allele number was assigned to the gene. The various alleles are indicated
with colors that differ from the dark blue (19A) and red (19F) colors used for the reference genes.
doi:10.1371/journal.pone.0025018.g003

Figure 4. Amino acid substitutions in the alleles of the serogroup 6 capsular subtypes. The non-synonymous amino acid substitutions in
the central region of the capsular locus of the serotype 6A, 6B and 6C subtypes are provided compared with the reference sequences [4,7]. Subtype
6B-III was not included in this figure because of the extensive differences. Also, the capsular loci of serotype 6C differed significantly from serotype 6A
and 6B isolates in wciN and therefore the wciN for serotype 6C was depicted as wciN6C.
doi:10.1371/journal.pone.0025018.g004
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isolates were different in 3 loci, of which 2 loci could not be

amplified, probably because of mutations in the primer sites and

therefore the exact number of repeats is unknown. A single 6B-I

isolate yielded a different MLVA type (MT 528 versus MT 524)

while the ST (ST 176) was identical to other 6B-I isolates (n = 4).

The 3 serotype 6C isolates had the same ST but different MTs.

Both the MLST and the MLVA of the serogroup 19 isolates

were highly diverse (Table 4). In the 10 serotype 19A isolates

assessed by MLST, 8 different STs were found and 9 different

MTs. There was no correlation between capsular subtypes and

MLST or MLVA, except for MT67 in the capsular subtype 19A-

III isolates. Also, the genetic background for serotype 19F isolates

was very different, yielding 10 different STs and 9 different MTs

within the 19F isolates. There were 4 new STs within the serotype

19F isolates that were yet unknown in the MLST.net database.

MLVA for all isolates
MLVA was performed for all serogroup 6 and 19 isolates (Fig. 5

and 6, respectively). The isolates within capsular subtype 6A-II

and the serotype 6C-I isolates were closely related based on

MLVA and MLST. Remarkably, capsular subtype 6B-I separated

into 2 large MLVA complexes. The MLVA types within the 2

subtype 6B-I MLVA complexes differed from each other in 4 or

more loci. The sequence of the capsular genes of the 2 MLVA

complexes within the capsular subtype 6B-I isolates differed

mutually in only 2 base pairs, but this did not lead to amino acid

changes.

Despite the high degree of genotypic diversity as assessed by

MLST and MLVA 52% of the serotype 19A isolates belonged to a

single MLVA complex. The majority (84%) of the capsular

subtype 19A-II isolates belonged to this complex. The capsular

subtypes 19A-I and 19A-III were more diverse, because only 24%

and 43% of these capsular subtypes belonged to that single

complex, respectively. The MLVA of the serotype 19F isolates

revealed a higher degree of diversity than the MLVA of 19A

isolates. Of the 70 MLVA types found within the serotype 19F

isolates, only 7 MLVA types were shared by 2 or more 19F

isolates. The other 63 MLVA types included only a single serotype

19F isolate. Within the 19F-I capsular subtype 56% of the isolates

were single locus variants of each other and clearly formed a

group. However, this group did not meet the criteria to form a

MLVA complex. Within the 19F-II capsular subtype, 46% of the

isolates were genetically related based on MLVA. Other 19F

isolates were scattered throughout the MLVA minimum spanning

tree.

Distribution of capsular subtypes before and after the
introduction of the vaccine

In June 2006 PCV7 was introduced in the Netherlands. Shifts in

capsular subtypes within serotypes after the introduction of the

vaccine were observed (Table 5), although numbers were small.

The number of cases caused by capsular subtype 6A-III had

decreased from 7 cases in 2004–2005 to 1 case in 2008–2009. Also

a decrease in capsular subtype 6C-I and an increase in capsular

subtype 6C-II was observed. Remarkably, capsular subtype 19A-I

accounted for 41% of the serotype 19A isolates in our collection in

the pre-vaccination period and only for 24% in the post-

vaccination period. In contrast, capsular subtype 19A-II increased

within the post-vaccination period from 27% to 44%. Although

these findings are noteworthy, the shifts are not statistically

significant. Based on MLVA, there were 4 MLVA groups of

serotype 19 isolates. The largest group contained isolates of

capsular subtypes 19A-I, 19A-II and 19A-III. The capsular

subtype 19A-I isolates, isolated after the introduction of the

vaccine, were not present in this predominant serotype 19A

MLVA complex, but were found throughout the MLVA

minimum spanning tree and within the other 3 serotype 19A

MLVA groups. The number of vaccine serotype 19F isolates

significantly decreased after the introduction of the vaccine, in

contrast with the isolates belonging to vaccine serotype 6B.

