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ABSTRACT Crystals of many important biological macromolecules diffract to limited resolution, rendering accurate model
building and refinement difficult and time-consuming. We present a torsional optimization protocol that is applicable to many
such situations and combines Protein Data Bank-based torsional optimization with real-space refinement against the electron
density derived from crystallography or cryo-electron microscopy. Our method converts moderate- to low-resolution structures
at initial (e.g., backbone trace only) or late stages of refinement to structures with increased numbers of hydrogen bonds,
improved crystallographic R-factors, and superior backbone geometry. This automated method is applicable to DNA-binding
and membrane proteins of any size and will aid studies of structural biology by improving model quality and saving considerable
effort. The method can be extended to improve NMR and other structures. Our backbone score and its sequence profile provide
an additional standard tool for evaluating structural quality.
INTRODUCTION
Protein structure is an indispensable guide to understanding
the function of a protein. The Protein Data Bank contains
>70,000 protein structures determined by x-ray crystallog-
raphy, NMR spectroscopy, and cryo-electron microscopy.
X-ray crystallography is the main method used to solve these
structures; however, crystals of large proteins, complexes,
and membrane proteins often diffract to limited resolution
as compared with soluble, single-domain proteins.

Computational techniques are essential for structural
refinement (1–6). Many algorithms proceed by global mini-
mization of the total energy in schemes that combine prior
knowledge of stereochemistry in real space and, for x-ray
crystallography, an optimized fitting of the observed struc-
ture factor amplitudes in reciprocal space (5,6). The widely
used CNS program suite (4) uses a simulated annealing
approach to optimize protein structures using either electron
densities from x-ray diffraction or distance constraints
from NMR measurements. However, simulated annealing
methods are unable to surmount high barriers between
conformations, which severely restricts their search capabil-
ities. Other schemes, such as RAPPER (2), use distance
constraints to provide a wide range of initial conformations
that are then inserted into CNS for further optimization.
The combined RAPPER/CNS system enables a more exten-
sive conformational search than would be possible with
CNS alone.
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An obvious approach to structure refinement is the applica-
tion of all-atom molecular-mechanics simulations. Although
such simulations are extremely powerful, they often fail to
accurately reproduce backbone geometries and have shown
limited success in improving the accuracy of near-native
structures, such as low-resolution crystal structures or pre-
dicted structures (7–9). Knowledge-based potentials are
more successful in this regard (10,11). Many successful
approaches alternatively rely on inserting known chain frag-
ments from theProteinDataBank (PDB) (12).However, frag-
ment insertion methods often encounter problems after the
initial model is generated, because the final models typically
have higher energies than the native structures. Although the
energy functions can correctly identify the native structure,
limited sampling of local backbone conformations and side-
chain packing arrangements in the condensed state often
preclude extensive refinement with these methods.

It is computationally difficult to introduce the requisite
Å-level backbone moves without disrupting the structure.
For example, a f,j pivot move that alters the backbone dihe-
dral angles of a single residue will also translate a large
portion of the protein through space. This large displacement
generally produces disastrous steric overlaps and destroys
the fold. Although it is not fatal for a folding algorithm that
starts from an unfolded chain, this move is unsuitable for pro-
tein dynamics or refinement of a protein structure, because
both of these tasks require fine-scale, Å-level motions to
sample nearby conformations. In summary, methods that
use real protein motions (e.g., molecular dynamics) fail to
surmount large barriers, and those that use artificial moves
severely distort the compact protein structure.

Here we present an automated method to identify unfa-
vorable backbone (f,j) dihedral angles in structures and
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transfer them into preferred regions of a Ramachandran map
(RamaMap) that is specific to each amino acid (aa) type.
The choice of angles accounts for the considerable but often
overlooked dependence of the individual preferences on the
neighboring residues’ chemical identity and conformation.
After the backbone geometries are improved, the side chains
are reinserted and the entire protein is energy-minimized to
fit the real-space electron density. The resulting structures
have increased numbers of hydrogen (H)-bonds and similar
or better crystallographic R-factors. These two independent
metrics support the validity of our rebuilding algorithm. The
new angles are closer on average to those observed in a
higher-resolution structure than the starting angles. We dis-
cuss concerns relating to Rfree and real-space refinement,
the use of RamaMaps as part of the target function rather
than just as a validation tool, the applicability of our method
to membrane proteins, and comparisons with existing
methods.
RESULTS

RamaMaps and statistical potentials

Our method requires the unique preferences of three dihe-
dral angles, f, j, and u, to be identified for each residue.
Typically, u lies within ~5� of either 0� (cis) or 180� (trans),
a
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whereas f and j are more broadly distributed, as observed
in RamaMaps (Fig. 1 a) (13). The f,j angle pairs populate
four regions: the extended b-basin, the aR- and aL-helical
basins, and the polyproline II basin (PPII) (14). The distinct
separation between the extended and PPII basins is clearly
evident in RamaMaps for high-resolution structures
(Fig. 1 a) but often is lost in lower-quality structures.

