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Abstract
Parallel coordinates, re-orderable matrices, and dendrograms are widely used for visual
exploration of multivariate data. This research proposes an approach to systematically integrate
the methods in a complementary manner for supporting multi-resolution visual data analysis with
an enhanced overview+detail exploratory strategy. The paper focuses on three topics: (1) dynamic
control across resolutions at which data are explored; (2) coordination and color mapping among
the views; and (3) enhanced features of each view designed for the overview+detail exploratory
tasks. We contend that systematically coordinating the views through user-controlled resolutions
within a highly interactive analysis environment will boost productivity for exploration tasks. We
offer a case study analysis to demonstrate this potential. The case study is focused on a complex,
geographically referenced dataset including public health, demographic and environmental
components.
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1. INTRODUCTION
Data can be complex, containing heterogeneous themes to address complicated problems.
For example, when analyzing public health data, domain experts usually consider
demographic and environmental data as well. Meanwhile, data are often voluminous and
high dimensional. The strategies to address the problems are (1) decomposition, abstraction
and classification1, which reduce data (both the number of items and dimensions) to
manageable pieces (Simon, 1969, Siirtola, 2003) and (2) interactive exploration of the data
following a process of “overview first, zoom and filter, then details-on-demand”
(Shneiderman, 1996), which is usually abbreviated as overview+detail. Multi-resolution
visualization can effectively support the strategies because it represents data at different
levels of abstraction, displaying a large amount of data in an overview at a coarse resolution
(high abstraction), and individual data at finer resolutions as analysts zoom in (Stolte et al.,
2003). Visualizing data at an appropriate resolution is critical because some patterns are
absent in an overview, and only exposed at a finer resolution; while a view at low
abstraction could display an overwhelming amount of data, hiding general trends that could
appear only at some intermediate resolution (see demonstrations in section 4.1, 4.2). An

1According to Siirtola, decomposition refers to dividing entire dataset into manageable parts and considering the parts separately;
abstraction refers to the process of generalization that reduces the amount of data by retaining only essential properties (relevant to a
particular purpose) and by hiding the unessential details; classification can reduce the amount of data by dealing with classes rather
than individual data items.
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exploration can miss important patterns if it starts with an overview and zooms at
predetermined resolutions and steps. We believe that an exploration would be more
productive if an analyst can systematically adjust and interactively determine the most
appropriate level of detail for a specific analysis task during the exploration process.

This research proposes a systematic “zoom” approach which we call resolution control.
Generally in the cartographic community, the term data resolution indicates “the granularity
of the data that is used in mapping… each level of resolution represents a different ‘grain’ of
the data”(Terry A. Slocum et al., 2003, p 104). Applying this concept, we use the term
resolution here to refer to the level-of-detail at which data is abstracted (e.g. aggregated,
amalgamated or clustered) and visualized as a single entity (see detail in the section of 3.4).
The concept of resolution control refers to interactively adjusting and determining an
appropriate level-of-detail that satisfies an analysis task and facilitates identification of
interesting patterns. The goal of resolution control is to display key characteristics of data,
while hiding unnecessary details to avoid displaying an overwhelming amount of data. To
support the mechanism, this research introduces a concept of dynamic-resolution-view
(abbreviated as dr-view) that fits between the traditional overview and detail view. The dr-
view complements the two views by dynamically displaying abstracted data at a user-
specified resolution, thus relieves the analyst from facing overwhelming information at an
inappropriate resolution, and provides more perspectives for investigation (see detail in
section 3.5).

Following from the above, we propose an enhanced exploration strategy for analyzing
geospatial, multivariate data in a multi-resolution environment: overview → dynamic-
resolution-views, filer→ simultaneous details on demand. The strategy is abbreviated as
overview → dr-views→ details. We employ and integrate four visualization views to support
the proposed methods: a re-orderable matrix, an extended dynamic dendrogram (attached to
the matrix), an extended parallel coordinate plot (PCP), and a geographic choropleth map
(henceforth abbreviated as GeoMap). We will demonstrate the complementary roles played
by the views and the ways they are integrated and coordinated to achieve our research goal.
The research is implemented in a pure-Java, standalone software application called the
Visual Inquiry Toolkit (VIT). Initiated by Jin Chen and Alan MacEachren, the VIT is built
upon components of GeoVISTA Studio, but tailored for a narrow range of data analysis
tasks. It provides an experimental environment for developing and testing advanced
visualization and computational methods (e.g. the matrix tool and the resolution control
mechanism described here), prior to their introduction into the GeoVISTA Studio library of
tools.

The approach developed is illustrated through a case study analysis of a geographically-
referenced, high-dimensional cancer-related dataset. Specifically, the case study investigates
the covariate relationship between the target variable – breast cancer mortality – and its
potential risk factor variables. While our research addressed geographic multivariate data
analysis, we feel that many of the concepts and approaches described here are relevant to the
visualization of general multivariate data as well.

The reminder of the paper is organized as follows. Section 2 reviews related literature.
Section 3 discusses the core topics of the research, which include re-ordering and color
encoding in a matrix view, the complementary roles of matrix and parallel coordinates
views, and the mechanism of dynamic resolution control. Section 4 presents the case study.
Section 5 summarizes the methods, discusses the limitations, and outlines planned future
development.
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2. RELATED WORK
We discuss briefly two research topics that are directly related to this research: multivariate
visualization and multi-resolution visualization.