Discussion

In this study we investigated the sequence diversity of the

capsular gene loci within the serotypes belonging to serogroup 6

(serotypes 6A, 6B, 6C) and serogroup 19 (serotypes 19A and 19F)

of isolates from the Netherlands. We observed considerable

variations among the capsular genes within serotypes which

enabled us to assign capsular subtypes based on the sequence of

the entire capsular locus. The largest number of capsular subtypes

was found among serotype 6A, but in serotype 6B the highest

degree of sequence variation between capsular subtypes was

found. Capsular subtype 6B-III differed to a large extend from the

6B reference sequence and from the other 6B capsular subtypes.

For both serogroup 6 and serogroup 19 most sequence diversity

was found in wzg and the rml genes. Possible horizontal transfer of

part of the genes was observed in rmlA and rmlC genes.

Furthermore, in capsular subtype 19A-I and 19A-II, rmlD was

oriented in the opposite direction compared with the rest of the

capsular loci. Remarkably, we observed a decline in a serotype 6A

capsular subtype and a switch between the capsular subtypes of

19A just 2 years after the introduction of PCV7 in the Dutch

national immunization program.

The correlation between the genetic background as determined

by MLVA and MLST and the capsular subtypes was high for

serogroup 6. The isolates within a capsular subtype all had

identical or closely related MLVA profiles. Only the isolates within

capsular subtype 6B-I were separated into 2 MLVA complexes.

Mavroidi et al. assigned cps profiles to the wciP, wzy and wzx genes

of the serogroup 6 isolates based upon single nucleotide differences

[13,28]. MLST of these isolates showed considerable diversity and

Table 2. Nucleotide substitutions and amino acid changes in
subtype 6B-III compared with the 6B reference sequence.

wchA wciN wciO wciP wzy wzx

Synonymous substitutions 44 39 36 19 23 45

Non-synonymous substitutions 34 48 33 12 34 30

Number of amino acid
substitutions

29 27 27 12 29 23

doi:10.1371/journal.pone.0025018.t002

Table 3. Serotype specific important residues in the wciP
gene of serogroup 6.

Position amino acid

serotype n 192 195 254

6A 74 GCT (A) AGT (S) AGG (R)

1 ACT (T) AGT (S) AGG (R)

6B 92 TCT (S) AAT (N) GGG (G)

6C 15 GCT (A) AGT (S) AGG (R)

doi:10.1371/journal.pone.0025018.t003
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they found STs that included both serotype 6A and 6B isolates.

The serotype 6A and 6B isolates in our study did not show overlap

in MLST or MLVA. We verified whether the capsular subtype

assignment would be different if we would assign the capsular

subtypes in this study based on a difference of only a single base

pair in the wciP, wzy and wzx genes, but the capsular subtype

division of our collection remained unaltered. A possible

explanation for the difference between Mavroidi’s results and

ours may be the large diversity in source of isolation and

geographic origin of the isolates of Mavroidi et al. whereas we used

only pneumococcal isolates isolated from patients with invasive

disease within the Netherlands.

We identified 3 isolates of capsular subtype 6B-III in which the

genes of the entire capsular locus differed by 943 base pairs (6%)

from the serotype 6B reference sequence, resulting in 282 (5%)

amino acid changes. In the genes involved in biosynthesis, 397

(5%) base pairs differed from the reference sequence, resulting in

147 (6%) amino acids changes. BLAST results revealed that this

sequence was similar to an unpublished GenBank entry

(AF246897). Also, this sequence is similar to a sequence designated

Table 4. Sequence types and MLVA types of the capsular subtypes.

