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Abstract
In the context of large-scale multiple hypothesis testing, the hypotheses often possess certain
group structures based on additional information such as Gene Ontology in gene expression data
and phenotypes in genome-wide association studies. It is hence desirable to incorporate such
information when dealing with multiplicity problems to increase statistical power. In this article,
we demonstrate the benefit of considering group structure by presenting a p-value weighting
procedure which utilizes the relative importance of each group while controlling the false
discovery rate under weak conditions. The procedure is easy to implement and shown to be more
powerful than the classical Benjamini–Hochberg procedure in both theoretical and simulation
studies. By estimating the proportion of true null hypotheses, the data-driven procedure controls
the false discovery rate asymptotically. Our analysis on one breast cancer dataset confirms that the
procedure performs favorably compared with the classical method.
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1. INTRODUCTION
Ever since the seminal work of Benjamini and Hochberg (1995), the concept of false
discovery rate (FDR) and the FDR controlling Benjamini–Hochberg (BH) procedure have
been widely adopted to replace traditional methods, like family-wise error rate (FWER), in
fields such as bioinformatics where a large number of hypotheses are tested. For example, in
gene expression microarray experiments or brain image studies, each gene or brain location
is associated with one hypothesis. Usually there are tens of thousands of them. The more
conservative family-wise error rate controlling procedures often have extremely low power
as the number of hypotheses gets large. Under the FDR framework, the power can be
increased.

In many cases, there is prior information that a natural group structure exists among the
hypotheses, or the hypotheses can be divided into subgroups based on the characteristics of
the problem. For example, for gene expression data, Gene Ontology (The Gene Ontology
Consortium 2000) provides a natural stratification among genes based on three ontologies.
In genome-wide association study, each marker might be tested for association with several
phenotypes of interest; or tests might be conducted assuming different genetic models (Sun
et al. 2006). In clinical trials, hypotheses are commonly divided into primary and secondary
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based on the relative importance of the features of the disease (Dmitrienko, Offen, and
Westfall 2003). Ignorance of such group structures in data analysis can be dangerous. Efron
(2008) pointed out that applying multiple comparison treatments such as FDR to the entire
set of hypotheses may lead to overly conservative or overly liberal conclusions within any
particular subgroup of the cases.

In multiple hypothesis testing, utilizing group structure can be achieved by assigning
weights for the hypotheses (or p-values) in each group. Such an idea of using group
information and weights has been adopted by several authors. Efron (2008) considered the
Separate-Class model where the hypotheses are divided into distinct groups, and showed the
legitimacy of such separate analysis for FDR methods. Benjamini and Hochberg (1997)
analyzed both the p-value weighting and the error weighting methods and evaluated
different procedures. Genovese, Roeder, and Wasserman (2006) investigated the merit of
multiple testing procedures using weighted p-values and claimed that their weighted
Benjamini–Hochberg procedure controls the FWER and FDR while improving power.
Wasserman and Roeder (2006) further explored their p-value weighting procedure by
introducing an optimal weighting scheme for FWER control. Roeder et al. (2006)
considered linkage study to weight the p-values and showed their procedure improved
power considerably when the linkage study is informative. Although in clinical trials, Finner
and Roter (2001) pointed out that FDR control is hardly used, it is still potentially interesting
to explore possible applications of FDR with group structures in clinical trials settings.
Other notable publications include Storey, Taylor, and Siegmund (2004) and Rubin, van der
Laan, and Dudoit (2005).

Very few results, however, have been published so far on proper p-value weighting schemes
for procedures that control the FDR. In this paper, we will present the Group Benjamini–
Hochberg (GBH) procedure, which offers a weighting scheme based on a simple Bayesian
argument and utilizes the prior information within each group through the proportion of true
nulls among the hypotheses. Our procedure controls the FDR not only for independent
hypotheses but also for p-values with certain dependence structures. When the proportion of
true null hypotheses is unknown, we show that by estimating it in each group, the data-
driven GBH procedure offers asymptotic FDR control for p-values under weak dependence.
This extends the results of both Genovese, Roeder, and Wasserman (2006) and Storey,
Taylor, and Siegmund (2004).

When the information on group structure is less apparent, an alternative is to apply
techniques such as clustering to assign groups. It can be a good strategy when we have
spatially clustered hypotheses, that is, if one hypothesis is false, the nearby hypotheses are
more likely to be false. For example, Quackenbush (2001) pointed out that in microarray
studies, genes that are contained in a particular pathway or respond to a common
environmental challenge, should show similar patterns of expression. Clustering methods
are useful for identifying such gene expression patterns in time or space.

Our simulation results indicate that when the proportions of true nulls in each group are
different, the GBH procedure is more powerful than the BH procedure while keeping the
FDR controlled at the desired level. The GBH procedure also works well for situations
where the number of signals is small among the hypotheses. Therefore, the procedure could
be applied to microarray or genome-wide association studies where a large number of genes
are monitored but only a few among them are actually differentially expressed or associated
with disease. We apply our procedure to the analysis of a well-known breast cancer
microarray dataset using two different grouping methods. The results indicate that the GBH
procedure is able to identify more genes than the BH procedure by putting more focus on the
potentially important groups. Figure 1 shows the advantage of the GBH procedure over the
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BH procedure under k-means clustering for two methods of estimating the true null
hypotheses in each group.

