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Abstract
Disruption of either intercellular or extracellular junctions involved in maintaining endothelial
barrier function can result in increased endothelial permeability. Increased endothelial
permeability, in turn, allows for the unregulated movement of fluid and solutes out of the
vasculature and into the surrounding connective tissue, contributing to a number of disease states,
including stroke and pulmonary edema (Ermert et al., 1995; Lee and Slutsky, 2010; van
Hinsbergh, 1997; Waller et al., 1996; Warboys et al., 2010). Thus, a better understanding of the
molecular mechanisms by which endothelial cell junction integrity is controlled is necessary for
development of therapies aimed at treating such conditions. In this review, we will discuss the
functions of three signaling molecules known to be involved in regulation of endothelial
permeability: focal adhesion kinase (FAK), protein kinase C delta (PKCδ), and p190RhoGAP
(p190). We will discuss the independent functions of each protein, as well as the interplay that
exists between them and the effects of such interactions on endothelial function.
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Introduction
The endothelium forms the innermost lining of all body vessels. This single layer of cells
functions as a semipermeable barrier, serving to regulate the exchange of fluid and solutes
between the vascular compartment and the interstitial space (Deanfield et al., 2005). The
integrity of this barrier is dependent upon the adhesions between adjacent endothelial cells,
as well as the adhesions of the endothelial cells to the underlying extracellular matrix
(Dejana et al., 1995; Dejana and Del Maschio, 1995). Interendothelial cell tight junctions
and adherens junctions prevent uncontrolled paracellular transport of substances, including
plasma proteins and white blood cells, through the endothelium and into the surrounding
connective tissue. At the same time, numerous transmembrane protein complexes, known as
focal adhesions, function in endothelial barrier regulation by modulating the attachment of
individual endothelial cells to the underlying basement membrane. However, recent studies
indicate that focal adhesions can also affect the signaling pathways that control cell survival
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and differentiation, as well as those involved in cell migration. In order to mediate such a
diverse array of functions, signaling at focal adhesions occurs in a dynamic nature. Several
molecules controlling protein phosphorylation and organization of the actin cytoskeleton are
particularly crucial in focal adhesion function; included in these are focal adhesion kinase
and protein kinase C, as well as the RhoA regulatory protein, p190RhoGAP.

Regulation of Endothelial Permeability by FAK, PKCδ, and p190RhoGAP
Focal Adhesion Kinase (FAK)—Focal adhesion kinase (FAK) is a ubiquitously
expressed cytoplasmic protein tyrosine kinase involved in the regulation of numerous
endothelial cell functions. It serves a critical role in vascular endothelial growth factor
(VEGF)-induced angiogenesis and vascular patterning; mice with endothelial-specific
deletion of FAK die prior to birth (Eliceiri et al., 2002; Shen et al., 2005). FAK is also
involved in endothelial cell apoptosis, in the response to a number of barrier agonists (Bellas
et al., 2002; Claesson-Welsh et al., 1998; Kabir et al., 2002), and in the regulation of
endothelial permeability (Guo et al., 2005; Harrington et al., 2005; Holinstat et al., 2006).

As its name implies, FAK was first characterized according to its role at focal adhesion
complexes (Schlaepfer and Hunter, 1996). Focal adhesions are comprised of combinations
of between 50–100 different proteins, giving the structures considerable heterogeneity and
dynamic signaling properties. However, all focal adhesions contain two major components:
integrins and FAK (Sieg et al., 1999). Integrins are transmembrane glycoproteins which
serve as tethers between the intracellular cytoskeleton and the protein components of the
extracellular matrix. Each integrin molecule is composed of a heterodimeric pairing of
various α and β subunits. To date, 18 α and 8 β subunits have been identified, giving rise to
24 possible integrin pairs, each with distinct adhesion receptor properties (Hynes, 2002).
The integrin cytoplasmic domains mediate binding to actin filaments, either directly or
indirectly through adaptor proteins including paxillin, vinculin, talin, and α-actinin. Integrin
adhesion to underlying matrix components, such as vitronectin and fibronectin, is transduced
through the integrin extracellular domains. It was traditionally thought that integrin-matrix
engagement and subsequent integrin receptor clustering at sites of cell-extracellular matrix
adhesion serves as the stimulus for recruitment of FAK (Mitra and Schlaepfer, 2006).
However, recent data also suggests that FAK promotes the activation of integrins, resulting
in altered force generation at cell-extracellular matrix interactions (Michael et al., 2009).