MLST MLVA (BOX loci)

Serotype Subtype n ST aroe gdh gki recP spi xpt ddl MT 1 2 3 4 6 11 12 13

6A 6A-I 2 681 2 5 9 1 6 19 14 578 4 3 12 5 2 1 1 5

6A-II 1 327 1 5 7 12 10 1 14 697 5 3 99 99 2 1 1 6

6A-II 1 3218 1 5 7 12 10 1 8 742 6 3 5 3 2 1 1 6

6A-III 2 207 10 8 30 5 6 1 9 667 5 3 2 4 1 99 3 1

6A-IV 2 65 2 7 4 10 10 1 27 66 1 2 7 3 3 1 4 3

6A-V 2 1143 7 25 4 1 15 1 28 392 3 2 7 4 3 2 6 2

6A-VI 1 327 1 5 7 12 10 1 14 691 5 3 12 99 2 1 1 6

6B 6B-I 2 138 7 5 8 5 10 6 14 245 2 3 2 2 3 2 7 5

6B-I 4 176 7 13 8 6 10 6 14 524 4 2 2 3 2 2 6 6

6B-I 1 176 7 13 8 6 10 6 14 528 4 2 2 3 2 2 99 6

6B-II 1 497 7 25 4 2 48 20 28 406 3 2 12 4 0 1 7 2

6B-II 1 new1 7 25 9 4 48 20 8 403 3 2 9 4 3 1 7 2

6B-III 1 new2 7 6 1 8 6 1 14 413 3 3 1 3 2 2 1 5

6B-III 1 90 5 6 1 2 6 3 4 775 7 2 6 3 2 2 1 2

6C 6C-I 1 1692 1 5 7 12 17 158 14 651 5 2 11 99 2 1 1 7

6C-I 1 1692 1 5 7 12 17 158 14 870 5 3 99 3 2 1 1 6

6C-I 1 1692 1 5 7 12 17 158 14 653 5 2 12 3 2 1 1 6

19A 19A-I 1 1521 10 43 4 1 6 4 8 69 1 2 7 4 2 2 5 5

19A-I 1 193 8 10 2 16 1 26 1 846 99 2 9 2 1 1 1 6

19A-I 1 416 1 13 14 4 17 51 14 68 1 2 7 4 2 2 5 3

19A-I 1 423 1 5 4 12 5 3 8 71 1 2 7 4 2 2 6 5

19A-I 1 199 8 13 14 4 17 4 14 535 4 2 6 1 1 99 2 1

19A-I 1 1045 7 14 4 12 1 14 14 634 5 2 3 5 2 1 10 1

19A-I 1 179 7 14 40 12 1 1 14 450 3 3 8 6 3 2 3 3

19A-II 1 199 8 13 14 4 17 4 14 80 1 2 8 4 2 1 5 3

19A-III 1 309 8 10 2 5 9 48 6 67 1 2 7 4 2 1 5 3

19A-III 1 416 1 13 14 4 17 51 14 67 1 2 7 4 2 1 5 3

19F 19F-I 1 3008 1 5 14 4 17 51 14 296 2 3 10 99 2 2 9 1

19F-I 1 1045 7 14 40 12 1 1 14 804 7 3 12 99 2 2 7 1

19F-I 1 200 8 13 14 4 1 4 14 295 2 3 10 99 2 2 7 1

19F-I 1 new3 5 5 62 5 9 3 19 434 3 3 5 3 2 1 12 2

19F-II 1 172 7 13 8 6 25 6 8 68 1 2 7 4 2 2 5 3

19F-II 1 876 8 13 14 4 6 4 14 480 3 4 7 6 0 1 5 3

19F-II 1 new4 10 8 30 35 9 1 9 555 4 2 16 3 2 1 9 5

19F-III 1 new5 2 27 2 4 9 6 31 162 2 2 1 2 2 1 6 1

19F-III 1 new6 1 new 9 12 9 3 19 1005 3 2 6 3 2 1 5 4

19F-IV 1 199 8 13 14 4 17 4 14 68 1 2 7 4 2 2 5 3

99, locus could not be amplified.
doi:10.1371/journal.pone.0025018.t004
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as a class 2 sequence of serotype 6B by Mavroidi et al. and a class 2

sequence contains almost always an INDEL in wciP and differs in

5.4% from the reference sequence in wciP, wzx and wzy [13,28]. As

virtually all capsular genes differ from other serotype 6B capsular

subtypes, we believe that capsular subtype 6B-III may represent a

different serotype that expresses a capsular polysaccharide which

cross-reacts with the 6B specific antiserum. After serological and

biochemical characterization has confirmed the distinct nature of

this variant it may well become ‘serotype 6E’.

Park et al. suggested that serotype 6C had evolved from a

serotype 6A strain of which wciN was replaced by one of an

unknown origin [4]. However, recently Bratcher et al. refined this

theory and suggested that serotype 6C has evolved independently

from serotype 6A. Serotype 6C would have evolved by the

recombination of a large DNA fragment including both wciN and

wzy from a nasopharyngeal gene pool that has not yet been defined

[28]. However, our data show that the MLST and MLVA profiles

of capsular subtype 6A-II and 6C are closely related and this

would support the theory of Park et al. that serotype 6C is a

descendent of serotype 6A.