2.1 Multivariate visualization
The typical advanced visualization methods for multivariate data include scatterplot
matrices (Andrews, 1972), multivariate glyphs (Pickett et al., 1995), parallel coordinate
plots (Inselberg, 1985), and permutation matrices (Mäkinen and Siirtola, 2000, Bertin,
1981). A comprehensive review of the methods can be found in Keim et al.(2005). Although
each of the methods has its limitations, the parallel coordinate plots and permutation
matrices can complement each other to support exploration of multivariate data (Siirtola,
2003), especially for those adopting an overview + details strategy.

A parallel coordinate plot (PCP) is suited to investigating high dimensional data in detail. It
depicts a data item via a polyline (henceforth also called a string), revealing subtle
multivariate differences between data items. However, PCP suffers from overplotting
problems when visualizing even a modest number of data items. The typical solution is to
visualize a data abstraction (e.g. groups, clusters) rather than individual data items (Ward,
2004, Andrienko and Andrienko, 2005a), at the price of losing detail information. An
enhanced solution is to allow parallel coordinates to switch between an overview and detail
view mode (Chen et al., 2006), and that approach is adopted in this research. Another
problem with PCP is that interpretation of multivariate patterns (represented by the shape of
polylines) and comparison between variables are influenced by the order of the axes. To
address the problem, our implementation of PCP supports reordering axes manually and
sorting axes automatically (e.g. based on their correlation values against a specified
variable).

The permutation matrix can provide an overview that exposes structural patterns and hot
spots for the entire dataset, by sorting the rows and columns (Bertin, 1981, Siirtola, 1999,
Siirtola and Makinen, 2005). Hierarchical clustering methods are typically integrated with a
matrix to support sorting, and the clusters can be hierarchically visualized in a dendrogram.
This approach is widely adopted for multivariate analysis (e.g. analyzing gene expression
data) (Bar-Joseph et al., 2001, Eisen et al., 1998). Seo et al. (2002) introduced a rank-by-
feature approach, and enhanced the method by employing a filtering bar in the dendrogram.
The bar can dynamically filter and query clusters based on their similarity. Although
effective in exposing major patterns, a permutation matrix is limited in visualizing subtle
differences between clusters/data items, because it requires analysts to interpret and compare
the multivariate characteristics of clusters solely based on colors of the matrix’s mosaic
cells. This is perceptually a difficult task.

Hence, the matrix and PCP can potentially complement each other for visualizing
multivariate patterns in overview and detail views. This research proposes integration of the
two methods, leveraging on PCP for cluster validation and resolution control.

2.2 Multi-resolution visualization
Multi-resolution visualization and control has drawn attention from several researchers in
recent years. Stolte et al. (2003) provide an interesting method for multiple resolution data
visualization, but the method focuses on formalized multiscale visualization and on zooming
along multiple dimensions, rather than on multivariate data analysis. Ham (2003) employed
the matrix for visualizing information from large software projects at multiple levels of
abstraction. Cui (2006) developed a method for measuring data abstraction quality in
resolution control. Wang et al.(2005) proposed an error tolerances approach for interactive
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resolution control in scientific visualization. Fua et al. (2000) proposed a structure-based-
brush mechanism that supports interactive control on resolution (measured as cluster size)
with instant feedback from various multivariate visualization methods; for example, a
parallel coordinate plot displays the mean value of clusters at a given resolution. Drawing
upon the previous research, this research develops an alternative resolution control
mechanism based on an integration of a dendrogram, re-orderable matrix, and parallel
coordinate plot. Our method adds multi-resolution capacity to the effective multivariate
visualization methods (i.e. matrix and PCP), as explained in the section 3.

3. Coordinating Multiple Views for Resolution Control
In this section, we present our method of dynamic resolution control that supports the
proposed overview → dr-views→ details exploratory analysis process. We first briefly
introduce the case study data that is used for demonstration of our methods in section 3 and
for the case study in section 4. Section 3.2 discusses how to achieve an overview in a matrix;
section 3.3 outlines integration of a matrix and a PCP in a complementary manner. Extended
from our previous work(Chen et al., 2006), the methods explained in the two sections
contain incremental improvements that are necessary for developing our resolution control
method. Section 3.4 focuses on dynamical adjustment of resolution. Finally, section 3.5
explains dynamic resolution control in multiple linked views and the way the method
balances the overview and detail views, thus supporting the proposed overview → dr-
views→ details exploratory analysis process.

3.1. The Case Study Data
The data is a multivariate, geographically-aggregated dataset that contains thematically-
heterogeneous components, including public health, demographic and environmental data.
The dataset is for analysis of U.S. breast cancer mortality and potential risk factor variables.
It contains the following variables: (1) age-adjusted breast cancer mortality rate from 1971
to 2000 for all women with 5-year averages (henceforth abbreviated as cancer rate); (2)
demographic risk factors such as population density, per-capita income, percentage of
individuals without health insurance, etc; (3) behavioral risk factors such as obesity, having
smoked, etc.; (4) percentage of hazardous chemicals in the atmosphere. To be concise, we
list only the variables that are related to our case study in section 4. The data is aggregated at
the U.S. state level (future research will focus on scaling the methods for application of
larger data sets, e.g. counties for the entire U.S.). Therefore, a data item is referenced by a
U.S. state, and represented as a polygon in the GeoMap, a matrix row, a string in the PCP.
Many thematic variables (either a cancer mortality rate or a covariate) have multiple time
steps. A time step represents the variable value aggregated for a particular period. Either a
time step or a variable is treated as a dimension and represented as a matrix column, and an
axis in the PCP. For example, cancer rate data used here has six time spans (1971-1975,
1976-1980, 1981-1985, 1986-1990, 1991-1995, 1996-2000), represented by six axes in the
PCP, so that temporal changes of cancer can be analyzed together with information about
covariates. To describe things more generally, in this paper, the term variable also refers to a
time step. Therefore, there are 60+ variables displayed in the matrix and PCP. Figure 1
shows how the data is visualized in a matrix.