The rest of the paper is organized as follows. After a brief review of the FDR framework
and the classical BH procedure, we present our GBH procedure in Section 2.2 and
investigate our weighting scheme from both practical and Bayesian perspectives.
Comparison of the classical BH and the GBH procedures in terms of expected number of
rejections is discussed in Section 2.4. After discussing the data-driven GBH procedure in
Section 2.3, we prove its asymptotic FDR control property in Section 3. Simulation studies
of the BH and GBH procedures for normal random variables are reported in Section 4,
including both independent and positive regression dependent cases. In Section 5, we show
an application of the GBH procedure on a breast cancer dataset, using both the Gene
Ontology grouping and k-means clustering strategies. The proofs for the main theorems are
included in the Appendix.

2. THE GBH PROCEDURE
In this section, we introduce the Group Benjamini–Hochberg (GBH) procedure. It takes
advantage of the proportion of true null hypotheses, which represents the relative importance
of each group. We first examine the case where the proportions are known and then discuss
data-driven procedures where the proportions are estimated based on the data.

2.1 Preliminaries
We first review the FDR framework and the classical BH procedure. Consider the problem
of testing N hypotheses Hi vs HAi, i ∈ IN = {1, …, N} among which n0 are null hypotheses
and n1 = N − n0 are alternatives (signals). Let V be the number of null hypotheses that are
falsely rejected (false discoveries) and R be the total number of rejected hypotheses
(discoveries). Benjamini and Hochberg (1995) introduced the FDR, which is defined as the
expected ratio of V and R when R is positive, that is,

(2.1)

where R ∨ 1 ≡ max(R, 1). They also proposed the BH procedure which focuses on the
ordered p-values P(1) ≤ ··· ≤ P(N) from N hypothesis tests. Given a level α ∈ (0, 1), the BH
procedure rejects all hypotheses of which P(i) ≤ P(k), where

(2.2)

Benjamini and Hochberg (1995) proved that for independent hypotheses, the BH procedure
controls the FDR at level π0α where π0 = n0/N is the proportion of true null hypotheses.
Hence, the BH procedure actually controls the FDR at a more stringent level. One can
therefore increase the power by first estimating the unknown parameter π0 using, say, π̂0,
and then applying the BH procedure on the weighted p-values π̂0Pi, i = 1, …, N at level α.
Such a data-driven method is referred to as an adaptive procedure.
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2.2 The GBH Procedure for the Oracle Case
When group information is taken into consideration, we assume that the N hypotheses can
be divided into K disjoint groups with group sizes ng, g = 1, …, K. Let Ig be the index set of
the gth group. The index set IN of all hypotheses satisfies

(2.3)

where Ig,0 = {i ∈ Ig : Hi is true} consists of indices for null hypotheses and Ig,1 = {i ∈ Ig : Hi
is false} is for the alternatives. Let ng,0 = |Ig,0| and ng,1 = ng − ng,0 be the number of null and
alternative hypotheses in group g, respectively. Then πg,0 = ng,0/ng and πg,1 = ng,1/ng are the
corresponding proportions of null and alternative hypotheses in group g. Let

(2.4)

be the overall proportion of null hypotheses. In this section, we consider the so-called
“oracle case,” where πg,0 ∈ [0, 1] is assumed to be given for each group. The case for
unknown πg,0 is discussed in Section 2.3.

Definition 1 (The GBH procedure for the oracle case)
1.

For each p-value in group g, calculate the weighted p-values . Let
 if πg,0 = 1. If πg,0 = 1 for all g, accept all the hypotheses and stop. Otherwise

go to the next step.

2. Pool all the weighted p-values together and let  be the
corresponding order statistics.

3. Compute

If such a k exists, reject the k hypotheses associated with ; otherwise do
not reject any of the hypotheses.

The GBH procedure weights the p-values for each group depending on the corresponding
proportion of true null hypotheses in the group, that is, πg,0. This idea is intuitively
appealing because for any group with a small πg,0, more rejections are expected and vice
versa. The weight πg,0/πg,1 differentiates groups by (relatively) enlarging p-values in groups
with larger πg,0, therefore larger power is expected after applying the BH procedure on the
pooled weighted p-values.

Benjamini and Yekutieli (2001) introduced the concept of positive regression dependence on
subsets (PRDS) and proved that the BH procedure controls the FDR for p-values with such
property. Finner, Dickhaus, and Rosters (2009, p. 603) argued that the PRDS property
implies
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(2.5)

for any j ∈ IN, i ∈ ∪g Ig,0 and t ∈ (0, jα/N]. Examples of distribution satisfying the PRDS
property include multivariate normal with nonnegative correlations and (absolute)
multivariate t-distribution. It is worth pointing out that independence is a special case of
PRDS; see Benjamini and Yekutieli (2001) and Finner, Dickhaus, and Rosters (2007 and
Finner, Dickhaus, and Rosters (2009) for details.