According to literature, the difference between the capsule

produced by serotype 6A and 6B strains is caused by a single

nucleotide substitution in wciP at amino acid residue 195 [13],

which was found in more than 100 serotype 6A and 6B isolates.

Another position in wciP, amino acid residue 192, is thought to

differentiate also between serotype 6A and 6B, but the data were

Figure 5. Relationship of the serogroup 6 capsular subtypes assessed by MLVA. Minimum spanning tree of the results obtained by MLVA
for the 183 serogroup 6 isolates. Each colored circle indicates a genotype and the colors indicate the different capsular subtypes. Ellipses indicate
capsular subtypes that have related MLVA profiles. The backbone of this minimum spanning tree is created using the entire MLVA database
(n = 3592) (December 20, 2010), with only the branches made visible. The grey halos indicate MLVA complexes.
doi:10.1371/journal.pone.0025018.g005
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inconsistent [13,14]. Recently, position 254 in wciP was also

marked as a serotype specific residue [15]. However, this was

tested in 5 isolates only and again the outcome was inconsistent.

Therefore, Sheppard et al. proposed that these isolates express a

dual serotype due to an incomplete serotype switch. In our study,

we assessed the sequence of wciP in 75 serotype 6A and 92

serotype 6B isolates and found that all 3 amino acid positions (192,

195 and 254) were serotype specific, except for a single 6A isolate

at position 192. The positions 195 and 254 seemed to contain

serotype 6A and 6B specific amino acids and therefore to

distinguish serotype 6A from 6B, these 2 positions could be

targeted for molecular identification. In this case, minimal

sequence differences account for changes in polysaccharides and

serotype. In our study, a threshold of 10 base pair difference in a

gene is used to identify capsular subtypes. Smaller numbers of base

pair differences are disregarded and thereby possibly relevant

changes in the polysaccharides. However, clustering based on the

sequences of the entire capsular loci of serogroup 6 and 19 isolates

revealed the same subdivision compared to our threshold of 10

base pair difference in a gene.

There was a large diversity between the wzg, rmlA and rmlB

genes between the isolates belonging to serogroup 6. Possible sites

for horizontal transfer were observed in the rmlA and rmlC genes. It

seems that within rmlA, there has been frequent transfer of part of

the genes between the serogroup 6 capsular subtypes resulting in a

mosaic structure. It seemed that the rml genes could be an

important site for horizontal transfer, but we found no secondary

mosaic site at the beginning of the capsular locus that could

indicate the other recombination site required for transfer of the

entire capsular gene locus. However, there is a mutational hotspot

in wzg, but the capsular subtypes with the same mutations within

wzg did not correspond with the capsular subtypes yielding the

same rmlA and rmlC genes. Croucher et al. recognized that a

serotype 6A capsular locus was inserted into a PMEN1

Figure 6. Relationship of the serogroup 19 capsular subtypes assessed by MLVA. Minimum spanning tree of the results obtained by MLVA
for the 195 serotype 19A and 19F isolates. Each colored circle indicates a genotype and the colors indicate the different capsular subtypes. Ellipses
indicate capsular subtypes that have related MLVA profiles. The backbone of this minimum spanning tree is created using the entire MLVA database
(December 20, 2010), with only the branches made visible. The grey halos indicate MLVA complexes.
doi:10.1371/journal.pone.0025018.g006
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background. The sites for horizontal transfer were located in front

of the capsular locus and within the rml genes [29]. Because we

sequenced only the capsular genes and not the upstream region,

such sites would not be detected in our study.

Our data showed that the rmlD genes of 79 serotype 19A isolates

were oriented in the opposite direction compared to other

sequenced rml genes, but also compared to the rest of the capsular

genes. This gene arrangement was previously identified by

Morona et al. and the promoter was found to be upstream of

the rmlD gene [17]. Also in Streptococcus mitis and Streptococcus oralis

rmlD is present in the opposite direction [30]. The finding that

69% (79 of 114) of the 19A isolates carried this rmlD gene

suggested that this does not affect polysaccharide production or

invasiveness.

The genetic background of serogroup 19 is known to be highly

diverse [31,32]. In our study, no clear relationship exists between

the capsular subtypes of serogroup 19 and the genetic background.