3.2. Matrix Serves As an Overview – Re-ordering and Color Encoding
This section discusses how to achieve an overview in a matrix, which exposes overall
patterns at a coarse resolution. Computationally reordering a permutation matrix is an
effective method for exposing overall, structural patterns (Makinen and Siirtola, 2000,
Siirtola and Makinen, 2005, Bertin, 2001). Agglomerative hierarchical clustering algorithms
(Jain and Dubes, 1988) are widely employed to derive 1D ordering of the matrix rows and
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columns (Seo and Shneiderman, 2002, Bar-Joseph et al., 2001). This research applies our
previous work (Chen et al., 2006, Chen, 2006), and extends the re-orderable matrix method
to multi-covariate analysis (e.g. between a cancer and potential risk factor variables). In the
matrix, a row represents a place (e.g. a U.S. state), and a column represents a variable (e.g.
cancer mortality). The matrix rows are ordered to group the states with similar multivariate
characteristics together. In addition, we apply a new variable-based ordering mechanism:
when merging two clusters, always put the cluster containing the higher mean values of the
target variable – breast cancer mortality – on one side (e.g. top), put the other cluster on the
other side. Eventually, all the clusters are ordered from low-cancer-rate to high-cancer-rate
clusters (Figure 1). We can also computationally re-order matrix columns to group the
variables with similar characteristics together. Sometimes, manually adjusting column
sequence is necessary to reflect thematic priority and relationships among variables. Take
our case study as example: after computationally re-ordering on the columns, we manually
place the cancer rate variables as the left-most six columns (each represents the mortality in
a five-year time step), with medical screening variables and demographic variables on the
next.

Graphically representing data in permutation matrices is important for visually exposing
patterns. Applying an inappropriate representation method could cause biased interpretation
and even hide patterns. Two approaches are widely employed (Bertin, 1981, Bertin, 2001):
(1) size-encoding – fill matrix with shapes (rectangle and circle), the size of which are
correlated with an attribute value (Siirtola and Makinen, 2005, Kincaid, 2004); (2) color-
encoding – a heatmap, often colored by a divergent color scheme (e.g. green-black-red) or
sequential color scheme (e.g. yellow-orange-red). The color values are mapped into data
values or even some complex multivariate patterns such as in (Chen et al., 2006, Guo et al.,
2006, Chen et al., in process). Both methods have advantages and limitations. A size-
encoding matrix is usually preferred for visually comparing attributes (e.g. those amount-
related attributes such as population, income); however, the matrix can display only a small
amount of data because each matrix cell must be in a reasonably large size. In contrast, a
color-encoding matrix allows displaying a large amount of data because each matrix cell can
be in a size as small as one to two pixels. However, color-encoding matrix has difficulty in
discriminating subtle numerical difference (Kincaid, 2004), thus usually serves only as an
overview rather than a detail view. Moreover, when applied to multi-linked views (e.g. a
matrix, a PCP and a choropleth map), color-encoding is often favored over size-encoding
because colors can be shared across different visualization methods. On the other hand, size-
encoding method is considerably limited when applied to the linked views. For example, it
does not make sense to encode an attribute value with a polyline’s size in a PCP. This
research adopts color-encoding because we use multi-linked views, and the matrix serves as
an overview.

This research favors divergent color schemes over sequential ones, although the VIT
supports both schemes. Traditionally when coloring a choropleth map, a sequential scheme
is suited to representing ordered data that ranges from low to high, whereas a diverging
scheme puts equal emphasis on mid-range critical values and extremes at both ends of the
data range (Brewer and Harrower, 2002, Harrower and Brewer, 2003). However, when
visualizing a relative large dataset, more colors are required for increased number of
categories; resulting in less distinction among sequential colors. Consequentially, small
graphic entities become hard to distinguish, especially in the case of slim PCP polylines and
tiny matrix cells. Because diverging color scheme can provide more distinguishable colors
than the sequential color scheme, researchers often choose the former over the later when
visualizing a large dataset, especially in multi-linked views composed of matrix and/or PCP
views, as in (Guo et al., 2006, Seo and Shneiderman, 2002, Bar-Joseph et al., 2001, Keim et
al., 2004). This research adopts a divergent color scheme for two reasons: (1) our multi-
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resolution visualization could generate considerable amount of categories (clusters) at finer
resolutions, thus requiring more distinct colors; (2) our cancer analysis is concerned with
both low and high cancer mortality data items. Specifically, blue encodes a high value, white
encodes a medium value, and orange encodes low value, with variations between blue-white
and orange-white to represent specific data values (Figure 1).