For the oracle case, the following theorem guarantees that the GBH procedure controls the
FDR rigorously for p-values with the PRDS property (hence provides FDR control for
independent p-values as well).

Theorem 1: Assume the hypotheses satisfy (2.3) and the proportion of trull null hypotheses,
πg,0 ∈ [0, 1], is known for each group, then the GBH procedure controls the FDR at level α
for p-values with the PRDS property.

Genovese, Roeder, and Wasserman (2006) analyzed the method of p-value weighting for
independent p-values and proved FDR control of their procedure with a general set of
weights. Some of the arguments in the proof of the above theorem can be implied by
theorem 1 in Genovese, Roeder, and Wasserman (2006, p. 513). Nevertheless, we not only
extend the result to p-values with the PRDS property, but also make up a small gap in their
proof of FDR control (Genovese, Roeder, and Wasserman 2006, p. 514, first equation).
Furthermore, the GBH procedure makes use of the information (i.e., πg,0) embedded within
each group, and provides a quasi-optimal way of assigning weights. Its advantage can be
understood in two perspectives.

The GBH Procedure Works Well for Data With Sparse Signals: In many cases of
multiple hypothesis testing, there tends to be a strong assumption that there are few signals,
that is, most of the N hypotheses are true nulls. In microarray studies, for instance, majority
of the genes are not related to certain disease, therefore we have the situation in which the
πg,0 of each group will be close to 1. Our weighting strategy performs well in such settings.
For example, suppose we have two groups of p-values with π1,0 = 0.9 and π2,0 = 0.99.
According to the GBH procedure, we are going to multiply 0.9/0.1 = 9 to the first group and
0.99/0.01 = 99 to the second group. Performing multiple comparison procedure on the
combined weighted p-values means we put more attention on the p-values from the first
group rather than the second one. As a result, more signals are expected. In the extreme case
where one of the proportions is 1, say, π1,0 = 1 and π2,0 ∈ (0, 1), according to the GBH
procedure, all the p-values in the first group are rescaled to ∞, therefore no rejection
(signal) would be reported in that group and our full attention would be focused on the
second group. This is consistent with the fact that the first group contains no signal.

The GBH Procedure Has a Bayesian Interpretation: From the Bayesian point of view,
the weighting scheme, πg,0/πg,1, can be interpreted as follows. Let Hg,i be a hypothesis in
group g such that Hg,i = 0 with probability πg,0 and Hg,i = 1 with probability πg,1 = 1 − πg,0.
Let Pg,i be the corresponding p-value and has a conditional distribution

The “Bayesian FDR” (Efron and Tibshirani 2002) of Hg,i for Pg,i ≤ p is
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(2.6)

If Ug follows a uniform distribution, the above equation becomes

Note that the above equation is an increasing function of [Fg(p)]−1(πg,0/πg,1)p, therefore
ranking the Bayesian FDR is equivalent to focusing on the quantity

(2.7)

Then the ideal weight for the p-values in group g should be [Fg(p)]−1(πg,0/πg,1), which can
be viewed as two sources of influence on the p-values. If Fg = F for all g, the first influence
is through [F(p)]−1, which can be regarded as the p-value effect. The other influence is the
relative importance of the groups, that is, πg,0/πg,1. In practice, Fg is usually unknown and
hard to estimate, especially when the number of alternatives is small. Hence, we just focus
on the group effect in the ideal weight. Note that the weight we choose, that is, πg,0/πg,1 is
not an aggressive one, since the cut-off point for the original p-values is big for important
groups with small πg,0/πg,1, which implies that the ideal weight for groups with small πg,0/
πg,1 is relatively smaller.

2.3 The Adaptive GBH Procedure
As mentioned in the previous sections, knowledge of the proportion of true null hypotheses,
that is, π0, can be useful in improving the power of FDR-controlling procedures. Such
information, however, is not available in practice. Estimating the unknown quantity using
observed data is then a natural idea, which brings us to the adaptive procedure.

Definition 2 (The adaptive GBH procedure)
1. For each group, estimate πg,0 by π̂g,0.

2. Apply the GBH procedure in Definition 1, with πg,0 replaced by π̂g,0.

Various estimators of π0 were proposed by Schweder and Spjøtvoll (1982) and Storey
(2002) and Storey, Taylor, and Siegmund (2004) based on the tail proportion of p-values,
and by Efron et al. (2001) based on the mixture densities of null and alternative distribution
of hypotheses. Jin and Cai (2007) estimated π0 based on the empirical characteristic function
and Fourier analysis. Meinshausen and Rice (2006) and Genovese and Wasserman (2004)
provided consistent estimators of π0 under certain conditions.

