
Increased Activity Imbalance in Fronto-Subcortical
Circuits in Adolescents with Major Depression
Qing Jiao1,3., Jun Ding2,4., Guangming Lu1*, Linyan Su2*, Zhiqiang Zhang1, Zhengge Wang1, Yuan

Zhong1, Kai Li5, Mingzhou Ding6, Yijun Liu7

1 Department of Medical Imaging, Nanjing Jinling Hospital, Medical School of Nanjing University, Nanjing, China, 2 Department of Child Psychiatry, Mental Health

Institute, The Second Xiangya Hospital of Central South University, Changsha, China, 3 Department of Radiology, Taishan Medical University, Taian, China, 4 Mental Health

Center of Shenzhen, Shenzhen Kangning Hospital, Shenzhen, China, 5 Department of Pharmacology, Suzhou University, Suzhou, China, 6 Department of Biomedical

Engineering, University of Florida, Gainesville, Florida, United States of America, 7 Department of Psychiatry and McKnight Brain Institute, University of Florida, Gainesville,

Florida, United States of America

Abstract

Background: A functional discrepancy exists in adolescents between frontal and subcortical regions due to differential
regional maturational trajectories. It remains unknown how this functional discrepancy alters and whether the influence
from the subcortical to the frontal system plays a primacy role in medication naı̈ve adolescent with major depressive
disorder (MDD).

Methodology/Principal Findings: Eighteen MDD and 18 healthy adolescents were enrolled. Depression and anxiety severity
was assessed by the Short Mood and Feeling Questionnaire (SMFQ) and Screen for Child Anxiety Related Emotional
Disorders (SCARED) respectively. The functional discrepancy was measured by the amplitude of low-frequency fluctuations
(ALFF) of resting-state functional MRI signal. Correlation analysis was carried out between ALFF values and SMFQ and
SCARED scores. Resting brain activity levels measured by ALFF was higher in the frontal cortex than that in the subcortical
system involving mainly (para) limbic-striatal regions in both HC and MDD adolescents. The difference of ALFF values
between frontal and subcortical systems was increased in MDD adolescents as compared with the controls.

Conclusions/Significance: The present study identified an increased imbalance of resting-state brain activity between the
frontal cognitive control system and the (para) limbic-striatal emotional processing system in MDD adolescents. The findings
may provide insights into the neural correlates of adolescent MDD.
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Introduction

Adolescent MDD is associated with significantly high risk of

suicide and the adolescent-onset depression is likely to have

recurrent episodes of depression in adult life [1,2,3]. A better

understanding of the functional differences among neural systems

underlying cognitive-affective processing in adolescents with MDD

is highly necessary. It may provide insights into prevention and

treatment for this debilitating illness.

It has been hypothesized that the frontal-subcortical discrepan-

cy of maturational trajectories may play a role in the increased risk

for the development of affective disorders including adolescent

MDD [4]. During development in adolescents, different brain

regions follow distinct maturational trajectories, with the frontal

cortex being one of the last brain structures to mature [5,6]. In

adolescents, while a number of frontal regions responsible for

cognitive control are still under development, most of the

subcortical regions (e.g., the basal ganglia, amygdala, nuclei

accumbens) involved in affective processing have already achieved

functional maturity [7,8]. Thus, a functional discrepancy arises

between (the frontal) cognitive control and (the subcortical)

affective processing during adolescence, which is often character-

ized by enhanced bottom-up emotional drive or impulsivity but

insufficiently developed top-down executive control under various

task conditions [4,8,9].

Structural MRI studies have demonstrated MDD-related brain

volume alterations in these cortical and subcortical regions,

including reduced frontal white matter and smaller right caudate

nucleus and rostral anterior cingulate cortices (ACC), and

increased frontal gray matter and larger amygdale and hippo-

campal volume ratios [10,11,12,13,14]. Previous fMRI studies also

reported abnormal activities in the same structures in association

with mood induction and reward reinforcement in adolescent

MDD [15,16]. The interaction patterns between these brain

regions are altered in adolescent MDD patients [1]. Using the

subgenual ACC as a seed region, a resting-state fMRI connectivity
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analysis revealed decreased functional interconnection between

the subgenual ACC and the other regions including the right

medial frontal cortex, left frontal cortex, superior temporal gyrus,

and the insular cortex in adolescent MDD [1].

It remains unclear, however, whether these structural and

functional abnormalities give rise to exaggerated or diminished

functional discrepancies between the emotion processing and

cognitive control systems in the adolescent MDD. In the present

study, we conducted a data-driven analysis of fMRI data from

medication naı̈ve MDD adolescents and healthy controls. As a

cross-section study, the purpose of the present study lies in

disclosing the alteration of resting-state activity of MDD patients

under the fact of the brain functional imbalance between frontal

and subcortical regions in adolescents, rather than investigating

changes of the resting-state activity in the process of human

development longitudinally. Our aim is focused on how the

imbalance of brain activity between the emotional process system

and the cognitive control system was altered in adolescents with

MDD. To achieve these goals, the amplitude of low-frequency

fluctuations (ALFF) of the blood oxygenation level-dependent

(BOLD) fMRI signals was calculated to characterize the resting-

state spontaneous brain activity levels and evaluate the activity

level difference between the frontal and subcortical systems.

Materials and Methods

Subjects
Eighteen medication naı̈ve unipolar depressed patients (see

below Psychiatric evaluations for the diagnosis of MDD) aged

from 13 to 17.5 years old (mean age 6 SD = 15.861.2 years old,

10 female) and 18 age- and gender-matched healthy controls

(mean age 6 SD = 16.260.9 years old, 10 female) were recruited

in the study. Ten of the MDD adolescents had psychiatric co-

morbidity of anxiety disorders. Duration of illness in the MDD

adolescents was shorter than six months and all of the patients

were at their first onset.

Inclusion criteria of the adolescent patients included first

episode, medication naı̈ve of MDD of the unipolar subtype, right

handedness, and age within the range of 13–18 years old.

Exclusion criteria included positive history of head injury,

systematic medical illnesses, psychotic disorders, mental retarda-

tion, autism, mania, alcohol and illicit substance abuse, eating

disorders, and learning disability, as well as general exclusion

criteria applicable for MRI scanning. The HC subjects had no

personal or family history of psychiatric illness. All the adolescents

had an intelligence quotient above 85 according to WISC-II [17].

Written informed consents were obtained from parents or

guardians of all the subjects enrolled in this study. This research

protocol was approved by the local Medical Ethics Committee in

the Second Xiangya Hospital of Central South University, China.

Psychiatric evaluations
The diagnosis of MDD was established by a structured

interview which was conducted by two certified pediatric

psychiatrists (JD, LS) according to the DSM-IV criteria [18].

The interview tool was the Development and Well-Being

Assessment (DAWBA) [19], a package of questionnaires, inter-

views, and rating techniques designed to generate ICD-10 and

DSM-IV psychiatric diagnoses for children ages 5 to 16 years old.

All the participating adolescents were rated by a short Mood

and Feeling Questionnaire (SMFQ) [20] and a Screen for Child

Anxiety Related Emotional Disorders (SCARED) [21] to assess

the severity of their depression and anxiety symptoms. These two

questionnaires have been translated into Chinese and tested for

their reliability and validity [22,23]. The SMFQ, which was

designed to provide a rapid checklist of core symptoms for children

aged 8–16 years old, is a 13-item self-descriptive scale. These 13

items included miserable or unhappy, didn’t enjoy anything, tired,

restless, no good, cried a lot, poor concentration, hated myself, bad

person, lonely, unloved, never be as good, and did everything

wrong [20]. A higher score indicates more serious degree of the

depressive symptoms of the adolescent subject.

MRI data acquisition and protocol
Imaging data were acquired using a 3 Tesla MRI system (Siemens,

Germany) in the Department of Medical Imaging, Provincial People

Hospital of Hunan. Subjects were instructed to relax with their eyes

closed and keep their heads still during MRI scanning without falling

asleep. They were asked after the MRI experiment if they had fallen

asleep in the scanner. The data were excluded if the subject did not

keep awake during the scan. Each participant was given earphones

and a cushion for protection against scanner noise and minimization

of any discomfort during MRI scanning. Anatomical images were

first acquired using a T1-FL2D sequence (TR/TE = 350 ms/

2.46 ms, matrix = 320*256, FOV = 24 cm*24 cm, slice thickness/

gap = 4 mm/0.4 mm, 30 axial slices covered the whole brain) for

image registration and functional localization. Resting-state fMRI

images were then collected in the same slice orientation with a GRE-

EPI sequence (TR/TE = 3000 ms/30 ms, FA = 90u, matrix =

64664, FOV = 24 cm624 cm, slice thickness/gap = 3.0 mm/

0.3 mm) to yield 150 brain volumes lasting for 450 seconds

(7.5 minutes).