To effectively characterize and summarize the clusters, we introduce an idea of cluster
header, which is a color rectangle located on the left side of the matrix that highlights main
characteristics of the corresponding cluster. In Figure 1, three cluster headers summarize
cancer rate of the clusters into three qualitative categories: low, median, and high rates. The
cluster header’s color can express either a multivariate pattern of a cluster (Guo et al., 2005,
Chen et al., 2006) or mean values of a target variable for units in each cluster (e.g. the
average cancer mortality of a cluster). The color that encodes an average value of a cluster
can be generated via two approaches: (1) calculate average data value first and then encode
them with the color; or (2) calculate average RGB values of the matrix cells that represent
the target variable(s) of the cluster. While the first approach can quantitatively characterize
clusters in term of variables with homogeneous meanings (e.g. several time steps of a
variable), the second approach can qualitatively characterize the clusters in terms of the
magnitude of the heterogeneous variables (e.g. breast cancer rates and population density).
We adopt approach 2 for coloring the cluster headers since they only need to qualitatively
depict the clusters at a coarse resolution (e.g. low, median, high rates). The matrix and PCP
can display the clusters at a finer resolution. The cluster headers facilitate the coordination
between the matrix and PCP, as discussed next.

3.3. Link Two Complimentary Views: Matrix and PCP
As discussed in the section 2, when linked each other, a matrix and a PCP complementarily
provide an overview and a detail view for visualizing multivariate patterns. In addition, link-
views between the matrix and PCP are essential for our resolution control mechanism in that
the PCP provides instant feedbacks for determining resolution. A matrix and a PCP can be
linked complementarily via two strategies (Chen et al., 2006): (1) dynamic link (Buja et al.,
1991) (2) static link (Andrienko and Andrienko, 2005b). Readers are referred to (Chen et al.,
in process) for detail discussion on the two links. Simply put, a dynamic link can
simultaneously highlight a matrix cell and corresponding string in the PCP so that various
aspects of the data can be investigated concurrently. The dynamic link is usually achieved by
the moving mouse over a single data item, or brushing a subset of data items operations. In
contrast to the dynamic link, a static link emphasizes linkage across views in a static manner
(without human interaction). A static link is achieved by applying same color to visual
elements in multiple views so that they are known to visualize the same or related “things”.
The Static link strategy is essential to achieve an overview of the entire dataset because it
allows simultaneous linkage and visual distinction among multiple data subsets (e.g.
clusters) without human interaction. While the concept of a dynamic link is widely used in
modern linked-views visualization systems (e.g. GeoVISTA Studio), implementing a static
link between a matrix and PCP has not exploited fully.

To achieve a static link between the matrix and PCP on a cluster level, both views need to
provide summarized information in clusters. The matrix can summarize clusters via the
cluster headers as explained previously. Our PCP implementation allows switching between
an overview mode (to display data groups) and a detail view mode (to display individual data
items), as described in (Chen et al., 2006). In the overview mode (Figure 2, (B)), a string
represents a cluster (by displaying the median value of the cluster’s data items for each
variable) and thus depicts a multivariate pattern for the cluster. The string’s size indicates
the number of data items contained in the clusters. The larger the number, the larger the size.
The string representing a cluster is mapped to a cluster of matrix rows. In the detail view
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mode (Figure 2 (A)), a single string represents an individual data item, each of which is
assigned the cluster’s color. The string is mapped to a matrix row.

The linking is established by assigning a PCP string with the same color as the
corresponding cluster header. Through the color, an analyst can easily identify a PCP string
(a cluster) that carries a particular value range of the target variable. For example, a blue
string represents a high cancer rate cluster. This allows the analyst to identify qualitative
covariate relationships between a target variable and other variables (e.g. cancer rate and
risk factor variables), by simply looking at comparable ordering of colored strings on
different axes. In Figure 2 (B), the PERCAPIN axis (per capita income) has colored strings
in a blue-gray-orange order from top to bottom. The order of the colored strings suggests a
positive correlation between per capita income and breast cancer mortality, by which the
clusters are derived. Similarly, an orange-gray-blue order suggests a negatively correlation
(e.g. between POVERTY and breast cancer mortality, see more examples in Figure 5).
Traditionally, a PCP allows identification of covariate relationships by comparing shape of
polylines between two neighboring axes. Comparing the order of colored strings allows
identifying relationships between multiple non-neighboring axes. A GeoMap can be linked
to the matrix in the same way; with spatial entities belonging to a cluster assigned the same
color as the corresponding cluster header.

3.4. Dynamic Adjustment on Resolution
Evidence shows that adopting an appropriate scale is critical for analyzing geographically-
aggregated data (Lam, 1990, Schneider et al., 1993). A related famous problem is the
modifiable areal unit problem (MAUP) (Openshaw, 1984) – collecting data at different areal
units or aggregating data in different ways will significantly influence analysis outcomes.
Although abundant literature has addressed the MAUP problem, most of the research was
conducted from perspectives of statistics and/or spatial analysis (Fotheringham and Wong,
1991, Anselin and Getis, 1992, Jelinski and Wu, 1996, Dungan et al., 2002, Nakaya, 2000,
Cain et al., 1997). Visual analytics of spatial data in a multi-resolution environment remains
an unexplored, but important issue, which has attracted attention of researchers (Dykes and
Brunsdon, 2007, Morehart et al., 1999) in recent years. Drawing upon multi-resolution
visualization methods for multivariate analysis (as outlined in section 2.2), we develop the
resolution control mechanism for analysis of spatial, multivariate data.