The adaptive GBH procedure does not require a specific estimator of πg,0, therefore people
may choose their favorite estimator in practice. We take the following two examples to
illustrate the practical use of the adaptive GBH procedure.
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Example 1 [Least-Slope (LSL) method]: The least-slope (LSL) estimator proposed by
Benjamini and Hochberg (2000) performs well in situations where signals are sparse. Hsueh,
Chen, and Kodell (2003) compared several methods including Schweder and Spjøtvoll
(1982), Storey (2002), and the LSL estimator, and found that the LSL estimator gives the
most satisfactory empirical results.

Definition 3 (Adaptive LSL GBH procedure)
1. For p-values in each group g, starting from i = 1, compute lg,i = (ng + 1 − i)/(1 −

Pg,(i)), where Pg,(i) is the ith order statistics in group g. As i increases, stop when lg,j
> lg,j−1 for the first time.

2. For each group, compute the LSL estimator of πg,0

(2.8)

3. Apply the GBH procedure at level α with πg,0 replaced by .

The LSL estimator is asymptotically related to the estimator proposed by Schweder and
Spjøtvoll (1982). It is also conservative in the sense that it overestimates πg,0 in each group.

Example 2 [The Two-Stage (TST) method]: Benjamini, Krieger, and Yekutieli (2006)
proposed the TST adaptive BH procedure and showed that it offers finite-sample FDR
control for independent p-values.

Definition 4 (Adaptive TST GBH procedure)
1. For p-values in each group g, apply the BH procedure at level α′ = α/(1 + α). Let

rg,1 be the number of rejections.

2. For each group, compute the TST estimator of πg,0

(2.9)

3. Apply the GBH procedure at level α′ with πg,0 replaced by .

The TST method applies the BH procedure in the first step and uses the number of rejected
hypotheses as an estimator of the number of alternatives.

Both the LSL and TST methods are straightforward to implement in practice and in the next
section we show both of them have good asymptotic properties. Our simulation and real data
analysis show that they outperform the adaptive BH procedure, in which the group structure
of the data is not considered.

Remark 1: We should point out that in applications, the adaptive GBH procedure does not
rely on which estimator people choose. The performance, however, does depend on the
distribution of signal among groups. If there is no significant difference in the proportions of
signals among hypotheses for different groups, the adaptive GBH procedure degenerates to
uni-group case. As long as the groups are dissimilar in terms of true null proportion and the
estimator of πg,0 can detect (not necessarily fully detect) the proportion of true null
hypotheses for each group, the adaptive GBH procedure is expected to outperform the
adaptive BH procedure.
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2.4 Comparison of the GBH and BH Procedures
In previous sections, we show that the GBH procedure controls the FDR for the finite
sample case when the πg,0’s are known. It is of interest to compare the performance of GBH
with that of the BH procedure. In this section, we are going to compare the expected number
of rejections for the two procedures.

Benjamini and Hochberg (1995) showed that the BH procedure controls the FDR at level
π0α. In order to compare the BH and GBH procedures at the same α level, we consider the
following rescaled p-values:

(2.10)

where πg,0 ∈ (0, 1). Note that π0 = πg,0(1 − π0)/πg,1 when πg,0 = π0 for all g.

For group g, let Dg be the distribution of p-values such that

(2.11)

where Ug and Fg are the distribution functions for p-values under the null and alternative
hypotheses. Let D ̃g(t) be the empirical cumulative distribution function of p-values in group
g, that is,

(2.12)

It is proved in Lemma 2 that under weak conditions D ̃g(t) converges uniformly to Dg(t).

For the uni-group case, in the framework of (2.10), it has been proved by several authors
(Benjamini and Hochberg 1995; Storey 2002; Genovese and Wasserman 2002; Genovese,
Roeder, and Wasserman 2006) that the threshold of the BH procedure can be written as

where  is the empirical cumulative distribution function of the p-
values, and the procedure rejects any hypothesis with a p-value less than or equal to TBH.

We can extend this result to the framework of GBH. For notation purpose define 
where ag = πg,0(1 − π0)/(1 − πg,0). Let GN (a, t) be the empirical distribution of the weighted
p-values, that is,
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(2.13)

Note that N · GN (a, t) is the number of rejections for the (oracle) GBH procedure with
respect to the threshold t on the weighted p-values. When π0 < 1, where π0 defined in (2.4) is
the overall proportion of null hypotheses, it can be shown that the threshold of the GBH
procedure is equivalent to

where c(a) = {t : 0 ≤ t ≤ maxg ag}.

For any fixed threshold t ∈ c(a), let [RBH(t)] and [RGBH(t)] be the expected number of
rejections of the BH and GBH procedure, respectively. The following theorem provides a
sufficient condition for [RBH(t)] ≤ [RGBH(t)].

Lemma 1—Let Ug and Fg be the distributions of p-values under the null and alternative
hypotheses in group g. Assume Ug = U and Fg = F for all g. If U ~ Unif[0, 1] and x ↦ F(t/

x) is convex for x ≥ t̃, where , then [RBH(t)] ≤ [RGBH(t)].