The RamaMaps differ for each amino acid due to interac-
tions between the backbone and side chains. Proline, pre-
proline, and glycine RamaMaps are the most distinct, and
the 18 other amino acids exhibit smaller but significant
variations (Fig. 1 b). However, many crystallographic re-
finement and evaluation programs ignore the variations
among the alanine-like amino acids as well as the distinction
between the extended and PPII basins. Another largely dis-
regarded factor is the significant influence of the chemical
identity of the neighboring residues on the RamaMaps
(15–20).

We use a torsional statistical potential (TSP) that is sensi-
tive to the identities of the amino acid and the adjacent
residues (21,22), and demonstrate that the TSP score pro-
vides a new, to our knowledge, and extremely valuable
tool for structure refinement. We formulate the TSP using
moderate- to high-resolution (<2.2 Å), nonredundant
(homology < 30%) crystal structures (Rfree % 0.3) (23).
The TSP score is proportional to log [observed frequency]
FIGURE 1 RamaMaps and TSP scores.

(a) Protein f,j dihedral angles and their

distribution (RamaMap) for high-resolution

structures (<0.9 Å). (b) RamaMaps for four

representative residues. TheAla distribution

in the extended region (upper left quadrant)

exhibits distinct b and PPII basins, whereas

Val, Thr, and Asp display their own indi-

vidual preferences. (c) <TSP>residue versus

resolution for 140,000 chains in the PDB.

(d) Histogram of TSP scores for high-,

medium-, and low-resolution structures

(percentages are based on data for

resolution < 0. 9 Å). The distribution of

TSP scores falls into four categories:

Preferred ([�6,0), 66%), Allowed ([0,5),

27%), Generously allowed ([5,10), 5%),

and Scarce (R10, 1.4%).
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and ranges from �6 to þ10. This scoring function strongly
correlates with the resolution of the structure (Fig. 1, c
and d) (20,24–26). A linear fit yields TSP score ¼
1.9(Resolution) þ 1.6.

The validity and sensitivity of our TSP scoring function is
established in two ways. First, nearly all residues in 12 high-
resolution structures (<0.9 Å) have extremely good TSP
scores (Fig. 1, a and d). Thus, the distribution of the well-
determined dihedral angles of these high-resolution struc-
tures is sharply peaked at the maxima of the individual
neighbor-dependent distributions observed in the moderate-
to high-resolution structures for each aa type (the angles in
the high-resolution structures account for only ~0.2% of the
total used to create the TSP).

Second, the increased sensitivity of our TSP scoring
function relative to typical neighbor-independent scoring
functions is demonstrated with a 2.6 Å structure of a
protein-lipid complex at a late stage of refinement (depos-
ited as 3OV6). Nearly all of its residues fall into the
preferred region of the RamaMap (Fig. 2 a) and have excel-
lent backbone scores when we use a standard scoring crite-
rion that treats all alanine-like residues identically, or even
one that distinguishes between each type of amino acid
(Fig. 2 b). Scoring with our TSP, however, indicates that
a majority of the residues actually are in the unfavorable
regions once the neighbor dependence is included.

These two tests instill confidence that the TSP score is
capable of recognizing high-quality backbone geometries
and thus properly extracts the effects of the neighboring
residues. Therefore, our scoring function provides a highly
sensitive metric that can be used to identify deficiencies in
a backbone model and (if those deficiencies are correctable)
that guide the production of a superior-quality structure.
FIGURE 2 Sensitivity of the TSP to aa type and neighbors. (a) RamaMap

for a lipid-binding protein, and (b) the associated backbone Ramachandran

scores for the first 200 residues of the input structure using potentials that

either group all alanine-like residues together (black) or distinguish

individual residue types (red), as compared with our nearest-neighbor

(NN)-dependent TSP (blue). Also shown is the neighbor-dependent TSP

score after application of TOP (gray).
Double-crank move set

It is challenging to correct poor angles across an entire
protein during structural refinement, especially for struc-
tures that diffract to limited resolution. The most common
practice involves a tedious manual process of transferring
the f and j angles of each outlier into favorable regions
of the RamaMap, or, during automated refinement, either
restraining the angles to remain near their initial values or
discarding disallowed angles using simple criteria (6). How-
ever, the adjustment of even a single pair of angles generally
degrades the structure by producing unrealistic bond lengths
and angles or by introducing large displacements in the
main-chain coordinates that produce significant deviations
from the electron density and that are often difficult to
rectify by refinement protocols in reciprocal space.

Here we present a two-stage torsion optimization proce-
dure (TOP). In the first stage, the quality of the backbone,
as defined by our high-fidelity TSP scoring function, is
improved and the number of backbone H-bonds is increased.
The second stage is an all-atom, real-space refinement step
in which the experimental electron density is used to improve
the fit of the side chains into the density and obtain evenbetter
H-bonding.