As presented here, scale refers to data resolution that defines the level of detail at which data
is abstracted. The nature of data abstraction can be characterized in two ways as proposed by
Cui et al. (2006): (1) data abstraction level - the ratio between the size of the abstracted
dataset and the original dataset; (2) data abstraction quality - the degree to which the
abstracted dataset represents the original dataset. The goal of the resolution control methods
introduced here is to balance the requirement for maximizing the data abstraction level (to
reduce number of data elements to investigate at a time), and the requirement for minimizing
the variance within each abstracted dataset so that they can represent the key characteristics
of the original dataset. Data abstraction can be achieved by two approaches: data sampling
and data clustering. This research adopts the clustering approach because clusters often form
a hierarchy (i.e. a cluster usually contains several sub-clusters), which provides a natural
way to organize and visualize data at various levels of detail. The hierarchy is also found in
spatial entities (i.e. a larger region consists of some small regions), providing an easy way to
control spatial resolution. Specifically, this research adopts agglomerative hierarchical
clustering methods to generate a bottom-up hierarchical structure of resolutions.

A hierarchical clustering method can group data items into clusters based on their
similarities, which are usually expressed as Euclidean distance in multivariate space (Terry
A. Slocum et al., 2003, p92, Jain and Dubes, 1988). The hierarchical clusters are usually

Chen and MacEachren Page 7

Cartogr J. Author manuscript; available in PMC 2011 September 17.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



visualized in a dendrogram. A dendrogram is a binary tree in which a branch (connecting
two sub-branches or leaves) represents a cluster and a leaf represents an individual data item
(Jain and Dubes, 1988). A cluster contains two sub-clusters, and the length of branches
expresses a distance (dissimilarity) between the two sub-clusters. As illustrated in Figure 3,
a bottom cluster (e.g. Cluster 4), which contains fewer data items of higher similarity, has
smaller variance and a lower level of data abstraction; while a top cluster (e.g. Cluster 2),
which contains more data items of lower similarity, has larger variance and a higher level of
data abstraction. Therefore with hierarchical clusters, we can achieve a desired resolution by
simply specifying similarity of data items within a cluster. Slocum (2003, p.97) describes
the process as “determining an appropriate number of clusters”, the goal of which is to
“create groups of observations, with each group being relatively homogeneous and different
from another group”

To achieve dynamic control of data resolution, this research integrates the dendrogram with
the matrix, and adds a similarity-control bar on the dendrogram (as shown in Figure 3). As
an analyst drags the bar up and down, the bar specifies the minimum value of pair-similarity
within a cluster, divides the entire dataset into a specific number of clusters (e.g. three major
clusters as shown in Figure 3), and thus achieves a data resolution of interest. The bar itself
is not a new idea and adopted by several researchers (Bar-Joseph et al., 2001, Seo and
Shneiderman, 2002) to interactively divide data into sub-clusters with a particular similarity.
This research applies and extends the idea to dynamic resolution control in multi-linked
views, thus achieving multi-resolution visualization on spatial and multivariate data. We
label the bar as “resolution control bar” (abbreviated res-bar, subsequently). Specifically,
the bar can control resolution in two approaches. With the first approach, the bar can adjust
clusters’ similarity to achieve a coarse resolution on the dendrogram, which is integrated
with the cluster headers. As shown Figure 3, we set the similarity of 0.87; and the entire
dataset is abstracted and summarized as three qualitative categories (clusters) in terms of
breast cancer mortality: low, median, and high mortality. The categories are visualized in
three cluster headers in diverging colors: orange, white (with light orange), and blue. By
interactively dividing data into sub-clusters, we achieve an overview of the data at a coarse
resolution on the dendrogram. Integrated with the dendrogram, the matrix displays patterns
at a finer, intermediate resolution (with a cell depicting an observation’s attribute). However,
the overview alone is insufficient; analysts are also interested in identifying and interpreting
patterns at a finer resolution from spatial and multivariate perspectives. This can be
addressed by the second approach: the system broadcasts the resolution to the linked views,
and achieves intermediate resolutions on the PCP for visualizing multivariate data, and
spatial resolution on the GeoMap, as discussed next.

3.5. Dynamic Resolution Control with Multi-Linked Views
With the capacity of dynamically adjusting resolution on the overview, an analyst needs to
determine an appropriate resolution for a specific analysis task. There is an array of numeric
criteria for measuring quality of data abstraction as proposed by Cui et al. (2006). In
contrast, this research aims to assist an analyst by providing instant, visual feedbacks on
spatial, multivariate patterns exposed at a particular resolution. Specifically, as the
resolution changes dynamically, we propose to visualize and monitor subtle changes of
multivariate and spatial patterns, respectively in a PCP and a choropleth map that serves as
the dynamic-resolution-view (abbreviated as dr-view). Whenever detecting an interesting
multivariate or spatial pattern(s), the analyst can freeze the resolution and investigate the
pattern in the detail views. The multiple-linked dr-views introduced here aims to enhance the
traditional overview + zooming+ details visualizations (Shneiderman, 1996), including
graphic zooming and semantic zooming (Bederson and Hollan, 1994, Woodruff et al.,
2001). The dr-views fits between the overview and detail views, and balances the
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requirement for displaying entire dataset with a highly-abstracted resolution in the overview,
and the requirement for displaying a subset of data with a finer resolution in the detail views.
Traditional zooming methods, which filter and visualize a subset of data at a finer resolution
in the overview, have some limitations for spatial, multivariate analysis. First, only a subset
of data is displayed in the zoomed-in view, thus the analyst loses the context of entire
dataset. Second, a visualization method serving as the overview may not be suitable for
displaying detail information at a finer solution, Take the matrix overview as an example:
the matrix is not suitable for detecting subtle different among multivariate patterns, as
discussed previously. Moreover, an overview provides only single perspective, thus
exposing only one type of pattern (i.e. either multivariate patterns in a matrix, or spatial
patterns in a choropleth map). In contrast, our resolution control mechanism aggregates the
entire dataset and visualizes it at a dynamic level of abstraction in multiple dr-views, which
simultaneously expose spatial and multivariate patterns; but still preserves the overview that
provides the context.