Take the classical normal mean model for an example. Suppose we observe Xi = θ + Zi,
where . Consider the multiple testing problem

The distribution of p-values under alternative is F(u) = 1 − Φ[Φ−1 (1 − u) − θA], where Φ is
the standard Normal distribution function. It can be shown that x ↦ F(t/x) is convex if

(2.14)

where φ is the standard Normal density function. Note that t/t̃ is the threshold of the
unscaled p-values for rejecting the corresponding hypotheses in one group, therefore t/t̃ is
small. Since the right-hand side of (2.14) is a decreasing function of t/t̃, (2.14) becomes θA ≤
4.12 when t/t̃ ≤ 0.05 and θA ≤ 5.33 when t/t̃ ≤ 0.01. This suggests the convexity is true for
most of the cases.

For adaptive procedures, πg,0 is replaced by its estimator π̂g,0. Let  where âg =
π̂g,0(1 − π̂0)/(1 − π̂g,0) and π̂0 = Σg ng π̂0/N. To conduct the BH procedure adaptively, we
first estimate π0 by π̂0 and then perform the BH procedure at level α/π̂0. The corresponding
threshold of the adaptive BH procedure is
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(2.15)

and the threshold of the adaptive GBH procedure is

(2.16)

where

(2.17)

Remark 2—Both (2.15) and (2.16) depend on the data, hence they are no longer fixed. In
the next section we are going to prove that T ̂BH and T ̂GBH converges in probability to some
fixed  and , respectively. Theorem 4 in Section 3.1 demonstrates that  and
therefore the adaptive GBH procedure rejects more than the adaptive BH procedure
asymptotically.

3. GBH ASYMPTOTICS
In many applications of multiple hypothesis testing, not only are the proportions of true null
hypotheses unknown, but the number of hypotheses is also very large. It is hence applicable
to analyze the behavior of the GBH procedure for large N. In this section, we focus on the
asymptotic property of the adaptive GBH procedure.

Genovese, Roeder, and Wasserman (2006) and Storey, Taylor, and Siegmund (2004) proved
some useful results for asymptotic FDR control using empirical process argument for the
BH procedure. We extend them further in the setting of the GBH procedure. We first discuss
the case where we have consistent estimator of the proportion of true null hypotheses, then
move on to a more general case.

3.1 Adaptive GBH With Consistent Estimator of πg,0
When N → ∞ and the number of groups K is finite, we assume the following condition is
satisfied in every group

(3.1)

By the construction, Σg πg = 1 and πg,0 + πg,1 = 1. The following lemma shows that (2.12)
converges uniformly to (2.11) under the above condition.

Lemma 2—Under (3.1), let Ug(t) and Fg(t) be continuous functions. For any t ≥ 0, if the p-
values satisfy
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(3.2)

(3.3)

Then .

Storey, Taylor, and Siegmund (2004) described weak dependence as any type of dependence
in which Conditions (3.2) and (3.3) are satisfied. Weak dependence contains the case of
independent p-values, but for p-values with the PRDS property, these conditions are not
necessarily true. An example is given in Section 4.

In this section, we focus on the case when we have consistent estimator of πg,0 in every
group, that is,

(3.4)

Recall that , where âg = π̂g,0 (1 − π̂0)/(1 − π̂g,0). Under the above condition, we

have . Let  be the limiting distribution of
the weighted p-values for all groups and let B(a, t) = t/G(a, t). Then define

The following theorem establishes the asymptotic equivalence of (2.16) and , and thus
implies asymptotic FDR control of the adaptive GBH procedure.

Theorem 2—Suppose Conditions (3.1) through (3.4) are satisfied for all groups. Suppose
further that Ug(t) = t for 0 ≤ t ≤ 1 in every group. If t ↦ B(a, t) has a nonzero derivative at

 and limt↓0 B(a, t) ≠ α, then  and FDR(T ̂GBH) ≤ α + o(1).

Note that the statement of the theorem has a similar flavor as theorem 2 in Genovese,
Roeder, and Wasserman (2006, p. 515). But our assumption is weaker and more
importantly, the π̂g,0’s are estimated based on the data.

Similarly, for the adaptive BH procedure, we define the distribution of all p-values as C(t) =
π0U(t) + (1 − π0)F(t), where U(t) and F(t) are continuous functions. Let  be such that
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The following theorem illustrates that asymptotically the adaptive GBH procedure has more
expected number of rejections than the adaptive BH procedure. Note that RBH(·) and
RGBH(·) denote the number of rejections of the BH and GBH procedures, respectively.

Theorem 3—Under Conditions (3.1) through (3.4). Assume in each group Ug(t) = U(t) = t,
0 ≤ t ≤ 1 and Fg(t) = F(t), where x ↦ F(t/x) is convex for x ≥ ming ag. Assume further that
both B(a, t) and t/C(t/π0) are increasing in t. If π0 ≥ α and limt↓0 t/C(t/π) ≤ α, then ,
and therefore

Remark 3—Sometimes the assumption that all the alternative hypotheses across different
groups follow the same distribution may not be appropriate. The condition Fg(t) = F(t) in the
above theorem is necessary to establish Theorem 3. However, that assumption is not a
necessity in establishing Theorem 2 and Theorem 4, where we show FDR control for the
adaptive GBH procedure.