Image preprocessing
Imaging data were preprocessed using SPM2 (http://www.fil.

ion.ucl.ac.uk/spm). The functional images underwent slice-timing

correction and realignment for head motion correction. Data from

the subjects whose head motion exceeded 1 mm or rotation

exceeded 1u during scanning were excluded. The standard

Montreal Neurological Institute (MNI) template provided by

SPM was used for spatial normalization with a resampling voxel

size of 26262 mm3. The functional images were spatially

smoothed with an FWHM of 4 mm. After linear trends were

removed, the data were band-pass filtered between 0.01 and

0.08 Hz to remove the effects of very-low-frequency drift and high

frequency noises by using REST software (V1.3, http://restfmri.

net/).

ALFF analysis
The ALFF analysis was carried out using the REST software.

The calculation procedure was described in detail in elsewhere

[24,25,26]. In brief, a filtered time series was transformed to the

frequency domain with a fast Fourier transform, obtaining the

power spectrum as a result. Because the power of a given

frequency is proportional to the square of the amplitude of this

frequency component, the square root was calculated at each

frequency of the power spectrum and the averaged square root

was obtained at each voxel. This averaged square root was taken

as the ALFF measurement. For standardization, the ALFF of each

voxel was further divided by the global mean of ALFF values.

Then a standardized ALFF map of the whole brain was obtained.

To explore the ALFF differences between the MDD and HC

groups, a two-sample t test was performed on the individually

normalized ALFF map in a voxel-wise manner. Considering the

sensitiveness of the resting state fMRI to the age changes, the age

was regressed against the rapid structural and functional changes

of developmental trajectory during adolescents [27,28]. Monte

Carlo simulation was employed to perform the correction for
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multiple comparisons using the REST AlphaSim program [29]. In

this study, a corrected significance level of p,0.05 was obtained by

combining individual voxel probability threshold p,0.03 and a

minimum cluster size of 179 voxels.

The regions showed significant alteration of ALFF values

between the HC and MDD groups were treated as a mask for

defining the regions of interest (ROIs). In consideration of the

small sample size in the present study, ‘leave-one-out’ (LOO)

comparison was used to assess the reproducibility and robustness

of the regions showing group differences in ALFF [30].

Specifically, group analysis in ALFF was accomplished with one

MDD participant left out (17 MDD and 18 HC subjects) every

time. This procedure was repeated 18 times. Then 18 separate

LOO maps were obtained. The threshold used in each of the

separate LOO maps was same as that of the group analysis map

with all MDD subjects included (group ALFF map). The

reproducibility of each ROI in the group ALFF map was

examined by sign test. A ROI was considered to be replicable

well if it was inflated relative to the separated LOO-defined ROI

in 13 of 18 cases (p,0.05).

The averaged resting BOLD signal over the voxels in each ROI

was considered as the time course of the ROI. The ALFF values of

each ROI were averaged across subjects in both the HC and

MDD groups. In order to represent the resting brain activity level

for a neural (sub) system, the ALFF values of the ROIs in the

frontal regions and subcortical structures were averaged respec-

tively in each group, which was designated as the Frontal ALFF

and the Subcortical ALFF. In each group, the difference between

the Frontal ALFF and the Subcortical ALFF was assessed paired t

test. The difference of the Frontal (Subcortical) ALFF between the

HC and MDD groups was detected by two-sample t test. The

regional ALFF difference between frontal and subcortical system

was expressed by the subtraction of Frontal ALFF and Subcortical

ALFF. Such a difference between the HC and MDD groups was

also evaluated by two-sample t test.

It was found that some brain areas with high physiological

noise, such as cistern areas, may show significant higher ALFF

[24]. As an improved approach to detect the amplitude of low-

frequency fluctuation for resting-state fMRI, fractional ALFF

(fALFF) may suppress the signals of the cistern areas and is more

sensitive to detect the neuronal activity. However, the measure of

ALFF has higher reliability than fALFF [26]. For the purpose of

the complementarily and verification of the result of ALFF, the

difference of fALFF between the MDD and HC groups was also

evaluated in the present study. The measure of fALFF is defined as

the ratio of power spectrum of low-frequency (0.01–0.08 Hz)

range to that of the entire frequency range was computed [31]. It

may be regarded as the normalization of the ALFF. The fALFF

analysis was carried out using the REST software. The difference

of fALFF between the MDD and HC groups were evaluated by

two-sample t test on the individually fALFF map in a voxel-wise

manner with age regressed out.

Correlation analysis
For each ROI, a correlation coefficient was calculated to assess

the association between the ALFF values and the SMFQ and

SCARED scores in MDD adolescents with age regressed out.

Statistics analysis
The independent-sample t test and the chi-square test were used

to compare the demographic data and the SMFQ and SCARED

scores between two groups using SPSS 11.5 software (SPSS Inc.,

Chicago, IL, USA). The results were shown in the mean 6

standard deviation format.

Results

Demographic and Clinical Comparisons
There were no significant differences between HC and the

MDD groups in the ages and years of education of the subjects.

The two groups differed significantly in the SMFQ and SCARED

scores (Table 1). No subject had fallen asleep and was excluded

due to head motion larger than 1 mm or rotation more than 1u
during scanning.

ALFF differences
After LOO comparison, 9 brain regions in the group ALFF

map were inflated relative to the separate LOO maps more than

13 times (sign test, p,0.05). Compared to the HC group, the

ALFF increased in the MDD group in five regions including the

right dorsolateral frontal cortex (rDLPFC), bilateral inferior frontal

gyrus (IFG) at the triangular region (IFGtri) and the orbital region

(IFGorb). These regions are collectively referred to as the frontal

regions and constitute the frontal system (Figure 1). In contrast,

decreased ALFF was found in MDD adolescents in some

subcortical regions including the left insular (lINS), bilateral

caudate (CAU) and left hippocampus (lHIP). As the 4 ROIs

mainly involve the para-limbic region (INS), limbic region (HIP)

and striatum (CAU), they were also referred to as the (para) limbic-

striatal system in this study. The details about the regions were

shown in Table S1. The fMRI signals of these twelve regions of

interest were extracted for further ROI-based ALFF analysis.

The mean ALFF values of the ROIs were presented respectively

using color bars (Figure 2A). Compared with the HC group, the

MDD group showed higher ALFF in the frontal regions (red bars)

and lower ALFF in (para) limbic-striatal regions (blue bars). The

difference between frontal ALFF and (para) limbic-striatal ALFF

was used to express the imbalance of the brain activity between the

frontal and (para) limbic-striatal systems in resting state (Figure 2B).

These mean values of the frontal ALFF demonstrated significantly

greater values than the (para) limbic-striatal ALFF (p,0.0001 for

both comparisons) in both the MDD and HC groups. The

difference between the frontal ALFF and (para) limbic-striatal

ALFF in the HC and MDD groups was 0.189 and 0.585

respectively (‘a’ and ‘b’ in Figure 2B). This ALFF difference

between the two systems was significantly different between the

HC and MDD groups (two sample t test, p,0.0001). The inter-

group comparisons revealed an increased trend of the frontal

ALFF (red arrow), and a decreased trend (blue arrow) of the (para)

limbic-striatal ALFF in MDD adolescents (Figure 2B). Further-

Table 1. Demographic characteristics and clinical variables.

Characteristics MDD (n = 18) HC (n = 18) p value

Gender (male/female) 8/10 8/10 0.99a

Age (years) 15.78+1.20 16.2+0.9 0.413a

Education years 9.2/1.1 9.5/0.8 0.311b

Illness Duration ,6 months n/a

SMFQ Score 16.67+5.44 3.56+3.55 ,0.001b

SCARED Score 44.39619.10 14.89610.61 ,0.001b

Abbreviations:MDD, Major Depressive Disorder. HC, Healthy Control group.
SMFQ, Short Mood and Feeling Questionnaire. SCARED: Screen for Child Anxiety
Related Emotional Disorders. n/a: not applicable.
aThe p value was obtained by Pearson x2 two-tailed test;
bThe p value was obtained by a two-sample two-tailed t test.
doi:10.1371/journal.pone.0025159.t001
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more, the frontal ALFF and (para) limbic-striatal ALFF were both

significantly different between the MDD and the HC groups (two

sample t test, p,0.0001 for both comparisons). Brain regions

showed difference of ALFF coincidently had similar fALFF

changes between the MDD and HC groups. The t-statistical

map of fALFF was shown in Figure S1.

No significant correlation was found between the ALFF values

and SMFQ as well as SCARED scores in MDD adolescents. The

results of correlation analysis with and without age being regressed

out were shown in Table S2 and Table S3.

Discussion

The present study showed that resting brain activity levels are

higher in the frontal cortex than in the subcortical system

comprised mainly of (para) limbic-striatal regions in both HC

and MDD adolescents. The imbalance of brain activity between

frontal and subcortical systems was increased in MDD adolescents

as compared to the controls.

Psychological and psychiatric disorders, such as MDD, are

traditionally diagnosed and studied mainly according to their

clinical features and behavior characterizations. The application of

MRI renders the opportunities for functional brain activity

analysis. A number of relevant fMRI methodologies have been

established. These new methods may all find applications in

functional brain research, which built the base for modern

functional imaging studies. However, each of these methodologies

may have its own advantages and disadvantages. In recent years,

the analysis of spontaneous brain activities during resting state has

become an important tool for investigating neural mechanisms

underpinning neuropsychiatric disorders. Practically, the resting

brain activity can be quantified by the low-frequency (0.01–

0.08 Hz) fluctuation of BOLD signals that has been used as a

neurophysiological index [32] and reflect spontaneous neural

activity of the brain [33]. The ALFF, measured by the total power

within the frequency band of 0.01 to 0.08 Hz [24], provides

information about synchronous cerebral activity and has been

widely used in the study of both normal and pathological brain

functions [26,33,34]. The present study is an effort in employing

this method in adolescent MDD, and found some results that may

have implications in its diagnosis and treatment.

Estimated by voxel-wised ALFF, different resting-state brain

activity levels were identified between brain regions and between

MDD and healthy adolescents (Figure 1). Both increased and

decreased resting-state brain activity levels were found in MDD

adolescents. Similar findings were obtained when these brain

activities were analyzed using ROI-based ALFF: the frontal cortex

manifests a higher resting magnitude of neural activity under

baseline condition while the (para) limbic-striatal regions show

lower resting magnitudes (Figure 2A). These altered resting-state

brain activities were confirmed by at the systematic level

Figure 1. T-statistical map of the resting-state brain activity
levels between the adolescents with MDD and HCs. The color-
coded t-score bars indicated increased (warm color) ALFF and
decreased (cold color) ALFF in the MDD patients relative to HCs. The
voxels with p,0.03 and a cluster size of .179 were used to identify the
clusters with significant differences; these criteria met a threshold of
p,0.05 (corrected for multiple comparisons). The details of these
regions were presented in Table S1.
doi:10.1371/journal.pone.0025159.g001

Figure 2. Brain ctivity imbalance in the fronto-subcortical activities shown by ALFF during resting-state. A: The mean ALFF of each ROI
defined on Figure 1 for the HC and MDD groups was obtained by averaging across the HC subjects (n = 18; solid bar) and MDD patients (n = 18;
dashed bar) in the frontal regions (red) and (para) limbic-striatal regions (blue). Error bars denoted the standard deviation of the mean ALFF across
the subjects. B: The imbalance of fronto-(para) limbic striatal activities at a system level. The mean ALFF values of the ROIs in the frontal and the
(para) limbic-striatal systems were further averaged to obtain the ALFF of the two systems (red: frontal, blue: (para) limbic-striatal). Error bars denote
standard deviation of the mean ALFF across ROIs. The difference between the ALFF of the two systems in the HC and MDD group were shown by the
letter of ‘a’ and ‘b’ respectively, whose numerical value are 0.189 and 0.585. This figure also demonstrated inter-group comparisons. From the HC to
MDD, the frontal ALFF exhibits an increased trend (red arrow), whereas the (para) limbic-striatal ALFF exhibited a decreased trend (blue arrow).
doi:10.1371/journal.pone.0025159.g002

Fronto-Subcortical Imbalance in Depression

PLoS ONE | www.plosone.org 4 September 2011 | Volume 6 | Issue 9 | e25159



(Figure 2B). The higher neural activity of frontal cortex may reflect

a larger cognitive effort required to exert effective inhibitory

control over subcortical regions in adolescents. Factors necessitat-

ing this increased cognitive effort include immature synaptic

pruning [35], damage fiber tracts connecting the two systems, and

other anatomical considerations. In MDD patients the difference

of brain activity between the frontal cortex and (para) limbic-

striatal regions is significantly increased as compared with the HCs

(Figure 2). Thus, these data suggest that in the resting state the

MDD adolescents may have further reduced capability or need

more effort to regulate emotional processes.

Though the neurobiological processes of the same psychiatric

illness is different between adolescents and adults because of the

immaturity of the neural networks that mediate emotion

processing during adolescence [36], adolescent MDD may be

regarded as a strong predictor of MDD in adulthood [1].

Comparative studies between the adolescents and adults may

provide more information useful for the development and prevent

of the MDD. Functional imaging analyses of the adult MDD have

shown alterations of these frontal and subcortical regions. For

example, the orbital frontal cortex (OFC) has increased metab-

olism or blood flow in resting state in young relative to middle-

aged samples [37,38,39]. Treatment with deep brain stimulation

produced decreased metabolism of the OFC [40]. The decreased

metabolism of right caudate and left putamen has been reported in

adult MDD patients [40,41]. Our results were consistent with

these findings. Nevertheless, there is conflicting evidence regarding

the resting-state alterations of these frontal and subcortical regions.

Some studies reported the hypometabolism of dorsal prefrontal

cotex [42], a greater baseline metabolism in caudate [43] or no

significant differences in the subcortical regions [44]. Resting state

fMRI reported an increased Regional homogeneity (ReHo) in

putamen and frontal cortex [45], and a decreased ReHo in right

orbitofrontal cortex and right insula [46]. These discrepant

findings between the adolescent and adult MDD patients may

be attributed to the methodologies used, participant selected, such

as age range, depression severity, medication status, and family

history in different studies.

The DLPFC plays an essential role in mood regulation, decision

making, and working memory [47]. The DLPFC is the last brain

area to begin myelination and may be the only area that continues

myelination throughout human life [48]. DLPFC abnormalities

have been observed in depressed adolescents [49]. The DLPFC

has often been used as the target site of repetitive transcranial

magnetic stimulation (TMS) for treatment of medication-resistant

depression [50]. In the present study, the brain activity of rDLPFC

was found to be the highest among the 9 brain regions in both the

MDD and HC groups (Figure 2A). The result strengthened the

key role of DLPFC in the neuropathology of adolescent MDD in

the views of the local brain activity level.

In summary, our results demonstrated an increased imbalance

of resting-state brain activity between the frontal system and (para)

limbic-striatal system MDD adolescents. These data may suggest

an inability to regulate subcortical emotional processes by the

frontal executive system despite increased efforts. These findings

provide insights into the neural correlates of MDD and may lead

to strategies for its prevention and treatment, such as the rTMS

treatment for depression.

Supporting Information

Figure S1 T-statistical map of fALFF between the
adolescents with MDD and HC groups. The color-coded

t-score bars indicated increased (warm color) fALFF and decreased

(cold color) fALFF in the MDD patients relative to HCs. The

voxels with p,0.01 and a cluster size of .10 were used to identify

the clusters with significant differences (uncorrected).

(TIF)

Table S1 Regions showing ALFF differences between
MDD and HC groups. Abbreviations: l: left. r: right. DLPFC:

dorsolateral prefrontal cortex. IFGtri: triangular inferior frontal

gyrus. IFGorb: orbital inferior frontal gyrus. CAU: caudate. INS:

insular. HIP: hippocampus. BA: Brodmann’s area; Volume =

number of clusters. MNI: Montreal Neurological Institute

Coordinate System or Template; t: statistical value of peak voxel

showing ALFF differences between the two groups.

(DOC)

Table S2 Correlation between ROI ALFF values and
behavioral scores without age regressed out. Correlation

coefficient (up) and p values (low) were shown.

(DOC)

Table S3 Correlation between ROI ALFF values and
behavioral scores with age regressed out. Correlation

coefficient (up) and p values (low) were shown.

(DOC)
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