The resolution control mechanism is implemented in the VIT, and is composed of four
primary visual components: a dendrogram integrated with a re-orderable matrix, a PCP, and
a GeoMap. The PCP (in the overview mode) and the GeoMap serve as the dr-views. The
four components are all linked, they monitor and respond the movement of the res-bar. As
the analyst drags the res-bar back and forth on the dendrogram, the entire dataset is
automatically “divided” into a decreasing or increasing number of sub-clusters (as
represented by the cluster headers); each has a minimum similarity value specified by the
res-bar (Figure 4). Accordingly, the sub-clusters are visualized as PCP strings, and as
geographic regions in the GeoMap, all in the same color as the corresponding cluster
header. Figure 4(left) shows that the data is initially abstracted into three clusters in the
dendrogram overview, with multivariate profile of the three clusters displayed in the PCP,
and with spatial patterns in the GeoMap. Then the analyst adjusts the res-bar to a finer
resolution; and the data is abstracted into five clusters: the blue and orange clusters are
“broken” into two clusters respectively as resolution increases (Figure 4, right). With
dynamically-adjusted resolution, different and potentially-useful multivariate and spatial
patterns will be exposed.

Equipped with the resolution control mechanism, the VIT supports the overview → dr-
views→ details exploratory analysis process while simultaneously displaying data at
multiple levels of resolution. The dendrogram and matrix serves as the overview, displaying
the entire dataset at a coarse resolution. The dr-views display data at a dynamic level of
resolution, providing instant feedbacks for resolution control. A PCP (in the detail view
mode) serves as the detail view for investigation of a small subset of data at a finer
resolution. An overview of the VIT is shown in Figure 5. An exploration can follow two
approaches starting from the matrix overview. With the first approach, an analyst can
identify hot spots and structural patterns in the matrix, select a subset of data and investigate
in the detail view. With the second approach, the analyst can gradually adjust the level of
resolution in the dendrogram, exposing interesting multivariate and/or geospatial patterns
respectively in the dr-views. Whenever some interesting patterns are identified, the analyst
can freeze at the resolution, then select and compare a subset of data/variables/patterns in the
detail views, as demonstrated in detail in the section 4. We illustrate the process through
static figures below, but the ability of the approach to help analysts explore data and find
relevant patterns is enhanced substantially through real-time dynamic responses to user
control that propagates among the views.

Our detail-view PCP is equipped with a function of multi-threads investigation that is
designed for analysis of high dimensional data. When exploring high dimensional datasets,
an analyst may find multiple interesting patterns within some subsets of variables. It is often
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desirable to initiate multiple threads of investigation on each subset of variables in detail and
to compare them, all within the context of the overview. This research introduces a widget
called a scanbox to our implementation of the PCP. A scanbox is instantiated here as a
rectangle frame applied to an overview-mode PCP, which displays clusters and therefore is
called PCPoverview (henceforth abbreviated as PCPo). The scanbox defines a particular
focusing area (thus a subset of variables) on the PCPo. The scanbox is linked to another
detail-view-mode PCP, which displays individual data items (called PCPdetailview,
henceforth abbreviated as PCPd). The analyst can drag the scanbox horizontally along the
PCPo and adjust the frame width to define the focusing area; the PCPd responds
dynamically to display only the variables as defined within the scanbox. The analyst can
instantiate multiple scanboxes, with each linked to a separate PCPd, thus concurrently
comparing patterns involving several subsets of variables (as shown in Figure 7). With
modern analysis environments equipped with dual monitors, multiple PCPd views can be
instantiated and placed in the secondary monitor.

4. Case Study Analysis on Public Health Data
The case study focused on exploring the relationship of cancer mortality (specifically, age-
adjusted breast cancer mortality for white women aggregated for the period of 1971-2000)
with a range of potential covariates that include: (1) PopSqmi - population per square mile
(i.e., population density); (2) Mam - percent of women ages 50-64 who had a mammogram
in past 2 years; (3) Colon - percent of persons ages 40+ who had a colonoscopy,
sigmoidoscopy or proctoscopy in past 5 years; (4) Xylenes - mixed isomers emissions (tons/
year derived by the EPA in 1997); (5) Noin - percentage of population with no health
insurance; (6) Poverty - percent in poverty all ages. The items (2), (3), (5) are collected and
processed with multiple time periods: 1994-1998, 1999-2003; average values of 1994-2003,
respectively.

4.1. Refine resolution to identify spatial-temporal patterns
As shown in the initial overview (Figure 5), the GeoMap displays the spatial patterns of the
three clusters - the high-breast cancer-mortality region is located in the north-east (excluding
Maine), while the low-cancer-mortality region is in the south (excluding Florida), southwest,
and Rocky Mountain states (excluding Montana). The first six axes in the PCPo represent
the cancer rate in the six time steps. We can see that the rate increased in the early years,
reaching a peak during 1981-1985 (the third axis), then dropped after that. We also notice
that while dropping nation wide, the rate seemed to drop more slowly in low-rate regions, as
shown by the orange string. It prompts us to ask whether any region experienced an increase
during the period, hence we need to view the data at a more refined resolution.