3.2 Discussion for Inconsistent Estimator of πg,0
For a general estimator of πg,0, let π̂g,0 ∈ (0, 1] be an estimator of πg,0 such that

(3.5)

where the latter condition means at least one ζg is less than 1 among all groups. Let

 where ρg = ζg/(1 − ζg) and ρg = ∞ when ζg = 1. Then, we have . Let

 be the limiting distribution of the weighted p-

values for all groups. Denote  and define

(3.6)

Theorem 4—Suppose Conditions (3.1) through (3.3) and (3.5) are satisfied for all groups.
Suppose further that Ug(t) = t for 0 ≤ t ≤ 1 and ζg ≥ bgπg,0 for some bg > 0 in every group. If

t ↦ B(ρ, t) has a nonzero derivative at  and limt↓0 B(ρ, t) ≠ α, then  and
FDR(T ̂GBH) ≤ α/ming{bg} + o(1). In particular, FDR(T ̂GBH) ≤ α + o(1) when bg ≥ 1 for all
groups.

The theorem generalizes the result in Theorem 2 and indicates that the adaptive GBH
procedure controls the FDR at level α not only for consistent estimators of πg,0’s, but also
for asymptotically conservative estimators.

Remark 4—For the TST estimator  in (2.9), note that
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where T ̂0 is the threshold for the BH procedure in the first step. Following from Theorem 4,

, where t0 satisfies t0/(πg,0t0 + πg,1Fg(t0)) = α′. Since Fg(t0) ≤ 1, it can be shown that
t0 ≤ (1 − πg,0)α′/(1 − α′πg,0). Then,

Therefore, by Theorem 4 the adaptive TST GBH procedure controls FDR at level α′/(1 − α′)
= α asymptotically.

Remark 5—As ng → ∞, the LSL estimator  defined in (2.8) can be viewed as a
special case of the estimator π̂g,0(λ) proposed by Schweder and Spjøtvoll (1982). For fixed λ,
π̂g,0(λ) satisfies

under Conditions (3.2) and (3.3). Therefore, π̂g,0(λ) is asymptotically conservative and by
Theorem 4 the FDR is controlled asymptotically at α for π̂g,0(λ).

4. SIMULATION STUDIES
For simplicity, assume the hypotheses are divided into two groups. Without loss of
generality, assume there are n observations in each group. Consider the following model, let

(4.1)

be the ith test statistic in group g, where Zgi and Z0 are independent standard Normal random
variables. Note that Cov(Tgu, Tgv) = ξg, for u, v ∈ {1, …, n}, u ≠ v and the model satisfies
the PRDS property discussed in Section 2.2 when 0 ≤ ξg ≤ 1. Similar dependence structures
were considered in Finner, Dickhaus, and Roters (2007) and Benjamini, Krieger, and
Yekutieli (2006). Note that when ξg > 0, Conditions (3.2) and (3.3) are not satisfied for large
N due to the extra Z0 term.

Consider the hypothesis testing problem with two groups H0 : θj = 0 vs Ha : θj > 0, for j = 1,
…, 2n. In this section, we compare the performances of the BH and GBH procedures for
both oracle and adaptive cases. For the adaptive BH procedure, we compute the (either LSL
or TST) estimator π̂0 for all p-values and then apply the BH procedure at level α/π̂0.

Four combinations of πg,0’s are considered: (1) π1,0 = 0.9 vs π2,0 = 0.2; (2) π1,0 = 0.8 vs π2,0
= 0.4; (3) π1,0 = 0.99 vs π2,0 = 0.9; (4) π1,0 = 0.999 vs π2,0 = 0.9. In each case, we generate
ng = 10,000 test statistics for each of the two groups based on (4.1). In every group, ngπg,0 of
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the hypotheses are null and the rest are alternatives with corresponding θ = 3 in one group
and θ = 5 in the other group. Other combinations of n and θ’s are also considered and the
results are similar. Since we have the information about which hypothesis is from the
alternative, the power for the two procedures can be obtained, which is the proportion of true
rejections among the false null hypotheses. The power of the BH and GBH procedures is
evaluated in pairs based on 200 iterations for each of the 20 FDR levels between 0.01 and
0.2. The results for the oracle and adaptive cases are as follows.

For the oracle case with independent p-values, Figure 2 indicates that the GBH procedure
outperforms the BH procedure in all four cases, especially when πg,0’s are close to 1 (the last
two panels). The more the groups differ in πg,0, the larger the difference is obtained in the
power of the two procedures. This is also true for p-values with the PRDS property. Figure 3
shows the power difference between the GBH and BH procedures for p-values under model
(4.1) with ξ1 = ξ2 = 0.5. All points being above zero indicates the GBH procedure
outperforms the BH procedure for all four cases.