Upon integrin engagement, FAK is directed from the cytoplasm to sites of focal adhesions
through a focal adhesion targeting (FAT) sequence, within its 140 amino acid carboxyl-
terminus (Hildebrand et al., 1993). The amino-terminal FERM (protein 4.1, ezrin, radizin,
and moesin homology) domain functions to maintain FAK in an autoinhibited state by
masking the catalytic domain (Lietha et al., 2007), as well as to facilitate the physical
binding of FAK to integrin proteins, certain growth factor receptors, and the actin
polymerizing protein complex, Arp2/3 (Chen and Chen, 2006; Serrels et al., 2007; Sieg et
al., 2000). Integrin binding induces the autophosphorylation of FAK at tyrosine 397
(Hamadi et al., 2005; Hanks and Polte, 1997), within the carboxyl-terminal region, which in
turn facilitates binding to the SH2 domains of Src or phosphatidylinositol 3-kinase (PI 3-
kinase). The FAK protein complex then mediates the phosphorylation and activation of
several key molecules important in cell adhesion and migration, including paxillin and
p130Cas (Mitra and Schlaepfer, 2006; Schaller et al., 1994; Vuori, 1998). When FAK is
molecularly inhibited or ablated, cell spreading and stress fiber formation is inhibited and
nuclei become condensed and lobular (Almeida et al., 2000; Ilic et al., 1998; Ilic et al., 1995;
Richardson et al., 1997; Sieg et al., 1999).

In addition to its role in cell-extracellular matrix adhesion, FAK has more recently been
shown to contribute to endothelial cell-cell adhesion. The vascular barrier agonist,
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sphingosine 1-phosphate (S1P), a sphingolipid which has been shown to enhance vascular
endothelial integrity (Garcia et al., 2001), induces a redistribution of FAK, and its binding
partner paxillin, from internal sites of extracellular matrix adhesion to the cell periphery
(Sun et al., 2009). Once at the cell periphery, FAK associates with VE-cadherin-mediated
adherens junctions through its binding to β-catenin and p120-catenin (Knezevic et al., 2009).
This interaction between FAK and adherens junction proteins fosters the establishment of
the cortical actin ring. FAK was also shown to play a critical role in the reannealing of
adherens junctions following settings of endothelial barrier dysfunction. PAR1 receptor
activation via thrombin was shown to promote the release of the heterotrimeric Gβγ subunit
from its sequestering protein, receptor for activated C kinase 1 (RACK1), and subsequent
binding to and activation of Fyn and FAK (Knezevic et al., 2009). This sequence of events
resulted in FAK binding to p120-catenin and reannealing of adherens junctions (Knezevic et
al., 2009). By transiently overexpressing various forms of FAK, others have also
demonstrated cross-talk between FAK and adherens junctions in the regulation of
endothelial barrier function (Quadri and Bhattacharya, 2007; Usatyuk and Natarajan, 2005).
In a recent study in which a kinase defective FAK protein that was conditionally knocked
into the endothelium, it was shown that, while kinase dead FAK is protective against
endothelial cell apoptosis, endothelial cell barrier function and the intercellular localization
of VE-cadherin at the adherens junctions is dependent upon FAK kinase activity (Zhao et
al., 2010). In addition, activation of the endothelial cell-specific, extracellular matrix bound
integrin, αvβ3, caused the redistribution of this integrin to the cell periphery, diminution of
VE-cadherin at inter-endothelial cell junctions, FAK activation, and concomitant barrier
dysfunction (Alghisi et al., 2009). Thus FAK is a key regulator of endothelial barrier
function at both integrin-mediated cell-extracellular matrix interactions, as well as
intercellular adherens junctions.