Five of the 10 STs that were found for serotype 19A isolates within

our study were recognized previously in serotype 19F isolates

according to the www.MLST.net database. This might indicate a

horizontal transfer from serotype 19A capsular genes into a

serotype 19F background. In a study performed by van Gils et al.,

nasopharyngeal colonization of serotype 19A was investigated

using MLST. They found 2 serotype 19A isolates in vaccinated

children with a sequence type previously associated with serotype

19F [33]. Selection of such variants in these studies might have

occurred under pressure of the vaccine.

Noteworthy is the difference in distribution of some capsular

subtypes before and after the introduction of the PCV7 vaccine.

Although the vaccine does not contain serotype 6A, a decrease of

the capsular subtype 6A-III occurred 2–3 years after vaccine

introduction. The sequence of the capsular genes of subtype 6A-III

was remarkably similar to the most prominent serotype 6B

capsular subtype 6B-I which may suggest cross-protection. The

capsular subtype 6A-III isolates used in this study were isolated

from adults only suggesting that perhaps the already induced herd

immunity could account for the decline in frequency of capsular

subtype 6A-III, but we cannot exclude that normal fluctuations in

the pneumococcal population could also account for the

differences. Remarkable, but yet not statistically significant

differences were seen in distribution of the serotype 19A capsular

subtypes frequencies of the pre- and post-vaccine collection. The

data suggest capsular subtype replacement from 19A-I to19A-II

possibly indicating that capsular subtype 19A-II may be more

successful in a human population where children are vaccinated

against serotype 19F. The only difference between the capsular

genes of 19A-I and 19A-II is found in the wzg gene. As wzg is

involved in regulation of capsule production the 19A-II capsular

subtype may have enhanced polysaccharide production. In a study

of Weinberger et al. the serotypes with a higher degree of

Table 5. Capsular subtypes of serogroup 6 and 19 in years pre-and post- vaccine introduction in the Netherlands.

Total 2004–2005 2008–2009

Subtype n n (%) n (%) p value1

Serotype 6A 6A-I 18 9 (28) 9 (31) 1.000

6A-II 18 11 (34) 7 (24) 0.414

6A-III 8 7 (22) 1 (3) 0.055

6A-IV 7 2 (6) 5 (17) 0.241

6A-V 3 1 (3) 2 (7) 0.600

6A-VI 1 1 (3) 0 (0) 1.000

6A other 6 1 (3) 5 (17) 0.093

Total 6A 61 32 (100) 29 (100) 0.697

serotype 6B 6B-I 73 36 (92) 37 (93) 1.000

6B-II 2 1 (3) 1 (3) 1.000

6B-III 3 2 (5) 1 (3) 0.615

6B other 1 0 (0) 1 (3) 1.000

Total 6B 79 39 (100) 40 (100) 1.000

Serotype 6C 6C-I 12 8 (100) 4 (57) 0.077

6C other 3 0 (0) 3 (43) 0.077

Total 6C 15 8 (100) 7 (100) 0.800

Serotype 19A 19A-I 31 17 (41) 14 (24) 0.079

19A-II 37 11 (27) 26 (44) 0.095

19A-III 32 13 (32) 19 (32) 1.000

Total 19A 100 41 (100) 59 (100) 0.102

Serotype 19F 19F-I 39 26 (63) 13 (54) 0.601

19F-II 18 11 (27) 7 (29) 1.000

19F-III 7 3 (7) 4 (17) 0.409

19F-IV 1 1 (2) 0 (0) 1.000

Total 19F 65 41 (100) 24 (100) 0.033

1Fisher exact test, 2 sided, italic if statistically significant (p,0.05).
doi:10.1371/journal.pone.0025018.t005
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encapsulation were more resistant to neutrophil-mediated killing

and more prevalent in carriage [34]. Therefore, higher production

levels of the capsule would be advantageous in survival of the

pneumococcus.

In conclusion, our study on the composition of the capsular

genes of serogroup 6 and 19 revealed numerous substitutions

within the serotypes. Changes within the capsular gene loci may

result in altered polysaccharides or in increased production of the

capsule making strains less sensitive for the vaccine induced

immunity. We have isolated the polysaccharides of these

serogroup 6 and 19 variants and are currently investigating the

reactivity of vaccine induced and naturally induced antibodies

with these polysaccharides to elucidate the effect of altered

capsular genes on the structure of the capsule of the pneumococ-

cus.
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