For the adaptive case with independent p-values, we estimate the unknown πg,0’s using
either the TST or LSL method introduced in Section 2.3. Figure 4 indicates that the average
of the false discovery proportion (FDP) is controlled at a prespecified FDR level for both the
BH and GBH procedures with either the TST or LSL method. The power improvement of
the adaptive GBH over the adaptive BH procedure is shown in Figure 5. Both the TST GBH
and the LSL GBH procedures are more powerful than the corresponding adaptive BH
procedures.

We also analyze the performance of the adaptive GBH procedure for weighting scheme
other than πg,0/πg,1. According to (2.6), when Ug is uniform, the Bayesian FDR is [πg,0/
Dg(p)]p, where Dg(p) is the distribution function of p-values in group g. It’s therefore
natural to consider the weight π̂g,0/D̃g(p), where D ̃g is the empirical distribution, as pointed
out by a referee. Although this weight takes into consideration of the distribution of p-values
in each group, the power of the adaptive procedure using this weight is often low in the
situation where we have sparse signals and estimating the alternative distribution is difficult.

5. APPLICATIONS
van’t Veer et al. (2002) used microarrays to study the primary breast tumors of 78 young
patients, of which 44 developed cancer in less than 5 years and the other 34 were cancer free
during that period. In total 24,184 genes were monitored and p-values were obtained for
each gene by comparing the mean ratio of log10 intensities. A fraction of the data is listed in
Table 1.

In order to apply the GBH procedure which makes use of the group structure, we need to
stratify the genes first. Here we consider two grouping strategies.

5.1 Grouping Using Gene Ontology (GO)
The GO project (The Gene Ontology Consortium 2000) provides detailed annotations for a
gene product’s biology. It consists of three ontologies, namely Biological Process,
Molecular Function, and Cellular Component, each representing a key concept in Molecular
Biology. The GO terms are classified into one of the three ontologies. Based on the GO
terms, one can construct a top-down tree diagram, in which the higher nodes represent more
general biological concepts.

The tree structure provides the idea of GO grouping which can be summarized as follows.
After choosing one of the three ontologies, say Biological Process, some higher nodes are
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selected as ancestors according to the generic GO slim file, which contains the broad
overview of each ontology without the detail of each GO terms (available at
http://www.geneontology.org/GO.slims.shtml). Next, for those genes with GO IDs, we trace
them upward to the nodes we have chosen. Genes that share common ancestors are then
grouped together. The biggest concern for GO grouping in our case is that the mapping rate
is low. Even though the GO consortium updates their data base on a daily basis, not every
gene in our data has a GO ID. For our case, 9492 of the 24,184 genes have the annotation
information for Biological Process, therefore the mapping rate for our data is 9492/24,184 ≈
39%.

However, we may still use the remaining 9492 genes to see the difference of using group
information in multiple hypothesis testings. We first divide the genes into four groups with
respect to Biological Process, that is, (1) Cell communication; (2) Cell growth and/or
maintenance; (3) Development; and (4) Multifunction. The results for the adaptive BH and
GBH procedures are listed in Table 2. For simplicity, we just report the results for the LSL
method.

At FDR level 0.15, Table 2 indicates that the adaptive GBH procedure focuses more on
groups with smaller estimated πg,0’s, that is, groups (2) and (4), and is able to discover genes
that are not detectable using the adaptive BH procedure. In fact, as shown in Figure 6, using
either the LSL or TST method, the adaptive BH procedure cannot detect any signals when
the FDR level is less than 0.15.

Even though the mapping rate for this dataset is low, the idea of GO grouping could be a
good choice if the data were collected in terms of GO identities; or the mapping between the
GO ID and other gene IDs (e.g., GenBank Accession Number) was more complete. Then
each group may correspond to different biological processes or genetic functions within the
tumor and the GBH method can help us to find more signals among desired groups.

5.2 Grouping Using k-Means Clustering
Another grouping idea is to apply clustering. Here we choose k-means clustering with initial
points satisfying maximum separation rule based on all the 78 samples. Note that we are not
just clustering the p-values. Unlike GO grouping, k-means clustering makes use of the whole
dataset and we do not have to worry about the mapping rate. Although we do have the
difficulties regarding cluster analysis, for example, the choice of initial points, number of
clusters, and the interpretation of each cluster, we use it as an illustrative example to
compare the performances of the adaptive BH and GBH procedures.

In order to have a reliable estimator for each group, six clusters are selected such that within
each cluster there are at least 200 genes. Table 3 shows the results for the two procedures
using the LSL method at FDR level 0.1. Most of the additional discoveries found by the
adaptive GBH procedure come from the first cluster, which is expected to contain more
signals because the estimated πg,0 is relatively smaller than the others. Gene-annotation
enrichment analysis confirms that those 109 genes selected by the GBH procedure in the
first cluster are closely associated with cell cycle, mitosis, chromosome segregation, and
phosphoprotein, which are common factors related to breast cancer. Similar analyses on the
four and five-cluster cases indicate that the number of genes detected by the adaptive GBH
procedure is 145 and 226, respectively. Out of those genes, 94 of them are overlapping with
the six-cluster case. Comparing with an average of eight genes discovered by random
grouping, which assigns groups randomly with the same group sizes as the above three
cases, clustering and using the GBH procedure is advantageous in our case.
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For comparison of the two procedures over a range of FDR levels, Figure 1 shows the
increment in the number of signals detected by the adaptive GBH over BH procedure for
both the LSL and TST methods. This indeed shows that by applying the GBH procedure,
more signals can be detected.