We drag the res-bar until some distinct clusters are found in dr-views (PCPo and GeoMap as
shown in Figure 6). In the PCPo, a dark orange string describes a temporal trend different
than other strings (Figure 6, A). We select the string (thus the cluster), and see that the
cluster contains two data items, as displayed in the PCPd (Figure 6, right). We highlight one
data item – Mississippi (MS), which is a temporal outlier that remained relatively constant
after a rise in mortality rate, while all other states experienced a drop (shown as semi-
transparent background).

Meanwhile, the GeoMap displays spatial patterns in a more clear manner: (1) the states with
darker blue, which are highlighted by string(s) in the PCPo as the highest mortality rate
region, are: DC, NJ, NY, DE, MA, RI.; (2) Similarly the lowest mortality rate region is: MS,
AR; (3) FL and LA are local spatial outliers that have relatively high mortality rates
compared to their neighbors. LA and FL differ from their neighbors on a potential risk factor
- high obesity (we do not demonstrate it here with limited paper space). There are some

Chen and MacEachren Page 10

Cartogr J. Author manuscript; available in PMC 2011 September 17.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



evidences that breast cancer mortality has some connection with obesity (Morimoto LM et
al., 2002).

4.2. Refine resolution to identify multivariate patterns
Multivariate relationships can be easily identified via resolution control and multi-threads
investigation: an appropriate resolution is set to expose salient patterns in dr-views; multiple
investigations are carried concurrently in detail views. For example, an analyst can quickly
identify potential multivariate relationships from the dr-view (PCPo) at a coarse resolution,
where only three clusters are displayed (Figure 5). Positive relationships between the cancer
rate and risk factor variables are suggested for those axes that have colored strings in a blue-
gray-orange order from top to bottom (Figure 5, D), as explained in the section 3.3. Negative
relationships are also suggested for those variables with an orange-gray-blue order (Figure 5,
E). To investigate these variables in detail, we adjust dr-views to a finer resolution so that
the entire dataset is abstracted into eight clusters, which are displayed in the PCPo as shown
in Figure 7.

To investigate and compare these variables, we initiate four scanboxes (Figure 7 top A, B,
C, D) in the PCPo, each of which is associated with a PCPd (Figure 7, bottom). The
scanboxes allow the analyst to focus only on the variables contained in the scanboxes. We
can see the orders of PCP strings across the selected variables – either orange-gray-blue or
blue-gray-orange order – remains standing in both PCPo and PCPd. The strings’ order
suggests some correlated relationships between the variables and cancer rate. Here we list
some variables and their relationship with cancer rate: (1) positive correlation with Mam,
PopSqmi, Smoking rate; (2) negative correlation with Noin (percentage of population with
no health plan) and Poverty. Hypotheses can be generated based on these correlated
relationships. For example, with correlation between breast cancer mortality and Mam, a
hypothesis can be generated that more people living in a high mortality area had
mammogram screen than those living in a low mortality area. The association of the cancer
with smoking rate and population density (PopSqmi) will be discussed in the next section.

4.3. Refine resolution to analyze multivariate patterns
A controversial question about breast cancer risk factors is whether any link exists between
smoking and breast cancer mortality; or put in another way, does smoking increase the risk
of breast cancer mortality (NCI, 2006). The tools presented here are not designed to answer
this (or similar) question(s) comprehensively. However, the overall approach, methods, and
tools introduced can support efforts to explore the complex multivariate relationships that
underlie this question. To illustrate, we analyze the covariate relationship between breast
cancer mortality and female smoking rate (precisely, the percent of females over 18 who
ever smoked cigarettes).

Following from the previous analysis that suggests a positive correlation between the cancer
mortality and smoking rate, we adjust the dr-views to a finer resolution, abstracting the
entire dataset into nine clusters. Consequentially, two “unusual” clusters, A and B in Figure
8 (II), are exposed. The other seven of the nine clusters are displayed a blue-gray-orange
order along the four axes, suggesting the positive relationship (as shown in Figure 8 (I)).
Clusters A and B are displayed in a manner that does not follow the blue-gray-orange order,
suggesting a non-positive relationship between the two variables for the data items
contained in the two clusters. Next we further investigate the association of the cancer
mortality with smoking rate and other variable(s) by comparing an “unusual” cluster with
the one of the seven “usual” clusters.
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Because the cluster B (light orange) has similar smoking rates as in cluster C (blue), we
compare the two by selecting them in the PCPo; the states that belong to the clusters are
displayed in the PCPd (Figure 8 (III)). Although they vary slightly in the smoking rate
values, the states in the blue cluster (cluster C) have higher values than those in the light-
orange cluster on both cancer mortality variables as well on the population density
(PopSqmi). This suggests that breast cancer mortality is as strongly associated with
population density as with smoking rates in the selected regions (Figure 8 (IV)). A possible
explanation for this association is that population density may be a surrogate for other
covariates; e.g., population density may correlate with characteristics of the environment
(e.g., pollutants or other toxins that are more prevalent in urban areas) or with biological
factors such as psychological stress, either of which may correlate with breast cancer
mortality. While investigating such relationships is well beyond the scope of our current
research, some research have reported that women living in urban areas are more likely to
develop breast cancer than those who live in rural areas (Millikan, 2004, Byrne, Fletcher).

5. Discussion
We have demonstrated the ways that multi-resolution visualization can facilitate spatial,
multi-variate analysis. Although applicable for correlation and multi-variate analyses, fixed-
resolution visualization methods and traditional statistics, including spatial statistics (e.g.
geographic weighted regression (Fotheringham et al., 2000)), are limited in analyzing spatial
data with multiple resolutions because of the modifiable area unit problem. The resolution
control mechanism presented here provides a complementary way for analysis and
interpretation of correlation and multivariate association in a multi-resolution environment.
The proposed approach for analysis of geospatial, multivariate data with resolution control
offers two major advantages. First, it guides analysts systematically to navigate through the
data gradually at appropriate levels of resolution, increasing the chance of identifying useful
patterns. Second, it allows multi-threaded investigation of data in detail views, within the
context of overviews at various levels of resolution, enhancing interpretation and
understanding of the found patterns. The current limitation of the research is that the tools
do not yet scale to large datasets (i.e. U.S. county level data). However, we believe the
approach introduced here offers a promising direction and we are currently addressing the
scalability issue.

Our research is informed by the previous task analysis and testing research that we (and our
colleagues) have done with expert users, as reported in (Robinson et al., 2005, Robinson,
2007, Bhowmick et al., in process). The case study analysis reported here provides an initial
proof-of-concept for the ideas. In future research, we plan to make the VIT available
through the GeoEXplication (G-EX) Portal now under development. The G-EX Portal is an
environment that (among several other features) will allow distributed users to learn how to
use geovisual analytics methods and tools, share experiences in using these tools, provide
feedback on the tools, and collaborate on research that makes use of the tools. We will use
this environment to collect user data as part of our overall human-centered design process
that the covers a suite of tools that the VIT is part of.
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Figure 1.
The data, which is in a tabular form, is visualized in the matrix overview. A column
represents a variable; and a row represents a U.S. state, with the row header displaying the
state abbreviation (e.g. CA for California). Here only a subset of data is displayed for the
illustration purposes. The matrix rows and columns are computationally re-ordered to
expose patterns. The data is abstracted into three clusters as highlighted in the three cluster
headers, characterized as low, medium and high cancer rates. A cluster header’s color is
generated based on the mean RGB values of those matrix cells that represent the target
variable – cancer rate – of the cluster, as highlighted in the green rectangle at the left-up
corner.
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Figure 2.
(A) With the dynamic link, a matrix cell is mapped to a string in the PCP (detail view mode),
which is highlighted in red. (B) With the static link, three clusters in the matrix are mapped
to the three strings in the PCP (overview mode) via colors. The curves demonstrate the links.
For illustration purposes, only four variables are displayed in the PCP.
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Figure 3.
For illustration purposes, we rotate the dendrogram and display it in a horizontal orientation;
therefore the matrix row headers (represent U.S. states) are illustrated as columns. Here,
similarity is abbreviated as sim. Visualized as a branch, Cluster 4 contains two data items
with similarity of 0.97. Cluster 3 contains six data items. Cluster 2 has Cluster 3 and Cluster
4 as the sub-clusters, which have similarity of 0.91; thus Cluster 2 has eight data items.
Cluster 1 is the root cluster that includes all sub-clusters.
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Figure 4.
Resolution control process: initially the entire dataset is abstracted into three clusters (left);
as resolution is increased, the dataset is abstracted into five clusters (right). The matrix
overview remains the same, exposing structural patterns; while the dr-views provide
additional perspectives: the PCP displays multivariate characteristics of the clusters; the
GeoMap displays the geographic distribution of the clusters. To save space, only a subset of
variables is displayed.
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Figure 5.
Overview of the VIT. With the current resolution, the entire dataset is abstracted as three
clusters primarily based on the cancer rates. (A) The dendrogram-matrix overview of entire
dataset. (B) The PCPd displays data items for the six time steps of breast cancer mortality.
(C)The PCPo (a dr-view) abstracts the data into three clusters. The map shows breast cancer
mortality for white women aggregated for the period of 1971-2000. (D) The variables that
show positive relationship with the cancer mortality. (E) The variables that show negative
relationship with the cancer mortality.
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Figure 6.
Breast cancer mortality across six time steps is displayed in the PCPo. Resolution is refined
to expose a temporal outlier (A) in the PCPo and spatial patterns in the GeoMap. The
temporal outlier in the PCPo is selected and displayed as two data items in the PCPd: breast
cancer mortality in Mississippi increases after the years 1981-1985.
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Figure 7.
Multi-thread investigations on multivariate patterns. Four scanboxes (A, B, C, D) are
initiated in the PCPo and associated with four PCPd, each of which displays a subset data in
detail. Scanbox A contains Mam with three time steps. B contains PopSqmi. C contains
smoking rate with four time steps. D contains Noin with three time steps. The orders of the
colored PCP strings suggest some positive relationship between cancer rate and the variables
in A, B, C; and negative for the variables contained in D.

Chen and MacEachren Page 22

Cartogr J. Author manuscript; available in PMC 2011 September 17.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 8.
Investigate association of breast cancer mortality with smoking rate and PopSqmi, from the
dr-views (PCPo) to the detail view (PCPd). As shown in (II), the nine clusters are displayed
in the PCPo (dr-view) as nine strings across the four axes; each axis represents a time step of
the smoking rate. The plot (I) displays seven clusters, with A and B in (II) filtered out. The
PCPd displays the states in cluster B and C, showing an obvious association of the cancer
mortality with PopSqmi, but not with the smoking rates, as shown in (III). The states in
cluster B and C are shown geographically in (IV), in light orange and blue respectively.
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