Backbone quality is improved in the first stage via a
Monte Carlo simulated annealing (MCSA) algorithm that
Biophysical Journal 101(4) 899–909
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uses our TSP scoring function and a new torsion angle move
set that permits one residue to execute motions with arbi-
trarily large changes in f, j while flanking regions remain
largely unchanged in Cartesian space. This move set
involves a crankshaft rocking of a peptide group in which
the j angle of the preceding residue is counter-rotated
with respect to f for the residue of interest: (ji�1,fi) /
(ji�1 þ d, fi � d), mimicking the dominant motion of real
protein backbones (27) (Fig. 3 a). Changes in both (j, f) of
a residue are enabled by two simultaneous crankshaft moves
involving three residues and four consecutive angles: (ji�1,
fi,ji,fiþ1) / (ji�1 þ d, fi � d,ji � D,fiþ1 þ D). An
example of different move sets and the resulting effects on
the overall fold of ubiquitin (Ub) are shown in Table S1.

New angles for the center residue are sampled from
a PDB-based library that is conditional on both the chemi-
cal identity of the three residues (i.e., triplet) and their
secondary structure, as identified using the Dictionary of
Protein Secondary Structure (28). The triplets are extracted
from the same set of PDB structures used to obtain the TSP.
Because of the dependence on the secondary structure of
a

b
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d
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each aa in the triplet, this sampling procedure incorporates
additional information that is absent from our TSP, which
only accounts for the chemical identity of the three residues.
Because it gives investigators the ability to sample the
favored regions in torsional angle space without disrupting
the overall protein conformation, this double-crank move
is ideal for improving backbone torsion angles and opti-
mizing H-bonding during structure refinement.
TOP algorithm

The TOP algorithm integrates the double-crank move with
the TSP scoring function to generate protein models with
significantly improved H-bonding and backbone torsion
angles while maintaining the backbone close to the input
models (e.g., Ca root mean-square deviation (RMSD) %
0.9 Å). In the first stage, all side-chain atoms beyond the
b carbons are removed during torsional optimization to
enhance computational speed and generate a smoother
energy landscape. Three substages (substages I, II, and III)
are run as independent MCSA simulations using the
FIGURE 3 TOP applied to a deliberately highly

distorted version of Ub. (a) Single-crank move

with overlay of the distorted and native structures

for the amino terminal hairpin (upper). The incor-

rectly positioned carbonyl oxygen of V5 is circled.

To correctly reposition this oxygen, fK6 is changed

(step 1), followed by a counter-rotation of jV5

(step 2). This and similar moves lead to the final

refined structure. (b) Wire-frame overlay of dis-

torted, backbone-improved, and native structures

(1UBI, residues 1–73), with ribbon models colored

by TSP score. (c) Corresponding RamaMaps and

histograms of TSP scores. The blue line represents

values for the high-resolution structures (<0.9 Å).

(d) Comparison of angular deviations in the Ram-

aMap of the distorted and refined models with

respect to the crystal structure, as illustrated with

a histogram.
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simulated annealing protocol described by Colubri et al.
(29). The lowest-energy conformation from the prior sub-
stage is taken as the initial conformation for the next stage.
The input reference structure is retained across all stages.

We use a linear combination of five energy functions: 1),
our neighbor-dependent TSP; 2), a metric for the similarity
to the input reference structure; 3), an H-bond potential;
4), the repulsive portion of the Cb-level statistical potential
(22) that is designed to prevent steric clashes; and 5), a
neighbor-independent TSP. Each substage uses a slightly
different combination of these five energy functions (see
Supporting Material). Substage I is designed to optimize
the dihedral angles, although the resulting structures tend
to drift away from the initial model by up to ~2 Å
Ca-RMSD. In substage II, the errant chain is guided back
toward the initial model while the number and quality of
the H-bonds are increased. Substage III involves local opti-
mization of both the torsional angles and backbone H-bonds.
Each substage contains 10–20 independent MCSA rounds.

The sampling of backbone torsion angles for the central
residue (4i and ji) proceeds with different protocols in the
three substages. The fi and ji angles in stage I are drawn
from the center residue of trimers with 3� added Gaussian
noise. The possible dihedral angle pairs are extracted from
the nonredundant PDB structures used to create the TSP3
score, and are contingent on the primary sequence and
secondary structure of the triplet. Substages II and III,
however, only permit the fi and ji angles to vary locally
from their current values by an amount determined randomly
from a uniform distribution between 0 and 5� (stage II) or 3�

(stage III), respectively. In all substages, compensatory
adjustments are applied to the torsion angles of the adjacent
residues (i� 1, iþ1) according to the double-crank move set
by Dji�1 ¼ �Dfi and Dji ¼ �Dfiþ1. The accompanying
u angle is varied by 1� only in substage I.
FIGURE 4 TOP selects native-like angles. Starting from a low-resolution

crystal structure of HIV reverse transcriptase (3HVT), the first, backbone-

only refinement stage of TOP selects angles that on average are closer to

those observed in a medium-resolution crystal structure, as illustrated

with a histogram of the dihedral angle differences. The corresponding Ram-

aMaps are shown in Fig. S1.
Application to a highly distorted protein

We first demonstrate that the double-crank move can
aggressively improve the dihedral angle distribution of a dis-
torted Ub (1UBI, resolution ¼ 1.8 Å; Fig. 3 b) while largely
maintaining the overall backbone fold. We created a
purposely severely distorted model from the crystal struc-
ture by heating the structure to 8000 K and then slowly cool-
ing it, using the experimental diffraction data truncated to
3.3 Å (4). The distorted structure contains many unfavorable
dihedral angles (Fig. 3, b and c), a greatly inferior R-free
parameter compared with the crystal structure (0.17 /
0.49), and a Ca-RMSD of 0.7 Å from the original model.
Nevertheless, our TOP protocol, using the double-crank
move set, recovers a near-native dihedral distribution, favor-
able TSP energies, and a Ca-RMSD of 1.1 Å from the input
model (and 0.9 Å from the original 1UBI structure). The
average TSP score decreases from 5.2 to �2.1, even
surpassing the native score of �1.4. Also, the number of
the backbone H-bonds increases from 14 to 27 (the native
number of 37 is found after our real-space optimization).

More than a dozen angles change by 50–100� and many
end within 40� of the native values (Fig. 3 d). Of particular
note is the nearly complete rotation of the peptide plane
between residues V5 and K6 (Fig. 3 a). This rotation largely
reflects a single crank shaft move with DjV5 ~ �DfK6

~170�. The algorithm recovers the amino-terminal hairpin’s
native H-bonding pattern wherein successive carbonyl
groups point in opposite directions. This example demon-
strates that double-crank moves with appropriate dihedral
angle sampling are capable of recovering near-native sets
of dihedral angles with favorable TSP scores and a near-
native complement of H-bonds, even when starting from
an extremely poor initial distribution.
TOP recovers angles found in a high-resolution
structure

The next test demonstrates that the new angles selected by
TOP for a medium-resolution structure are improved to
more resemble those found in a higher-resolution structure.
This test is applied to the original structure (3HVT, 2.9 Å)
and a more recent, high-resolution structure (3DLK,
1.85 Å) of an a/b protein, HIV reverse transcriptase (chain
A only, 546 aa). On average, TOP selects angles that are
closer to those in the high-resolution structure than those
in the initial lower-resolution structure (Fig. 4 and Fig. S1).
In the medium-resolution structure, 53% of the f,j
pairs are within 40� of the corresponding pairs in the high-

resolution structure,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4�4Hi Re sÞ2þðf�fHi Re sÞ2

q
< 40�,

whereas in the TOP-improved model, 69% of pairs satisfy
this criterion. Hence, TOP’s backbone refinement protocol
Biophysical Journal 101(4) 899–909
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selects angles closer to the high-resolution data while
improving the average TSP score (<TSP> ¼ 5.7 / �0.1)
and increasing the number of backbone H-bonds (102 /
125).

A repeat of this test on an NMR structure of barnase
(2KF3), a 110 aa a/b protein, shows that TOP again
produces angles that on average are more similar to those
of the 2.05 Å crystal structure (1BNI), and at the same
time produces a superior TSP score and an increased
number of H-bonds (Fig. S2).
Structure refinement against the electron density

After backbone refinement is completed, the side chains are
restored using their original c rotamer angles. Restored
angles generally produce better final structures than angles
obtained from a PDB-based, backbone-dependent rotamer
library. Presumably, this difference arises because the ro-
tamers in the original model represent a better fit to the elec-
tron density. However, the user can insert any desired set of
rotamer angles before conducting the real-space refinement
procedure and then compare the outcomes.

Portions of the protein, particularly side chains, become
displaced from the electron density during the initial stage
of TOP, elevating the crystallographic R-values. Hence,
the complete TOP procedure includes a second stage in
which the backbone-optimized structure is refined in real
space against the electron density in the asymmetric unit
(Supporting Material). This step mainly improves the fit
of the side chains into the electron density and proceeds
using a modified version of Trabuco and co-workers’ (30)
molecular modeling flexible fitting (MDFF) module of the
program NAMD 2.7b2, which has been applied to cryo-
electron microscopy (cryoEM) structures. Because the
models obtained from the double-crank procedure already
reside within the electron density (e.g., the Ca-RMSD is
<1 Å from the starting structures), there is no need to
perform molecular-dynamics simulations; only conjugate
gradient energy minimization is utilized.
R-free and real-space refinement

The validity of standard R-free calculations is a potential
concern with regard to real-space refinement involving
fitting models to electron density maps calculated from
the diffraction data. In the R-free calculation, a subset of
the diffraction data is set aside and the subset is then
compared with the predicted reciprocal space intensities
calculated from the final model. To retain the full statistical
validity of R-free, the electron density used in the real-space
refinement should not use the set-aside diffraction data from
the outset. Nevertheless, crystallographers typically retain
all reflections, including the free set, in generating the elec-
tron density maps, or calculate weights for the 2mFo-Fc
map based on reflections in the free set (31). These maps
Biophysical Journal 101(4) 899–909
are used in real-space manual rebuilding because the
more-stringent maps obtained without the free-set reflec-
tions are subject to potential errors due to early truncation
of Fourier transforms between reciprocal and real spaces.
Because the real-space refinement used by TOP mimics
the standard practice of manual real-space refinement, the
performance of TOP should be judged in the same manner,
i.e., using the maps computed from the full electron density.
Regardless, we report in the tables both the conventional R-
free and the more stringent R-free where the free set reflec-
tions are excluded in the evaluation of the real-space map.
Calculations performed with this more stringent procedure
produce only small changes in R-free.

Examples

We applied the TOP procedure to a diverse test set of crystal
and cryoEM structures that include extremely large
membrane and DNA-binding proteins, and arise at different
stages of the refinement process with varying resolution
(2.1–4.6 Å). (See Tables 1 and 2, Table S2 and Table S3,
which show additional analyses, including detailed Rama-
Map statistics based on TSP and MolProbity.)

To test TOP’s versatility, we apply it to a structural
genomics target, APC22750 (R ¼ 2.1 Å, 480 aa), at two
different stages of refinement. The starting model from an
early stage of refinement lacks some poorly resolved chain
segments and bound water molecules, and the other target
is the final deposited structure (1VR4) of this protein of
unknown function. The first, backbone optimization stage
of TOP retains the model typically within 1 Å Ca-RMSD
of the input structure. Real-space refinement reduces the
Ca-RMSD. Fig. S3 provides a detail analysis of the back-
bone movements for this protein.

The RamaMap distribution for the early model signifi-
cantly improves after the backbone refinement stage, with
both tighter clustering in the a helical region and distinct
b and PPII clusters—features that are otherwise only
observed in high-resolution crystal structures. Between
this stage and the final energy-minimization stage, the
average TSP score improves from 3.3 / 0.1 and 0.5 /
�0.9 when starting from the early and deposited structures,
respectively (Table 1). Because the TSP is part of the target
function, improvements in TSP are to be expected.

Encouragingly, two independent metrics also support the
validity of our procedure. The number of backbone H-bonds
is significantly increased for the early-stage model (162 /
214), andR-free also improves (0.36/ 0.32). Similar results
are also observed for the deposited model (Table 1). Again,
TOP produces angles for the early-stage structure that are
more similar to those in the deposited structure (e.g., 71%
and 73% of angles in the early-stage and post-TOP models

have

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4� 41VR4Þ2 þ ðf� f1VR4Þ2

q
< 40�, respectively).

Results for the five other targets are comparable (Fig. 5).
These targets include PaBphP-PCD, a crystal structure with
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eight monomers in the asymmetric unit (3827 aa total, near-
final stage refinement model, 2.6 Å resolution), the cyto-
chromeb6fmembrane complex (2E74, 959 aa, 3.0 Å), a cobra
toxin acetylcholine-binding complex (1YI5, 1356 aa, 4.2 Å),
a DNA-binding protein (early stage, 364 aa, 3.4 Å), and a
late-stage lipid-binding protein (3OV6, 376 aa, 2.6 Å). The
starting models for 2E74 and 1YI5 are taken directly from
the PDB. All TSP scores are improved by 3–5 units, equiva-
lent to a 2–3 Å increase in effective resolution for the back-
bone quality as estimated from the correlation shown in
Fig. 1 b. The number of backbone H-bonds increases by
~50% for three of the structures, and the R-free improve-
ments range from 0.01 to 0.03 for four targets.

We have not encountered a situation in which our method
fails to converge, except in regions where the electron
density is so poor that a realistic backbone could not be built
to begin with. Undoubtedly, when the initial model strays
outside the electron density, the MDFF algorithm’s long-
range electrostatic potential will be of considerable benefit
(30). This algorithm has produced large domain motions
(>10 Å) for cryoEM models.

Subsequent manual rebuilding and insertion of high-occu-
pancy water molecules (either manual or automated) could
further improve the structure and R-factors. However, we
did not perform these steps here because our focus was on
introducing our automated procedure, andmanual rebuilding
is very dependent on the individual. Nevertheless, we note
that three of these targets (PaBphP-PCD, the DNA-binding
protein, and 3OV6) have been refined with the use of Phenix
(and presumably subsequent manual refinement) within the
last year, and hence they serve to illustrate TOP’s capabilities
relative to modern refinement methods of improving back-
bone quality, H-bond formation, and R-free.

In addition, we provide an illustration of how the TOP
procedure facilitates furthermanual rebuilding.Wemanually
refined the 3827 aa PaBphP-PCDpost-TOP structure to place
all but one residue into the preferred or allowed region of
the RamaMap with minimal effort (Table 2 and Table S3).
The improvement arises in part because TOP fixes regions
that were poorly represented in the original model. Other
(minor) improvements to TOP’s model (e.g., bond lengths
and angles of side chains) can be achieved with the use of
other programs, such as Phenix. However, we suggest that
the backbone be kept fixed; otherwise, TOP’s dihedral angle
improvements will revert toward the original angles.
Membrane proteins

Our tools, which use Ramachandran statistics for soluble
proteins, may appear to be inappropriate for membrane
proteins. For example, the noticeable kinks in transmem-
brane helices might be removed by TOP because it
tends to idealize f,j angles. However, the applicability of
TOP to membrane proteins is supported by the following
observations:
First, kinked helices can be found in soluble proteins
(e.g., hemoglobin and 1GZX) and the interior of membrane
proteins (e.g., 2E76 and 3ABW). Second, there is little
reason to believe that the presence of phospholipids
exerts a significant influence on the Ramachandran distribu-
tions, and even then, any such effects probably should be
limited to residues in direct contact with the membrane.
High-resolution membrane proteins (e.g., 3ABW and
1.9 Å) have excellent TSP scores, indicating that any exist-
ing difference is subtle. Third, if environmental effects are
significant, Ramachandran distributions would be expected
to depend on burial in soluble proteins. However, in our
previous studies of soluble proteins (18), we did not detect
observable differences in the RamaMaps as a function of
burial, except for some residues at the outermost surface
of the protein, an effect that is attributable to the chains
turning back around toward the body of the protein and to
the increased population of turns. On the basis of these
observations, as well as physiochemical principles, we
believe that RamaMaps are largely determined by sterics,
H-bonding, and other electrostatic interactions, and should
be similar for soluble and membrane proteins.

Irrespective of these arguments, we compare the kinked
helices in the cytochrome b6f membrane complex (2E74)
with those in the model produced by our TOP procedure.
The starting structure has five long transmembrane helices
with distinct kinks or curvature (Fig. S4). These helices
retain their shapes in our refined model and are superimpos-
able, with only a net Ca-RMSD of 0.43 Å across all of
the associated 130 residues. Furthermore, the number of
H-bonds for these helices increases from 62 to 84 while
the <TSP> is dramatically improved from 4.5 to �2.1.
We note that this structure has a relatively low resolution
(3.0 Å), which gives our algorithm some leeway in the
fitting of the electron density, and would permit straight-
ening of the helices if they were heavily biased in this
direction. Nevertheless, our procedure accurately repro-
duces the irregular secondary structures while enhancing
the H-bonding network and backbone geometry. This result,
along with the similarity of TSP scores between soluble
and membrane proteins and the presence of kinked helices
in both classes of proteins, allows us to conclude that the
TOP algorithm is also appropriate for membrane proteins.
Application to cryoEM structures

Structures determined by cryoEM can be refined with the
same procedures used for the crystallographic structures.
We extracted the electron density for a monomer from the
4.6 Å resolution cryoEM structure (2XEA) of the tobacco
mosaic virus (TMV). Retaining the electron density within
4 Å of the monomer, we generated a structure with an
increased number of backbone H-bonds (22 / 50), better
torsional angles (<TSP> ¼ 1.1 / �0.5), and an improved
cross-correlation coefficient between our new model and the
Biophysical Journal 101(4) 899–909



TABLE 1 TOP structure refinement

Protein
APC22750

Initial

TOP*

Initial

TOP*

Stage 1 Stage 2 Stage 1 Stage 2

Resolution 2.09–25.0 Å 2.09–25.0 Å

Number of residues 465 480

Starting model During refinement Deposited (1VR4)

Ca-RMSD (Å) N/A 0.71 0.42 N/A 0.46 0.14

<TSP> 3.31 �0.4 0.08 0.45 �1.2 �0.9

No. of H-bondsy 162 190 214 239 249 263

R-work 0.3091 0.3880 0.2979 (0.2983)z 0.2061 0.3150 0.2087 (0.2074)z

R-free 0.3537 0.4233 0.3163 (0.3403) 0.2647 0.3507 0.2372 (0.2589)

Map correlation 0.76 0.66 0.77 0.85 0.76 0.85

RMSD from ideal Bond length (Å) 0.045 0.047 0.040 0.014 0.017 0.016

Angle (�) 2.567 2.904 3.130 1.692 1.935 1.810

RamaMap statistics (%)

Preferredx 79 88 88 92 92 93

Allowed 6 3 4 5 5 4

Outliers 15 9 8 3 3 3

Protein
Cytochrome b6f complex A-Cobratoxin-ACHBP complex

Initial

TOP*

Initial

TOP*

Stage 1 Stage 2 Stage 1 Stage 2

Resolution 3.00–39.30 Å 4.20–25.0 Å

No. of residues 959 1356

Starting model Deposited (2E74) Deposited (1YI5)

Ca-RMSD (Å) N/A 0.78 0.40 N/A 0.8 0.62

<TSP> 2.92 �0.9 �0.7 4.35 0.09 0.68

No. of H-bondsy 410 445 468 332 481 513

R-work 0.2248 0.3515 0.2423 (0.2395)z 0.2529 0.3404 0.2531 (0.2506)z

R-free 0.2704 0.3760 0.2726 (0.2802)z 0.3128 0.3863 0.2857 (0.3107)z

Map correlation 0.8 0.7 0.75 0.68 0.59 0.68

RMSD from ideal Bond length (Å) 0.029 0.039 0.035 0.012 0.036 0.026

Angle (�) 2.659 3.162 2.831 1.579 2.125 2.093

RamaMap statistics (%)

Preferredx 83 91 91 85 91 91

Allowed 11 5 6 10 6 6

Outliers 6 4 4 5 2 3

Protein
A-DNA-binding protein A-Protein-lipid complex

Initial

TOP*

Initial

TOP*

Stage 1 Stage 2 Stage 1 Stage 2

Resolution 3.35–20.0 2.60–43.5 Å

No. of residues 364 376

Starting model Early stage Final stage (3OV6)

Ca-RMSD (Å) N/A 0.85 0.97 N/A 0.74 0.32

<TSP> 3.33 �2.0 �1.5 2.92 �0.1 0.13

No. of H-bondsy 147 187 192 168 181 193

R-work 0.2890 0.3874 0.3136 (0.3079)z 0.2285 0.3611 0.2323 (0.2341) z

R-free 0.3722 0.4418 0.3562 (0.3830) 0.2851 0.4076 0.2551 (0.2760)

Map correlation 0.75 0.68 0.74 0.88 0.78 0.86

RMSD from ideal Bond length (Å) 0.007 0.014 0.016 0.009 0.026 0.017

Angle (�)z 1.218 1.689 1.837 1.401 2.147 1.944

RamaMap statistics (%)

Preferredx 81 94 94 93 94 95

Allowed 11 3 3 5 4 3

Outliers 8 3 3 1 2 2

*Stage 1 and Stage 2 refer to backbone refinement using the MCSA/double-crank algorithm and all-atom energy minimization using the electron density,

respectively.
yBackboneH-bonds are definedwhen the amidenitrogenandcarbonyloxygenarewithin3.5 Å and the angle between theN-HandO¼Cbondvectors exceeds 145�.
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TABLE 2 TOP structure refinement

Protein PaBphP-PCD

Resolution No. of residues Starting model 2.60–49.0 Å 3827 Final stage

Initial

TOP* Manual

Refinement

After TopStage 1 Stage 2

Ca-RMSD (Å) N/A 0.73 0.33 0.3

<TSP> 2.91 �0.6 �0.2 1.28

No. of H-bondsy 1352 1814 1909 1754

R-work 0.2244 0.3551 0.2338 (0.2375)z 0.2198

R-free 0.2820 0.3854 0.2567 (0.2803)z 0.2613

Map correlation 0.80 0.69 0.80 0.82

RMSD from ideal Bond length (Å) 0.004 0.017 0.016 0.005

Angle (�) 0.946 1.894 1.893 0.973

RamaMap statistics (%)

Preferredx 90 94 94 95

Allowed 8 4 4 5

Outliers 2 2 2 0.3

Legend is the same as for Table 1.
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density map (0.68 / 0.71, calculated using program VMD
(32)). The cross-correlation coefficient provides a perfor-
mance metric to validate our improvements, just as R-free
does in our crystallographic studies. Even more impressive
improvements are obtained for the 4.0 Å resolution cryoEM
structure of a membrane-bound acetylcholine receptor pore
(1OED): H-bonds, 241/ 387,<TSP>¼ 0.9/�2.3, and
cross-correlation coefficient ¼ 0.67 / 0.87 (Fig. S5).
Comparison with other methods

Conceptually and fundamentally, our global refinement
procedure of scoring and selecting new angles using a
Ramachandran distribution that accounts for neighboring
residues has not been successfully incorporated in any
commonly used software package that we are aware of.
Unlike RAPPER (2), Arp/Warp (33), and Phenix.autobuild
(6), TOP does not focus on initial model building. Rather,
TOP improves the entire backbone of an existing protein
model with no input beyond an initial model and, if real-
space refinement is desired, the electron density. Neverthe-
less, we have compared TOP in detail with some other
refinement packages that may appear to have similar
features (see Supporting Material).
DISCUSSION

Our real-space refinement algorithm converts protein
models at early or advanced stages of refinement to ones
with superior H-bonding and similar or better R-factors,
as well as improved backbone geometries. Our strategy
incorporates knowledge of residue-specific RamaMaps
zThe values in parentheses are the R and R-free values calculated where the more

real-space refinement stage of TOP.
xAs defined by the program COOT (36).
and their significant dependence on the neighboring resi-
dues’ chemical identity and geometry. This extra prior infor-
mation is incorporated through our TSP scoring function
and our PDB-based sampling protocol. The TOP procedure
already was used to refine an anthrax protective antigen oc-
tamer (3KWV, >1000 aa, 3.1 Å (34)) and a CD1c/lipid
complex (3OV6, 376 aa, 2.5 Å (35)).

The current use of RamaMaps in the refinement process is
contrary to the longstanding belief that Ramachandran plots
are too valuable a validation tool to be used as part of a target
function. This work clearly demonstrates that the final
refinement can be improved by the application of this extra
knowledge, just as nearly all model building uses the known
bond lengths and angles of the backbone and side chains.
We stress that our structures have an increased number of
H-bonds and similar or improved crystallographic R-free
parameters. The improvement of these two independent
and powerful metrics of structural quality, combined with
our finding that the TOP procedure recovers the dihedral
angles found in high-resolution structures when starting
from a lower-resolution model, amply justifies the use of
RamaMaps in the refinement process.

TOP generally produces models with superior R-free
values for input structures that have not undergone extensive
manual rebuilding and structure refinement, with smaller
improvements for input structures with significant, tedious
manual refinement. As illustrated here, further manual
improvement of TOP-generated structures can produce
even better structures. Iterative recalculation of the electron
density map, interspersed with reciprocal space refinement,
could potentially improve performance for cases with poor
initial maps.
stringent maps generated after excluding the free reflections are used in the
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FIGURE 5 Application of TOP to different pro-

tein structures. For PaBphP-PCD, the RamaMap

for four of the eight chains is shown. For the

DNA-binding protein and cytochrome b6f mem-

brane complex (2E74) structures, the DNA and a

few cofactors are part of the crystal structure but

are not displayed.

908 Haddadian et al.
The improvements in backbone geometry are obtained by
using a computational scheme that omits the side-chain
atoms beyond the Cb carbon, and the omitted atoms are
restored only in the final energy-minimization step. Never-
theless, our sampling protocol and scoring functions largely
recapture the lost information because backbone dihedral
angles strongly correlate with the side-chain rotamer angles,
the neighboring residues’ identities, and the side-chain
conformations. The Cb-level model also permits aggressive
backbone moves that are essential to produce better struc-
tures. This ability to find new local minima can account
for some of the improvement. Potentially, the new minimum
could be found manually by the expert crystallographer. In
other cases, the improvements are subtler and require
knowledge contained in our aa and neighbor-dependent
torsional potential and our sampling routine.

After the initial model is created, most other refinement
protocols improve the structure by extensively adjusting the
side-chain rotamers rather than the backbone dihedral angles,
because changes in thebackbone either disrupt the structure or
distort the bond lengths and angles. Consequently, it becomes
difficult to obtain further improvements in backbone. In
contrast, the lack of explicit side chains in our first stage
and the mimicking of how real proteins move enable us to
optimize the backbone geometry and H-bonding throughout
the protein before reinserting and optimizing the side chains.
Biophysical Journal 101(4) 899–909
This hierarchal protocol follows the protein’s intrinsic struc-
tural hierarchy and generates superior structures.

TOP works more effectively after major errors in the
backbone traces are removed by initial cycles of conven-
tional structure refinement and perhaps manual rebuilding.
TOP also can improve individual regions during the chain-
building process. In fact, mistraced regions and artificially
inserted loops are readily detected by the failure of TOP
to produce a favorable TSP score. For example, the mem-
brane protein (2E74) has one region (C170–C238) that lacks
noticeable improvements in the TSP score using TOP.
Further inspection reveals that the electron density in this
region has a less well defined density than most of the
protein, and the starting structure has a poor backbone trace
in this area. Consequently, we suggest that the TSP score
and its sequence profile be included as an additional tool
to evaluate structural quality.
CONCLUSION

Our automated TOP algorithm identifies and improves the
backbone torsional angles of a protein structure, increases
the number of H-bonds, and generally improves crystallo-
graphic R-factors. We have demonstrated the algorithm’s
effectiveness for nontrivial crystal and cryoEM structures
that diffracted to low to moderate resolution. The algorithm
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requires only an initial backbone trace and may be applied
to particularly challenging regions that are recalcitrant to
manual intervention. In addition, our move set and sampling
procedure can be extended to refine NMR structures and
computational models.

Submissions to our refinement and evaluation servers can
bemade at http://godzilla.uchicago.edu/pages/projects.html.
SUPPORTING MATERIAL

Supplementalmethods, references, four tables, and sixfigures are available at

http://www.biophysj.org/biophysj/supplemental/S0006-3495(11)00829-0.
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