Protein kinase C—Protein kinase C (PKC) is a family of serine/ threonine kinases
consisting of ten known isoforms. These isoforms are divided into three subfamilies, based
on their domain composition and corresponding cofactor requirements (Newton, 1995). All
of the PKC enzymes possess a highly conserved carboxyl-terminal kinase domain which is
autoinhibited by the binding of the amino-terminal pseudosubstrate domain within the
substrate cleft of the catalytic domain. The PKC isoforms are catalytically activated upon:
cofactor binding; sequential phosphorylation of select serine or threonine residues by
phosphoinositide-dependent kinase-1 (PDK-1) and mammalian target of rapamycin (mTOR)
complex 2 (mTORC2); and/ or allosteric interactions with key effector proteins (Newton,
2010; Rosse et al., 2010). The first subfamily, the conventional (c) PKC enzymes, is
comprised of the α, βI, βII, and γ isoforms. Within the N-terminal regulatory region, these
enzymes contain a C1 domain, which binds either diacylglycerol (DAG) or the
pharmacologic analogue, phorbol ester. The C2 domain binds to the head groups of
phospholipids, such as phosphatidylserine, in the presence of calcium. In order to be
activated, both the C1 and C2 domains must be engaged, thus requiring the presence of
calcium, diacylglycerol (DAG), and a phospholipid. The second group of PKC enzymes, the
novel (n) family, is comprised of the δ, ε, η, and θ isoforms. Like the cPKC isoforms,
activation of the nPKC enzymes requires binding to DAG/ phorbol esters, as well as to a
phospholipid; however, due to a variation in the amino acid sequence of the C2 domain, the
presence of calcium is not necessary. The third subfamily of PKC enzymes contains the
atypical (a) isoforms, ζ and ι/λ. The aPKC enzymes, which lack functional C1 and C2
domains, do not require DAG or calcium for activation. Instead, aPKC are activated
primarily by protein-protein interactions with the partitioning defective 6 (PAR6)-CDC42
protein complex (Suzuki et al., 2001). Much work has been done to elucidate signaling
pathways upstream and downstream of the PKC isoforms since their discovery in the 1980s,
however substrate specificity of each of the isoforms is still not known.
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Inhibitor studies have suggested proteins associated with the cytoskeleton or adherens
junction may serve as substrates for PKC and thus may be important in the modulation of
thrombin-induced changes in endothelial monolayer permeability. Studies examining
signaling molecules important in inducing lung edema showed that infusion of PKC
activating agents induced edema formation, while infusion of PKC inhibitors blocked the
effects of edemagenic agents in lung edema formation (Johnson et al., 1990; Johnson et al.,
1989; Siflinger-Birnboim et al., 1992). More recently, phorbol ester-induced microvascular
endothelial monolayer permeability was shown to require PKCδ, but not PKCα, βI, or ε
(Tinsley et al., 2004). Others have demonstrated increased endothelial barrier dysfunction
upon modulation of PKCα, PKCβI, or PKCζ activities and/or expression (Ferro et al., 2000;
Huang et al., 2005; Li et al., 2004; Nagpala et al., 1996). PKCα activation promoted
endothelial barrier disruption in response to a variety of edemagenic agents, including α-
thrombin, TNF-α, and ROS (Aschner et al., 1997; Ferro et al., 2000; Konstantoulaki et al.,
2003; Sandoval et al., 2001; Xiong et al., 2010). Intriguingly, we have shown that activation
of PKCδ is critical for maintenance of basal barrier function and attenuated agonist-induced
increases in permeability (Figure 1) (Harrington et al., 2003; Harrington et al., 2005; Klinger
et al., 2007); these functions correlated with enhanced focal adhesion formation, actin
filament stabilization, and RhoA activation. Similarly, using a siRNA approach, Carpenter
and Alexander demonstrated that PKCδ activation within endothelial cells attenuated
neutrophil transmigration across the monolayers (Carpenter and Alexander, 2008).
Additional studies have suggested that diminished PKCδ expression and upregulation of
PKCβII protein content in the endothelium may contribute to microvascular barrier
dysfunction in settings of hyperglycemia, possibly through distinct subcellular
compartmentalization of each isoform (Gaudreault et al., 2008; Yuan et al., 2000). Indeed, a
recent study using a PKCδ selective fluorescence resonance energy transfer (FRET) reporter
construct which reflected PKCδ enzymatic activity, showed that PKCδ activity was greatest
at the plasma membrane in COS7 cells at both baseline and in agonist-induced states; data
supportive of a role of PKCδ in modulating barrier function (Kajimoto et al., 2010).
Interestingly, in a recent study, Geraldes and colleagues demonstrated an indirect effect of
PKCδ in endothelial cell dysfunction via the induction of apoptosis. The investigators noted
that hyperglycemia induced the upregulation of PKCδ dependent signaling in pericytes,
which in turn led to pericyte apoptosis and microvascular dysfunction via increased
endothelial permeability and cell proliferation, and the pathologic progression of diabetic
retinopathy (Geraldes et al., 2009).

Many agents that affect endothelial barrier function similarly modulate proliferation,
migration, and angiogenesis. Thus it is not surprising that PKC isoforms are critical
regulators of these endothelial functions (Anfuso et al., 2007; Graham et al., 2000; Hu and
Fan, 1995; Spyridopoulos et al., 2002; Wong and Jin, 2005). PKCδ overexpression reduced
endothelial cell proliferation via a diminished rate of progression through the G1/S-phase of
the cell cycle and an attenuated level of expression of cyclin E (Ashton et al., 1999;
Harrington et al., 1997). Further experiments have demonstrated that conditional
overexpression of the PKCη pseudosubstrate motif, which inhibited PKCα, δ, ε, and η
enzymatic activities in vitro, also attenuated the rate of endothelial cell proliferation,
migration, and tubule formation (Harrington et al., 2000). We showed PKCδ overexpression
enhanced endothelial cell adhesion to the extracellular matrix protein, vitronectin
(Harrington et al., 1997). However, isoforms other than PKCδ have been shown to be
necessary for the regulation of endothelial cell migration induced by various agents,
including sphingosine-1-phosphate, hepatocyte growth factor, vascular endothelial growth
factor (VEGF) (Gorshkova et al., 2008; Harrington et al., 1997; Wang et al., 2002).

Multiple studies have revealed a pro-apoptotic role for PKCδ in the progression of apoptosis
in vitro and in vivo. PKCδ activation was shown to be associated with increased apoptosis in
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myocardial tissue of patients undergoing cardiopulmonary bypass and carioplegic arrest
(Sodha et al., 2008). Furthermore, the PKCδ-specific translocation peptide inhibitor,
KAI-9803, was shown to attenuate the infarct size in animal models and in humans with
acute myocardial infarction (Direct Inhibition of δ-Protein Kinase C Enzyme to Limit Total
Infarct Size in Acute Myocardial Infarction (DELTA MI) Investigators, 2008; Inagaki et al.,
2003). Furthermore, the salivary glands of PKCδ null mice were resistant to ionizing
radiation-induced apoptosis (Humphries et al., 2006). Interestingly, PKCδ has also been
shown to protect against apoptosis (Kilpatrick et al., 2006). In epithelial cells, PKCδ
promoted cell survival in response to acute hypoxia via activation of the autophagic
response (Humphries et al., 2006). However, upon chronic hypoxic conditions, apoptosis
ensues via a mechanism involving the catalytically-active form of PKCδ (PKCδCF) and
caspase-3 (Humphries et al., 2006). Studies by Reyland and colleagues have demonstrated
that upon exposure to apoptosis-inducing agents, PKCδ phosphorylation at tyrosine residues
64 and 115 causes a protein conformational change revealing a nuclear localization
sequence, which in turn resulted in the translocation of PKCδ to the nucleus (DeVries-
Seimon et al., 2002; DeVries-Seimon et al., 2007). Thus, it is likely that different subcellular
compartments of PKCδ regulate distinct cellular functions; including monolayer
permeability, proliferation, apoptosis, migration, adhesion, and angiogenesis. The
maintenance of the vascular integrity requires a careful balance of signals regulating
endothelial cell survival and apoptosis, thus it is possible that endothelial cell apoptosis
plays a role in edema formation seen in settings of chronic obstructive pulmonary diseases
and acute lung injury.

The expression pattern of the PKC isoforms varies in endothelial cells depending upon the
organ or vascular bed from which the cells are isolated (Geraldes et al., 2009). For example,
in the lung, we noted the PKCα, δ, ε, η, and λ isoforms in microvascular endothelial cells
and only PKCα, δ, ε, and η in pulmonary artery derived endothelial cells (Fordjour and
Harrington, 2009). Because PKC has been implicated in a variety of endothelial cell
functions, including monolayer permeability, proliferation, apoptosis, migration, adhesion,
and angiogenesis, it is likely that the PKC isoform profile of the endothelium may also
influence the functional and pathologic response of the endothelial cell to environmental
cues.

p190RhoGAP—The monomeric, small Rho GTPase proteins (RhoA, Rac-1, and Cdc-42)
are members of the Ras superfamily and are key cytoskeletal regulators, functioning in cell
motility and migration, cytokinesis, differentiation, polarity, and vesicular trafficking
(Aspenstrom, 1999; Begum et al., 2004; Hall, 1998; Hall and Nobes, 2000; Hotchin and
Hall, 1996; Ridley, 2001; Tapon and Hall, 1997; Wojciak-Stothard and Ridley, 2002a).
These ubiquitous enzymes cycle between active, GTP-bound states and inactive, GDP-
bound states, undergoing corresponding conformational changes. The exchange of GTP and
GDP is regulated by the opposing actions of the guanine nucleotide exchange factors (GEF)
and the GTPase activating proteins (GAP). The GEF proteins mediate the activation of
RhoA, Rac-1, and Cdc-42 by stimulating the release and exchange of GDP for GTP.
Conversely, the GAP proteins foster the inactivation of these proteins by activating their
intrinsic GTPase activity, triggering the conversion from the active, GTP-bound state to the
inactive, GDP-bound form. Another class of proteins, the Rho guanine nucleotide
dissociation inhibitors (GDI) suppress RhoA signaling by sequestering the GDP-bound form
of the small GTPases within the cytoplasm, preventing them from exposure to and activation
by the GEF proteins (Fukumoto et al., 1990; Moon and Zheng, 2003).

The p190RhoGAP (p190) family of GTPase activating proteins is composed of two
members: p190RhoGAP-A (p190-A) (Settleman et al., 1992) and p190RhoGAP-B (p190-B)
(Burbelo et al., 1998). While both proteins function as GAP for the Rho family of small
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GTPases, they are encoded by different genes and share only about 50% sequence identity.
The two isoforms do exhibit several overlapping functions, including the regulation of
cortical actin assembly/disassembly and cell motility and invasion. p190-B, however,
functions largely in regulation of development (Chakravarty et al., 2003; Heckman et al.,
2007; Sordella et al., 2002) and cell-fate decisions (Sordella et al., 2003), while p190A is a
critical regulator of cell migration and tumorigenesis in numerous cell types, including
endothelial cells (Arthur et al., 2000; Wolf et al., 2003).

p190-A is comprised of three major domains: an N-terminal GTP-binding domain; a middle
domain containing multiple protein-protein interaction sites, including several
diphenylalanine (FF) motifs shown to interact with RNA-binding proteins (Jiang et al.,
2005; Mammoto et al., 2009), numerous Src homology 3 (SH3)-domain binding sites, and a
critical tyrosine residue, Tyr 1105, which, when phosphorylated, serves as the major binding
site for p120RasGAP (Hu and Settleman, 1997; Roof et al., 1998); and a C-terminal GAP
domain, which displays specificity for GTP-bound RhoA (Ridley et al., 1993).

p190-A plays a critical role in extracellular matrix dependent RhoA inhibition. Fibroblasts
transiently overexpressing dominant negative p190 are unable to suppress RhoA during
adhesion, leading to impaired cell spreading and migration (Arthur and Burridge, 2001).
p190-A is also involved in regulation of adherens junction integrity, through its binding to
p120-catenin. Activated RhoA disrupts adherens junction integrity by inducing myosin light
chain-dependent actin stress fiber formation and initiating cytoskeleton retraction. While
both p190-A and p120-catenin function independently to inhibit RhoA (p120-catenin
functions as a modified GDI), the two also function in concert with one another to inhibit
RhoA through Rac-1. Overexpression of dominant active Rac-1 induces a robust recruitment
of p190 to adherens junctions, an effect which is blocked by depletion of p120-catenin.
Likewise, p190-null cells lack adherens junction-associated p120-catenin, even in the
presence of dominant active Rac-1 (Wildenberg et al., 2006).

In the endothelium, some evidence has suggested p190 is a key signaling modulator of
endothelial barrier function. Angiopoietin-1 attenuation of lipopolysaccharide-induced
endothelial barrier dysfunction in vitro and lung edema in vivo was shown to be blocked in
settings of p190 protein suppression, suggesting that p190 signals through a barrier
protective mechanism (Mammoto et al., 2007). In lung endothelial cells transiently
overexpressing wild-type p190-A, while the endothelial cells remained adherent, we noted
diminished actin stress fibers and significantly fewer focal adhesion complexes (Fordjour
and Harrington, 2009). Interestingly, transient overexpression of dominant negative p190-A
protein had no significant effect on endothelial stress fiber or focal adhesion complex
formation and endothelial basal barrier function was unaffected upon siRNA suppression of
p190-A and/or p190-B (Fordjour and Harrington, 2009), suggesting that other Rho GAP
proteins may compensate for these cytoskeletal disruptions in p190 function within the
endothelium. Thus, p190 may play a greater role in the regulation of endothelial monolayer
permeability in the settings of barrier agonists and antagonists.

Functional Crosstalk between FAK, PKCδ, and p190
Despite the considerable phenotypic and functional heterogeneity between macrovascular
and microvascular endothelial cells, numerous in vitro studies suggest that FAK, PKCδ, and
p190-A play similar roles in regulation of barrier function in both cell types (Mehta, 2002;
Harrington, 2005; Holinstat, 2006). However, the baseline permeability of macrovascular
endothelium, such as that derived from the pulmonary artery, is considerably higher than
that of microvascular endothelium, with macrovessel-derived endothelial monolayers
exhibiting increased hydraulic conductance, relative to endothelial cells derived from
microvessels (Parker, 2006). Several reasons have been implicated for this difference,
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including a differential response to intracellular Ca2+ flux and varying extracellular milieu
(Kelly, 1998; Sisbarro, 2005). Interestingly, when pulmonary artery endothelial cells and
lung microvascular endothelial cells were plated onto uncoated plastic, in order to mimic the
microenvironment of injured tissue, macrovessel-derived cells displayed increased FAK
activation and decreased RhoA activity, compared to microvascular endothelial cells
(Sisbarro, 2005). Thus, it is likely that while the cellular function of these molecules is
similar in macrovascular and microvascular endothelium, their relative levels of expression
may differ depending on the specific microenvironment.

PKCδ and FAK are involved in the regulation of several common endothelial cell functions;
thus it is perhaps not surprising that there exists a certain degree of crosstalk between the
two. PKCδ, in addition to several other PKC isoforms, is activated upon integrin ligation,
leading to translocation from the cytosol to the cell membrane (Besson et al., 2002; Chae et
al., 2010). Inhibition of the PKC enzymes has been shown to prevent cell spreading and
migration (Chae et al., 2010; Wang et al., 2002). In rat embryonic fibroblasts, PKCδ has
been shown to be one of the first components recruited to newly formed focal adhesions,
rapidly following recruitment of FAK (Barry and Critchley, 1994). Overexpression of PKCδ
has been shown to enhance endothelial barrier integrity and to attenuate the degree to which
thrombin induces barrier dysfunction (Harrington et al., 2003). These observations were
accompanied by a significant increase in the number of FAK-based focal adhesion contacts
(Harrington et al., 2003). Conversely, inhibition of PKCδ significantly reduced the number
and size of focal adhesions and diminished level of filamentous actin; events which
correlated with attenuation of FAK activity and diminished cell stiffness, respectively
(Figure 2) (Harrington et al., 2005; Klinger et al., 2007). Interestingly, attenuation of FAK
activity was not detectable until ten minutes after treatment with the PKCδ inhibitor,
rottlerin, and overexpression of wild type FAK was unable to block rottlerin-induced effects
on endothelial permeability and stress fiber disruption, strongly suggesting that the effects of
PKCδ on FAK are mediated through at least one intermediate signaling molecule, and/ or
that PKCδ itself serves as an signaling intermediate for activation of FAK.
Autophosphorylation of FAK at tyrosine 397 has been shown to occur downstream of RhoA
activation (Mukai et al., 2003); thus, it is possible that PKCδ activates RhoA, which in turn
stimulates autophosphorylation and activation of FAK (Figure 4). Alternatively, under
homeostatic conditions, PKCδ may serve as signaling intermediate for one of the established
modulators of FAK autophosphorylation, such as EGF or c-Met (Kharait et al., 2006; Thors
et al., 2003; Wang et al., 2009).

Neutrophil transendothelial migration has been shown to induce changes in the
phosphorylation of endothelial FAK, leading to an increase in vascular permeability (Guo et
al., 2005). Treatment of endothelial cells with either phorbol 12-myristate 13-acetate (PMA),
a known pan PKC activator, or bryostatin-1, an activator specific for PKCδ and PKCε, were
shown to significantly attenuate neutrophil transendothelial migration, coincident with
increased cell substrate adhesion and increased intracellular staining for the activated,
phosphorylated form of FAK, phosphorylated tyrosine 397 (Y397) FAK (Carpenter and
Alexander, 2008). Although the mechanism by which PKCδ may regulate FAK has not yet
been elucidated, PKCδ activity has been shown to increase following phosphorylation by
Fyn kinase, a known activator of FAK (Kronfeld et al., 2000). Chu et al. recently reported an
increase in FAK serine 910 (S910) phosphorylation in rat ventricular myocytes transfected
with constituitively active PKCδ (Chu et al., 2010). They also observed an inhibition of
endothelin-1-induced FAK S910 phosphorylation in cells overexpressing dominant negative
PKCδ. Endothelin is an important vasoactive mediator associated with numerous cell
responses, including the release of nitric oxide from vascular endothelial cells. Thus, further
investigation into the mechanism(s) by which PKCδ affects changes in FAK activation/
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phosphorylation will serve to increase our understanding of the pathways involved in
endothelial barrier regulation.

Coincident with their critical role in cytoskeletal organization and actin dynamics, the small
Rho GTPase proteins are tightly regulated. Basal activation of RhoA is necessary for
homeostatic endothelial function (Etienne-Manneville and Hall, 2002); increased RhoA
activation, however, has been shown to correlate with endothelial cell migration and
metastasis (Della Peruta et al., 2010; van Nieuw Amerongen et al., 2003; Zhao et al., 2006),
increased neutrophil extravasation (Adamson et al., 1999; Wittchen et al., 2005; Worthylake
and Burridge, 2003; Worthylake et al., 2001), and is the key mediator of endothelial cell
contraction, coincident with increased vascular permeability (Carbajal and Schaeffer, 1999;
McKenzie and Ridley, 2007; Partridge et al., 1992; Wojciak-Stothard and Ridley, 2002b).
Thrombin, an established edemagenic agent, causes a very rapid and robust increase in
endothelial RhoA activation, correlating with decreased endothelial barrier function (van
Nieuw Amerongen et al., 2000).

Interestingly, thrombin also induces the recruitment of FAK to focal adhesions, where it has
been implicated to function in the recovery of the endothelial barrier following disruption;
endothelial monolayers in which FAK has been depleted are unable to restore barrier
function following thrombin treatment (Mehta et al., 2002). Based on several independent
observations that: 1) deletion of FAK in fibroblasts led to an increase in RhoA activation; 2)
increased RhoA signaling correlated with increased endothelial permeability; 3) p190 co-
localized with FAK at focal adhesions; and 4) p190 is activated by tyrosine phosphorylation,
Hollinstat and colleagues (Holinstat et al., 2006) further investigated the specific role of
FAK in regulation of endothelial RhoA activation. They noted increased tyrosine
phosphorylation of p190 in response to thrombin, correlating with decreased RhoA
activation. In addition, they demonstrated FAK phosphorylation of p190 in vitro, and
showed that inhibition of FAK resulted in decreased p190 activation and a concomitant
increase in RhoA activity and endothelial permeability. More recently, FAK/ p190 signaling
was also implicated in mediating the anti-proliferative/ antiangiogenic effects of the
combustion byproduct 3-methylcholanthrene (3MC), an aryl-hydrocarbon receptor agonist,
in human umbilical vein endothelial cells (HUVEC) (Pang et al., 2008). Treatment with this
compound resulted in a down-regulation of FAK, coincident with increased RhoA
activation; this was in turn correlated with suppression of p190 activation by FAK (Chang et
al., 2009). In addition, Tomar and colleagues demonstrated that a complex of FAK,
p120RasGAP, and p190 functions to regulate the polarity and cell migration of fibroblasts,
carcinoma cells, and endothelial cells (Tomar et al., 2009). In this study, they observed that
following fibronectin-integrin engagement, activated FAK binds to p120RasGAP, through
its SH2-SH3-SH2 region. Through this same region, p120RasGAP binds to p190-A,
facilitating its activation by FAK. The FAK-p120RasGAP-p190A complex is then targeted
to leading-edge focal adhesions, permitting spatially regulated RhoA suppression at cell
protrusions. The authors also observed that overexpression of p190 mutants either lacking
GAP activity (p190A-RA) or with key tyrosine residues mutated to phenylalanine (p190A-
FF; Y1087F, Y1105F) blocked cell polarization, supporting the involvement of these p190-
A domains in its interaction with FAK and p120RasGAP. Interestingly, PKCδ, which
immunoprecipitates with p120RasGAP (Harrington et al., 2005), has been shown in vitro to
bind to these two domains of p190-A (Fordjour and Harrington, 2009), suggesting a possible
interplay of FAK, p190-A, and PKCδ.

p190-A also serves as a requisite binding partner for p120-catenin at intercellular adherens
junctions, preventing its translocation to the cytoplasm (Wildenberg et al., 2006). Given the
reported interaction between FAK and adherens junction associated p120-catenin (Sun et al.,
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2009), it appears that p190-A is essential for FAK function not only at focal adhesions but
also at adherens junctions.

While both PKCδ and p190-A function in regulation of endothelial FAK signaling, it
appears that the two may serve differential functions in settings of barrier maintenance
versus settings of barrier recovery after insult. For example, it was previously reported that,
in addition to causing diminished FAK activation, inhibition of PKCδ also caused a
concomitant decrease in baseline RhoA activity, resulting in disruption of basal endothelial
barrier function (Harrington et al., 2005). Furthermore, PKCδ has been shown to co-
immunoprecipitate with both p120RasGAP and p190 (Harrington et al., 2005). However,
while PKCδ is able to regulate p190 activity (Figure 3), suppression of p190-A or p190-B,
either independently or in combination, was unable to attenuate the effects of PKCδ
inhibition on RhoA activity, focal adhesion disruption, stress fiber formation, or endothelial
permeability in unstimulated cells (Fordjour and Harrington, 2009); this suggests that, under
baseline conditions, PKCδ functions to regulate RhoA activity independently of p190.
However, Holinstat and colleagues demonstrated that FAK signaling through p190 and
subsequent inhibition of RhoA was critical for restoration of the pulmonary endothelium
after thrombin-induced injury (Holinstat, 2006). Thus, as outlined in Figure 4, it is likely
that the activities of both PKCδ and p190 differ depending upon the state of the
endothelium. PKCδ may function to maintain basal levels of RhoA activation independently
of p190 when the endothelial barrier is intact. In this setting, PKCδ may phosphorylate
p190, facilitating its association with FAK, p120RasGAP, and potentially p120-catenin,
without affecting its ability to inhibit RhoA activity, which presumably should remain at
homeostatic levels. However, when the barrier is disrupted, as occurs following exposure to
thrombin, and RhoA activation is elevated to supraphysiologic levels, PKCδ signaling may
be acutely suppressed, providing a feedback loop preventing further activation of RhoA and
potentially alleviating serine/ threonine phosphorylation of p190.

Given the critical role of FAK in regulating endothelial cell function, a greater
understanding of the cellular proteins involved in FAK activation and downstream signaling,
including PKCδ and p190, will help to gain insight into the mechanisms responsible for
endothelial dysfunction in various disease states (Figure 4). Further investigation into the
dynamic interactions of adherens junction-associated p120-catenin with FAK and its binding
partner p120RasGAP may reveal a potential signaling axis along which signaling molecules,
such as PKCδ and p190, serve to maintain the balance between endothelial cell-ECM
adhesions and intercellular interactions necessary for vascular barrier function. Once the
functions of these molecules with regard to FAK have been elucidated, as well as the
temporal nature in which they are altered in different physiological settings, targeted
therapies may be designed with the goal of attenuating endothelial injury and result barrier
disruption.
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RESEARCH HIGHLIGHTS

• FAK, PKC, and p190RhoGAP exhibit crosstalk in their regulation of endothelial
cell (EC) function.

• Changes in PKCδ correlate with alterations in FAK activity and related effects
on EC function.

• FAK inhibition decreases p190RhoGAP activation; whereas PKCδ inihibition
increases p190RhoGAP activation.

• PKCδ and p190RhoGAP may regulate FAK differentially in settings of barrier
maintenance versus recovery.
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Figure 1. PKCδ inhibition promotes endothelial barrier dysfunction
Changes in endothelial monolayer permeability were assessed in rat lung microvascular
endothelial cells (LMVEC) (panel a) or endothelial cells derived from the epididymal fat
pad (FPEC) (panel b) by assaying changes in resistance of endothelial monolayers grown on
collagen coated gold electrodes using the electrical cell impedance system (ECIS); a drop in
electrical resistance across the endothelial monolayers correlates with increased
permeability. Panel a, vehicle (DMSO) or indicated concentration of rottlerin (a chemical
inhibitor with specificity for PKCδ, relative to other PKC isoforms) was added to the
monolayers, with arrows indicating time of addition. Panel b, endothelial monolayers
containing equivalent numbers of endothelial cells were infected with indicated adenovirus.
Protein overexpression was confirmed by immunoblot analyses (inset) and the effect of the
overexpressed protein on monolayer permeability was determined by measuring the
electrical resistance across the monolayers 24 hours post-infection. The mean±SE of the
normalized electrical resistance are presented. Panels a, n=6–12; *p<0.05 vs. vehicle. Panel
b, n=16; *p<0.05 vs. Ad GFP or uninfected. Panel c, pulmonary vascular permeability was
measured by calculating the capillary filtration coefficients (Kf), using the Starling equation,
from isolated, perfused rat lungs, which were fully recruited and in an isogravametric state.
Kf was determined by measuring the lung weight gain following an increase in venous
pressure divided by the change in capillary pressures and normalized to 100g wet lung mass
at baseline (solid bars) and following a 45 minute exposure to vehicle (DMSO) or 50μM
rottlerin (open bars). n=3–4, *p<0.05.
Panels a, c, and d: Reprinted from Klinger, J.R., et al., 2007. Rottlerin causes pulmonary
edema in vivo: A possible role for PKCδ. Journal of Applied Physiology, 103:2084–2094.
Panel b: Reprinted from Harrington, E.O., et al., 2005. PKCδ regulates endothelial basal
barrier function through modulation of RhoA GTPase activity. Experimental Cell Research,
308:407–421.
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Figure 2. PKCδ inhibition blunts FAK activity and diminished cytoskeletal stiffness
Panel a, FAK activity was determined by measuring the level of phosphorylation at FAK
Y397 by immunoblot analysis at indicated times following incubation of endothelial cells
derived from the epididymal fat pad (FPEC) with 5μM rottlerin. The immunoblotted
membranes were subsequently stripped and reprobed for FAK. Immunoblot signals were
quantitated by densitometry and the level of FAK activity is presented as the mean±SE of
the ratio of FAK Y397 phosphorylation to total FAK. Panel b, barrier function is dictated by
changes in both contractile and adhesive forces, thus to measure changes in the contractile
forces, cytoskeletal stiffness was assessed in lung microvascular endothelial cells (LMVEC)
which were overlaid with ferrimagnetic beads, coated with the integrin receptor-specific
peptide sequence (Arg-Gly-Asp; RGD), forming apical focal adhesions between the
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LMVEC and the ferrimagnetic beads. The beads were then twisted, using a magnet, and the
resistant force was measure both before treatment (i.e., baseline) and in the same cultures 30
minutes following exposure to vehicle, 250nM Ro-31-7549 (a chemical inhibitor with
specificity for PKCα, β, γ, ε), 10nM Gö6976 (a chemical inhibitor with specificity for
PKCα, β, γ), or 5μM rottlerin. Data are presented as mean±SE (n=280–520 cells). *p<0.05
vs. vehicle with respective treatment. Panel a: Reprinted from Harrington, E.O., et al., 2005.
PKCδ regulates endothelial basal barrier function through modulation of RhoA GTPase
activity. Experimental Cell Research, 308:407–421. Panel b: Reprinted from Klinger, J.R.,
et al., 2007. Rottlerin causes pulmonary edema in vivo: A possible role for PKCδ. Journal of
Applied Physiology, 103:2084–2094.
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Figure 3. PKCδ activity inversely affects p190 activity
Confluent lung microvascular endothelial cells (LMVEC) were treated with vehicle
(DMSO) or 10μM rottlerin for 30 minutes (panel a) or infected with adenoviral vectors
encoding GFP or wild-type PKCδ cDNA (panel b). Cells were harvested and p190 activity
determined as the level of p190 bound to GST-fused constitutively actvated RhoA. The level
of active p190 relative to total p190 was determined by densitometry. In panel b, GFP and
PKCδ overexpression was confirmed in the transfected endothelial cells by immunoblot
analysis. Data are presented as the mean±SE. Panel a, n=4; *p<0.05 vs. vehicle. Panel b,
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n=7, #p<0.05 vs. GFP. Panels a and b: Reprinted from Fordjour, A.K. and Harrington, E.O.
2009. PKCδ influences p190 phosphorylation and activity: Events independent of PKCδ-
mediated regulation of endothelial cell stress fiber and focal adhesion formation and barrier
function. Biochimica et Biophysica Acta, 1790:1179–1190.
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Figure 4. Model of potential cross talk between PKCδ, p190, and FAK
Under basal conditions, PKCδ functions to maintain endothelial barrier function through
maintenance of a static level of RhoA activation and stimulation of FAK
autophosphorylation. This allows for focal adhesion stabilization and organization of actin
stress fibers. PKCδ-mediated activation of RhoA appears to occur independently of its
effects on p190 phosphorylation.
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