6. SUMMARY
We have presented a new approach of p-value weighting procedure GBH for controlling the
FDR when the hypotheses are believed to have some group structure. We prove that it
controls the FDR for hypotheses with the positive regression dependence property when the
proportions of true null hypotheses πg,0’s are known in each group. The weighting scheme
(πg,0/πg,1) for the p-values in each group makes it possible to focus on groups that are
expected to have more signals.

By estimating πg,0 for each group, we propose the adaptive GBH procedure and show that it
controls the FDR asymptotically under weak dependence. We demonstrate the benefit of the
adaptive GBH over BH by two methods of estimating πg,0, namely the LSL (Benjamini and
Hochberg 2000) and the TST (Benjamini, Krieger, and Yekutieli 2006) estimators. As we
have pointed out, the choice of the estimator for πg,0 in general does not affect the
performance of the adaptive GBH procedure. In practice, people may choose the estimator
based on their own preference.
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APPENDIX: PROOFS

Proof of Theorem 1
The proof is based on the proof of theorem 4.1 in Finner, Dickhaus, and Roters (2009). Let ϕ
= (ϕ1, …, ϕN) be the multiple testing procedure. ϕi = 0 means retaining Hi and ϕi = 1 means
rejecting Hi. The FDR for oracle GBH is
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Note that if πg,0 = 0 or πg,0 = 1 for some g, that group doesn’t contribute to the FDR because

Ig,0 = ∅ if πg,0 = 0 and  if πg,0 = 1 (we treat πg,0/πg,1 as ∞). Let η =
{g : πg,0 ∈ (0, 1)}. Then

Using the proof of theorem 4.1 in Finner, Dickhaus, and Rosters (2009), we have

Proof of Lemma 1
For the unweighted case, the expected number of rejections of BH procedure for a given
threshold t, where t ≤ t̃ = (1 − π0) maxg πg,0/πg,1 is

Similarly, the expected number of rejections of GBH procedure for t ≤ t̃ is

Let εg = ngπg,1/Σg ngπg,1 and xg = πg,0 (1 − π0)/πg,1. Now that x ↦ F(t/x) is convex for all x
≥ t̃. We have F(t/Σgεgxg) ≤ Σg εgF(t/xg), that is,

Therefore, [RBH(t)] ≤ [RGBH(t)] for t ≤ t̃.
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Proof of Lemma 2
Consider the estimator of Dg(t) defined in (2.12). Under (3.1), for any t ≥ 0,

where  and  by

Glivenko–Cantelli Theorem. Therefore, .

Proof of Theorem 2
Theorem 4 generalizes this theorem. See the proof of Theorem 4.

Proof of Theorem 3
Under the conditions that Ug(t) = U(t) = t and Fg(t) = F(t) for all g, in the proof of Lemma 2,
we show that G(a, t) ≥ C(t/π0) for all 0 ≤ t ≤ ming ag. Since G(a, π0) ≤ π0 = t/C(t/π0)|t=π0
and both G(a, t) and t/C(t/π0) are increasing, we have G(a, t) ≥ C(t/π0) for all 0 ≤ t ≤ maxg
ag. Deduce B(a, t) ≤ t/C(t/π0) for t ∈ c(a). Therefore . Conditions limt↓0 t/C(t/π) ≤ α
and π0 ≥ α guarantee that .

Note that both G(a, t) and t/C(t/π0) are continuous, we have

Since , deduce . For the adaptive BH procedure, the number
of rejections RBH(T ̂BH) = Σi∈IN{Pi ≤ T ̂BH/π̂0} = N · CN (T ̂BH/π̂0), and

where  by Glivenko–Cantelli Theorem and

 by continuous mapping theorem. Therefore

. Analogously one can show that . A more
generalized argument is shown in the proof of Theorem 4. By dominant convergence

theorem we have  and .
Therefore [RBH(T ̂BH)]/ [RGBH(T ̂GBH)] ≤ 1 + o(1).
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Proof of Theorem 4
The proof applies Glivenko–Cantelli Theorem as in Storey, Taylor, and Siegmund (2004)
and Genovese, Roeder, and Wasserman (2006). Let S = c(â) ∪ c(ρ). For any t ∈ S, we have

Note that for t ≥ 0,

(A.1)

where the last step is implied by Lemma 2. On the other hand,

Since Dg is continuous on [0, +∞) and limt→∞ Dg(t) = 1 is finite, Dg is uniform continuous.

By continuous mapping theorem, . Therefore

. So we have .

Let . According to (2.16) and (3.6), T ̂GBH = supt∈c(â){t : BN (â, t) ≤ α} and

, where . Note that the assumption limt↓0 B(π, t) ