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Abstract
Rational and Objectives—To evaluate our prototype method for segmentation and tracking of
the coronary arterial tree, which is the foundation for a computer-aided detection (CADe) system
to be developed to assist radiologists in detecting non-calcified plaques in coronary CT
angiography (cCTA) scans.

Materials and Methods—The heart region was first extracted by a morphological operation
and an adaptive thresholding method based on expectation-maximization (EM) estimation. The
vascular structures within the heart region were enhanced and segmented using a multiscale
coronary response (MSCAR) method that combined 3D multiscale filtering, analysis of the eigen
values of Hessian matrices and EM estimation segmentation. After the segmentation of vascular
structures, the coronary arteries were tracked by a 3D dynamic balloon tracking (DBT) method.
The DBT method started at two manually identified seed points located at the origins of the left
and right coronary arteries (LCA and RCA) for extraction of the arterial trees. The coronary
arterial trees of a data set containing 20 ECG-gated contrast-enhanced cCTA scans were extracted
by our MSCAR-DBT method and a clinical GE Advantage workstation. Two experienced thoracic
radiologists visually examined the coronary arteries on the original cCTA scans and the rendered
volume of segmented vessels to count the untracked false-negative (FN) segments and false
positives (FPs) for both methods.

Results—For the visible coronary arterial segments in the 20 cases, the radiologists identified
that 25 segments were missed by our MSCAR-DBT method, ranging from 0 to 5 FN segments in
individual cases, and that 55 artery segments were missed by the GE software, ranging from 0 to 7
FN segments in individual cases. 19 and 15 FPs were identified in our and the GE coronary trees,
ranging from 0 to 4 FPs for both methods in individual cases, respectively.

Conclusion—The preliminary study demonstrates the feasibility of our MSCAR-DBT method
for segmentation and tracking coronary artery trees. The results indicated that both our method
and GE software can extract coronary artery trees reasonably well and the performance of our
method is superior to that of GE software in this small data set. Further studies are underway to
develop methods for improvement of the segmentation and tracking accuracy.
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I. Introduction
Coronary artery disease (CAD) is the most common type of heart disease and the leading
cause of death world wide (1). CAD is a condition in which atheromatous plaques build up
inside the coronary arteries. When the coronary arteries are narrowed or blocked, the
reduction of oxygen-rich blood flow to the heart muscle can cause angina or a myocardial
infarction (MI). Over 16 million Americans have coronary heart disease (CHD) and the
prevalence of MI approaches 8 millions (2). Over 445,000 Americans die of CHD and over
151,000 die of MI each year. With the rapid advancement of CT technique, ECG-gated
contrast-enhanced coronary computed tomography angiography (cCTA) permits
visualization of the vessel lumen, atherosclerotic plaque, and stenoses without the invasive
catheterization procedure. cCTA is becoming the most promising modality for assessing
coronary heart disease and for quantifying the plaques (3–6).

Accurate identification of plaques is challenging, especially for the noncalcified plaques,
due to many factors such as the small size of coronary arteries, reconstruction artifacts
caused by irregular heart beats, beam hardening, and partial volume averaging. The advent
of 16, 32, 64 and the latest 320 row multidetector CT not only increases the spatial and the
temporal resolution significantly, but also increases the number of images to be interpreted
by radiologists substantially. Radiologists have to visually examine each coronary artery for
suspicious stenosis using visualization tools such as multi planar reformatting (MPR) and
curved planar reformatting (CPR) provided by the review workstation in clinical practice.
However, these visualization tools depend on the accurate extraction of coronary arteries.
Automatic extraction of the coronary artery trees will reduce the time for coronary analysis.
The coronary artery extraction software of the commercial systems is still evolving – some
require interactive user-input starting and ending points of the artery of interest, and others
attempt to automatically extract the coronary arterial trees without user input. The
performance of the commercial software varies from vendor to vendor. For a given vendor,
the performance still changes from version to version and the trade-off between sensitivity
and specificity varies. However, no vendor software can automatically detect and identify
the coronary artery segment with non-calcified plaques and perform MPR or CPR on the
coronary artery segment of interest to further speed up coronary analysis.

Because plaques only occur in coronary arteries, the extraction of the coronary arteries
constitutes the fundamental step in the detection of plaques. Many of the published studies
of vessel segmentation and tracking were performed on 2D or 3D images for vascular
structures in the retina, liver, brain and lung. Few studies have been conducted for
automated segmentation, tracking and construction of the entire coronary artery trees on
cCTA images. The methods used in vessel segmentation and tracking included hysteresis
thresholding (7), region growing (8, 9), statistical modeling and matching methods (10, 11)
using a priori knowledge provided by radiologists, direction field based segmentation and
detection (12) and deformable model approaches (13, 14) in which an initial surface
estimate was deformed iteratively to optimize an energy criterion so that the model
boundary was extended to the vessel wall as a so-called minimal surface. Multiscale filtering
has been used for the segmentation of curvilinear or tubular structures in 3D medical images
(15–22). The conventional multiscale filtering methods (15, 20, 23) have been widely used
to enhance the vascular structures at variable sizes for vessel extraction, in which the images
are convolved with 3D Gaussian filters at multiple scales and the eigen values of the Hessian
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matrix at each voxel are analyzed in terms of a response function to extract local structures
in the image. The design of the response function is a critical factor that determines the
specific shape to be enhanced and there fore whether the multiscale method is effective for a
given application. In arecent study (24), a minimum cost path approach was used to extract
coronary artery centerline connecting user-defined starting and ending points in cCTA
images. Two different cost functions, multiscale vesselness cost function based on eigen
values of Hessian matrix of images, and region statistics cost function were evaluated. The
results show that 88% and 47% of the vessel centerlines were correctly extracted using the
vesselness and region statistics cost function, respectively.

We are developing a computer-aided detection (CADe) system to assist radiologists in
detecting non-calcified plaques in cCTA scans and automatically identifying the vessels of
interest. Our basic approach to enhancement and segmentation of the coronary arterial
trees is similar to the vascular structure enhancement and segmentation methods that we
designed for the pulmonary vessels in CT pulmonary angiographic (CTPA) scans (25).
However, since the characteristics of coronary vessels are very different from those of
pulmonary vessels, the multiscale filters and the decision criteria at different steps have to
be redesigned for this application. In addition, the methods for the normalization of the
multiscale response functions and the integration of the segmented vessels at multiple scales
have to be designed to suit the coronary artery trees.Since the commercial vessel
segmentation software is proprietary it is not possible to take advantage of the software
already developed for this step. Furthermore, the digital files of the extracted coronary
arteries by the clinical workstations are not accessible to the user so that we cannot utilize
the extracted coronary arteries as input to our plaque detection system. We plan to use the
original cCTA scan as input to our CADe system and the coronary artery extraction process
will be a built-in preprocessing step. In this pilot study, we evaluated our prototype method
for segmentation and tracking of the coronary arterial tree in a small data set and compared
the performance of our method with a clinically used commercial workstation that segments
and displays coronary arterial trees for radiologist’s visualization.

II. Materials and Methods
Materials

A data set containing 20 ECG-gated contrast-enhanced cardiac CTA scans was used for the
performance comparison in this study. The CTA scans were retrospectively collected from
patient files at the University of Michigan Hospital with Institutional Review Boards (IRB)
approval. The CTA scans were acquired with GE multidetector CT scanners, 120–140 kVp,
300–600 mAs, reconstructed at 0.625 mm slice thickness. A single reconstructed phase
(70% or 75%) was selected for each scan. Calcified plaques, non-calcified soft plaques and
mixture of calcified and non-calcified soft plaques were found in 19 of the 20 cases and the
remaining case was determined to be normal during clinical diagnosis.

MSCAR-DBT: coronary artery extraction method
Figure 1 shows the schematic diagram of our prototype automated segmentation and
tracking method for the coronary arteries. The method includes three major steps: heart
region extraction, vascular structure enhancement and segmentation, and coronary artery
tracking (26). The air region outside the patient body was first excluded by thresholding at a
voxel value of 50. To extract the heart region, the EM segmentation method (27) was
applied to the body region in the volume of the cCTA scan assuming there were two classes
of structures in the volume: lung region containing the air as class 1 and the other structures
not belonging to class 1 as class 2. After EM segmentation, the structures of chest wall, the
pulmonary vascular structures and heart region were segmented as class 2. To separate the
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heart region from the chest wall and to remove the pulmonary vascular structures, a
morphological erosion operation was applied to class 2. It was experimentally found that a
spherical structuring element with 25 mm in diameter was large enough to shrink the heart
and chest wall, but would not eliminate the heart region because the hearts were larger than
the spherical structuring element. Therefore the morphological erosion could separate the
connection of the heart with the chest wall. The heart region was finally extracted by
applying a morphological dilation operation to the largest region which was separated by the
erosion operation using the same structuring element.

We have designed a vessel segmentation method, referred to as the multiscale coronary
artery response (MSCAR) method, for coronary artery segmentation. To adaptively segment
the coronary vessels, the VOI enclosing the heart is first convolved with the second
derivatives of 3D Gaussian functions with different variances (multiple scales) to cover the
coronary arteries of a range of diameters. The eigen values of the 3D Hessian matrix are
calculated at each voxel of the filtered volume at each scale. The eigen values for the voxels
contain important shape information such that the eigen values corresponding to a linear
structure will be different from those corresponding to a nonlinear structure, noise, or no
structure. To enhance a structure of interest, a response function that combines the eigen
values should be designed properly to maximize the response for the given structure. For
example, a response function for a line structure such as a vessel is different from that for a
blob-like object such as a nodule. The response of the enhancement filter also depends on
the scale of the filter. It reaches a maximum when the scale of the filter matches the size of
the structure. A vascular tree contains at least two major types of structures: the vessels that
can be described as line structures and the bifurcations that can be described as blob-like
structures. Conventional response functions (15, 20, 23) do not work well for vascular trees.
For example, a line response function will suppress the bifurcations and leave gaps at the
bifurcation points, cutting off the branch from the main vessel. We have designed a new
multiscale response function (25) using the eigen values of the Hessian matrix that can
enhance vascular structures including bifurcations and to suppress non-vessel structures. The
response function is briefly described below.

For a voxel at r ⃗ = (x, y, z), let the eigen values of the Hessian matrix be λ1(r), λ2(r) and λ3(r),
where |λ1(r) |>| λ2(r) |>| λ1(r)|, and their corresponding eigenvectors be e1(r),e2(r) and e3(r).
The eigenvector ei(r) represents the direction along which the second derivative represented
by λi(r), i=1, 2, 3, is maximum. The three eigen values have intuitive characteristics in
discriminating structures of different shapes. For example, for an ideal tubular structure in
3D volume, the eigen value λ3(r) will be approximately zero and the λ1(r) and λ2(r) will be
approximately equal with larger magnitudes for the voxels at the centerline of the tube.
Similarly, for an ideal sphere, the three eigen values will be equal at the center of the sphere.
To utilize these characteristics, we have designed a multiscale response function R that has
the following form (25) to enhance vascular structures including vessel bifurcations and
suppress non-vessel structures:

(1)

where the value of the constant c determines the strength of the response for each types of
structures. The significance of c in the response function was discussed in our previous
study (25). For enhancement of both tubular structures and vessel bifurcations, the value of c
was estimated to be 0.7.
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In this preliminary study, we evaluated 3D Gaussian filters at four scales corresponding to
vessel sizes ranging from 1 mm to 8 mm in diameter. At each scale, the response function
value at each voxel is calculated from the eigen values using Eq. (1) over a VOI containing
the entire heart region. In this enhanced VOI, two classes of voxels are assumed, (1) the
voxels with a high response indicate that there is an enhanced vessel and its size matches the
given filter scale, and (2) the voxels with a low response value that might contain structures
to be suppressed such as a structure that does not match the filter size. The EM estimation is
then applied to the VOI to segment the vessels by extracting the high response voxels at this
single scale. The voxels in the low response class are set to a background value of 0 after
EM segmentation. To normalize the response function value so that the responses are
comparable for the different scales, the output of the convolution with the second derivative
of the Gaussian filter at scale i is multiplied by a normalization factor , where  is the
variance of the Gaussian filter. The extracted structures in the VOI at multiscales are
combined into a single volume of extracted structures with voxel values v(x, y, z) by
applying the maximum operation to the corresponding voxels in all scales:

(2)

where  is the normalized response at scale i and voxel location (x, y, z).

After MSCAR is applied to the heart region, not only the coronary arteries but also the
coronary veins and other vessel-like noise structures are enhanced and segmented. To
construct the coronary arterial trees, we have designed a 3D dynamic balloon tracking
(DBT) method to track the coronary arteries. In this preliminary study, the tracking
algorithm started at two manually identified seed points located at the origins of the left and
right coronary artery (LCA and RCA), respectively, to track the left and right coronary
arterial trees for each case. The tracking after the seed point identification is fully
automated. A sphere is generated with the starting point as the center. The DBT algorithm
searches for connected components intersecting the sphere surface and determines if an
intersecting structure is a possible vessel by analyzing its characteristics. The criteria of
moving the sphere to an intersecting structure includes (1) the intersecting structure is
compact and approximately a round shape, (2) the direction of the sphere moving to the
center of the intersection is less than 90 degree, and (3) the size of the new sphere derived
from the intersecting structure is smaller than 1.5 times of the current sphere to avoid
moving the sphere to a large noisy structure because the sphere is designed to move from the
larger vessels to smaller vessels starting at the origin of the coronary arterial tree. If the
above criteria are satisfied, the center of the intersection will be taken as the next tracking
point. The sphere will be moved and centered at this new tracking point and the diameter of
the sphere is adjusted to enclose the diameter of the vessel. As the tracking proceeds along
the vessel, the diameter of the sphere is varied adaptively like a balloon according to the
local vessel size. At each tracking point, a similar search process will be performed. The
DBT algorithm searches for possible intersections between the balloon surface and vessel
branches as well as the continuation of the current vessel. All the possible branches are
labeled and stored in a queue. The DBT algorithm will start from the next branch in the
queue after tracking of the current vessel ends. The tracking of each branch continues until
the stopping criteria have been satisfied. The current criteria are set to be (1) the tracked
vessel reaches a predetermined minimum vessel diameter, or (2) tracking has extended
beyond the predetermined region, such as the boundaries of the heart volume. The above
procedure is repeated until the queue is empty. The vessel tree is formed by following the
trajectory of the dynamic balloon.
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Performance Evaluation
The coronary arterial trees of all 20 test cases were extracted by our MSCAR-DBT method
as described above. The same data set was processed by the GE Advantage workstation
(version 4.4, GE Healthcare, Wauwatosa, WI). The GE software can extract the coronary
arterial trees automatically without user-identified seed points. However, for the cases that
the GE software failed to extract a coronary arterial tree due to the failure of starting point
identification, seed points were manually input to the GE tracking software by clicking the
mouse to start the vessel tracking. In our data set, the seed points were manually input for
two out of the 40 coronary trees.

Because the digital files for the segmented vessels were not accessible on the commercial
GE workstation, the coronary artery extraction performance of our method and the GE
software were compared based on visual assessment of the segmented vessels by
experienced cardiothoracic radiologists. Seventeen major coronary arterial segments (28)
(Figure 2) that are considered clinically significant were used as the reference for the visual
assessment: (1) proximal RCA, (2) mid RCA, (3) distal RCA, (4) right posterior descending
(RPD) artery, (5) main LCA, (6) Proximal left anterior descending (LAD), (7) Mid LAD, (8)
apical LAD, (9) first diagonal, (10) second diagonal, (11) proximal left circumflex (LCx)
artery, (12) first obtuse marginal (OM1), (13) distal, LCx, (14) second obtuse marginal
(OM2), (15) posterior descending (PD), (16) posterior lateral branch (PLB), and (17) ramus
intermedius segment.

Volume rendering of the coronary vessel trees tracked by our method was displayed on a PC
using an in-house developed graphical user interface (GUI). The PC was placed next to the
GE workstation which displayed the original cCTA scan and the coronary vessel trees
obtained by the GE coronary analysis software. Figure 3 shows the setting of the PC and GE
workstation. For each case, the radiologist visually examined the original coronary cCTA
scan and compared the volume rendered coronary arteries to identify untracked segments
(false negatives, FNs) and mistakenly tracked veins and noisy structures (false positives,
FPs). Two experienced cardiothoracic radiologists assessed the 20 cases independently. For
vessel segments that the two radiologists’ readings did not agree, the case was re-read to
obtain a consensus. The FN vessel segments and FPs agreed upon by both radiologists were
used for the performance evaluation. The coronary arteries that were not on the list of the 17
coronary segments were not counted as FP or FN.

III. Results
Figure 4 shows an example of coronary arterial tree extracted by our MSCAR-DBT method.
Table 1 shows the number of FN and FP segments by our MSCAR-DBT method and by the
GE software identified by the two radiologists. For the visible coronary arterial segments in
the 20 cases, the radiologists identified that 25 segments were missed by our MSCAR-DBT
method, ranging from 0 to 5 FN segments in individual case, and that 55 artery segments
were missed by the GE software, ranging from 0 to 7 FN segments in individual cases. 19
and 15 FPs were identified in our and the GE coronary trees, respectively, ranging from 0 to
4 FPs for both methods in individual cases. The average and the standard deviation of FNs
were 1.25±1.68 segments/case and 2.75±2.25 segments/case for MSCAR-DBT and GE
software, respectively. The average and the standard deviation of FPs were 0.95±1.32
segment/case and 0.75±1.1 segment/case for MSCAR-DBT and GE software, respectively.

Wilcoxon signed rank test was used to test the significance of the difference in performance
between our MSCAR-DBT method and the GE software. The test results show that the
difference in the number of FN segments/tree was statistically significant for both LCA
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(p<0.02) and RCA (p<0.05), but the difference in the number of FP segments/tree did not
achieve statistical significance for either LCA (p>0.49) or RCA (p>0.96).

Examples of coronary trees tracked by the MSCAR-DBT and the GE methods, and the
scoring of the FPs and FNs by radiologists, are shown in Figures 5, 6 and 7. Note that some
of the vessels in the examples segmented by MSCAR-DBT appear discontinuous
occasionally but these are artifacts from our display software. The vessels shown were
connected because they were tracked by the DBT.

IV. Discussions
Quantitative evaluation of vessel segmentation accuracy and the completeness of vessel tree
construction is challenging because there is no ground truth for the vessel tree for clinical
cases. Although a tubular phantom can be constructed with known “vessels,” it is difficult to
construct a realistic phantom with a complete vessel tree mimicking complicated vascular
structures and other anatomical structures that may cause errors during tracking. In our
previous study (25) that an automated vessel segmentation method was developed for
pulmonary vessel tree construction in CTPA images, two patient cases were chosen as
representative cases from our collected data set as the test set for the performance evaluation
of our vessel tree extraction method. Two experienced thoracic radiologists provided
reference standard for the pulmonary vessels including arteries and veins by manually
tracking the vessel tree and marking the center of the vessels using a graphical user
interface. The accuracy of the vessel tree segmentation was evaluated by the percentage of
the reference standard vessel center points overlapping with the segmented vessels.
However, manual tracking and marking the center points of the vessels are very time
consuming. Schaap et al. (29) developed a framework for the evaluation of coronary artery
centerline extraction method. The framework encompasses a publicly available database
containing 32 coronary CTA scans with corresponding reference standard centerlines
derived from manual annotation by three trained observers. Only four vessels were selected
for annotation for each cCTA scan. The first three vessels were always the RCA, LCA, and
LCX. The fourth vessel was selected from the large side-branches of the above major
coronary arteries. Although the benefit of the public dataset is clear for quantitative
evaluation of coronary artery extraction, the above framework is limited to the evaluation of
centerline extraction for the four chosen coronary arteries. Because the coronary artery tree
contains more than four vessels, the completeness of the coronary artery tree cannot be
evaluated using this public database. Plaques in an arterial segment will not be detected if
the segment is missed in the vessel extraction process. Despite the intensive labor, it would
be possible to select several representative cases and manually mark the vessel center points
for a complete vessel tree using a similar performance evaluation protocol as that in our
previous study (25). However, this approach can only be used to evaluate our coronary
artery tree extraction method but not the clinical software such as the GE software because
the digital files of the extracted vessel tree by the clinical software are not accessible to the
user. Currently, the best alternative would be the visual assessment by experienced
cardiothoracic radiologists. To reduce the bias of subjective visual assessment, the
agreement between two radiologists was used in our study.

In our study, the coronary arteries that were not one of the 17 reference segments were
ignored and were not counted as FP or FN. Figure 8 shows an example in which a long
arterial segment in RCA was not segmented by the GE software, but it was not counted as
an FN because it was not one of 17 coronary arterial segments. A limitation of visual
assessment of the coronary artery tree extraction is the counting of FPs such as the noisy
structures, the veins or other vessels that were mistakenly extracted as coronary arteries.
Figure 9 shows an example in which a large connected structures composed of a number of
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abdominal vessels were extracted by the GE software. It is difficult to define criteria to
separate the connected vessels into individual vessel segments or branches. For this case,
both radiologists agreed to separate the large connected vascular structure into two
components according to their anatomic locations and count them as one FP on the right side
and one FP on the left side of the heart. For the same case, two venous segments adjacent to
the left coronary tree were also extracted by both methods, and were counted as two FPs
without hesitation by both radiologists because they were separate segments.

In this preliminary study, our DBT method used two starting points manually identified at
the origins of the left and right coronary tree as the seed points, respectively, to track the left
and right coronary arterial trees for each case. Although the GE software can extract the
coronary arterial trees automatically without user-identified seed points, the seed points
were manually input for two out of the 40 coronary trees in our data set due to the failure of
starting point identification by the GE software (Figure 10). Most of the FNs were caused by
artifacts of heart motion that blurred the coronary artery segments, and the low contrast
filled arteries due to blockage by plaques. Figure 10 shows an example that a gap was
caused by the calcified plaques in the LAD segment for both our MSCAR-DBT method and
the GE software. The DBT method can jump over a gap if the gap is small compared to the
diameter of the local balloon. In this preliminary study, a single reconstructed phase (70% or
75%) was selected for each scan. The RCA generally has greater motion during late diastole
of the cardiac circle (>65%), and the motion artifact scan cause failure in tracking of the
RCA. Figure 11 shows an example of a failure in the tracking of the RCA due to motion blur
artifacts for both our MSCAR-DBT method and the GE software.

As shown in Table 1, the results of our preliminary study indicated that the performance of
the MSCAR-DBT algorithm was superior to that of a commercial system in this small data
set. However, the estimated performance may be biased optimistically because it was not
evaluated on an independent test set, whereas it was for the commercial system.
Nevertheless, the preliminary results are encouraging and further development of this
technique is warranted. The use of an in-house developed coronary artery segmentation and
tracking algorithm in the prescreening stage of our automated plaque detection system
allows us the flexibility of optimizing all image processing stages as a whole. More
importantly, the automated CADe system to be developed will be less dependent on specific
commercial software and can be more easily adapted to coronary CTA scans acquired with
CT scanners from different manufacturers.

V. Conclusion
The preliminary study demonstrates the feasibility that our MSCAR-DBT method can
enhance and segment the vascular structures and track coronary artery trees. Although both
our method and the GE software can extract coronary artery trees reasonably well and the
performance of our method is superior to that of GE software in a small data set, both
methods are far from perfect in extracting coronary artery trees automatically, especially for
the artery segments affected by motion artifacts, severe calcified and non-calcified soft
plaques, and the false tracking of the veins and other noisy structures. Fully automated and
accurate extraction of the coronary arteries is a very important task for our in-house
development of a CADe system for plaque detection, and for a commercial system to
provide radiologists an efficient visualization tool for vessel analysis in clinical practice.
Further studies are underway to develop methods for identification of seed points
automatically and for improvement of the segmentation and tracking accuracy, and
ultimately develop computer-vision methods to automatically detect soft plaques along the
tracked arteries.
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Figure 1.
Schematic diagram of our prototype coronary artery extraction algorithm using multiscale
coronary artery response (MSCAR) segmentation and 3D dynamic balloon tracking (DBT),
referred to as the MSCAR-DBT method.
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Figure 2.
Seventeen major coronary arterial segments (28) that are considered clinically significant.
(1) proximal RCA, (2) mid RCA, (3) distal RCA, (4) right posterior descending (RPD)
artery, (5) main LCA, (6) Proximal left anterior descending (LAD), (7) Mid LAD, (8) apical
LAD, (9) first diagonal, (10) second diagonal, (11) proximal left circumflex (LCx) artery,
(12) first obtuse marginal (OM1), (13) distal, LCx, (14) second obtuse marginal (OM2), (15)
posterior descending (PD), (16) posterior lateral branch (PLB), and (17) ramus intermedius
segment.
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Figure 3.
The setting of visual assessment of automated segmentation and tracking of coronary
arteries. (a) The PC with GUI displays the tracked coronary arteries rendered in 3D volume
by our MSCAR-DBT method. (b), (c) the GE workstation displays the volume rendering of
the coronary arteries obtained by the GE coronary analysis software, and the original cCTA
scan.
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Figure 4.
An example of coronary arterial trees extracted by our MSCAR-DBT method. Left: the
computer tracked coronary arteries rendered in 3D volume. Right: the computer tracked
coronary arteries superimposed on the heart.
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Figure 5.
An example of the left and right coronary artery trees extracted by our MSCAR-DBT
method (top row) and GE software (bottom row). The open white arrows point to four FNs
in LCA and four FNs in RCA by GE method. The white arrows point to one FPs and two
FPs by GE method and our MSCAR-DBT method, respectively. There is no FN by our
method in this case.
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Figure 6.
Examples of left coronary artery trees extracted by our MSCAR-DBT method (top row) and
GE software (bottom row) for two cases (left and right column). The open white arrows
point to two FNs by the GE software but tracked by our MSCAR-DBT method for one case
(left column) and three FNs by the GE software for another case (right column). There is no
FN or FP by our MSCAR-DBT method and no FP by the GE software for both coronary
trees.
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Figure 7.
An example of left and right coronary artery tree extracted by our MSCAR-DBT method
(top row) and GE software (bottom row). The RCA and LCA are shown in left column and
right column, respectively. One segment in RCA and 3 segments in LCA (pointed by open
white arrows) were missed by both methods. These FN segments (darker vessels in top
rows) were manually tracked by a radiologist to show the missing parts.
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Figure 8.
An example of coronary artery tree extracted by MSCAR-DBT method (left) and GE
software (right). A long arterial segment in RCA (white arrowhead) not tracked by the GE
software, was not counted as an FN for the GE software nor as FP for our MSCAR-DBT
method, because it is not one of the 17 coronary arterial segments that are considered
clinically significant. The LCA of this case is also shown in left column of Fig. 6.
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Figure 9.
An example of the counting of FPs for coronary artery tree extracted by our MSCAR-DBT
method (top row) and the GE software (bottom row). A large connected component
composing of abdominal vessels was visually separated into two FPs by radiologists, in term
of their location, at the left and right side of the heart (white arrows). The two venous
segments (white arrows in right column) were counted as two FPs for both methods.
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Figure 10.
An example shows a seed point (white dot pointed by white curved arrow in top right
image) was manually input to RCA due to the failure of the GE software in identifying the
seed point, the corresponding seed region (black circle) is shown in the original cCTA scan
(bottom left). The calcified plaques (white circle in bottom right image) in the LAD caused a
gap (white arrowhead) both in the coronary artery tree extracted by our MSCAR-DBT
method (top left) and the GE software (top right).
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Figure 11.
An example of a failure in the tracking of the RCA due to the motion blur artifacts for both
our MSCAR-DBT method (top left) and the GE software (top right). The FN segment
(darker vessels pointed by open white arrow) was manually tracked by a radiologist to show
the missing part. Two axial view images separated by 8 slices (bottom row) show the short
starting vessel segment without motion (black circle, bottom left) that was extracted (white
arrowhead) by our method, and the later segment with motion (black circle, bottom right)
that failed to be tracked by either our method or the GE software.

Zhou et al. Page 21

Comput Med Imaging Graph. Author manuscript; available in PMC 2013 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Zhou et al. Page 22

Ta
bl

e 
1

Th
e 

nu
m

be
r o

f F
N

 a
nd

 F
P 

se
gm

en
ts

 b
y 

ou
r m

ul
tis

ca
le

 c
or

on
ar

y 
ar

te
ry

 re
sp

on
se

-d
yn

am
ic

 b
al

lo
on

 tr
ac

ki
ng

 (M
SC

A
R

-D
B

T)
 m

et
ho

d 
an

d 
by

 th
e 

G
E

A
dv

an
ta

ge
 w

or
ks

ta
tio

n 
so

ftw
ar

e.

Fa
ls

e 
N

eg
at

iv
es

Fa
ls

e 
Po

si
tiv

es

L
C

A
R

C
A

T
ot

al
L

C
A

R
C

A
T

ot
al

M
SC

A
R

-D
B

T 
m

et
ho

d
17

8
25

13
6

19

G
E 

w
or

ks
ta

tio
n 

so
ftw

ar
e

32
23

55
10

5
15

Comput Med Imaging Graph. Author manuscript; available in PMC 2013 January 1.


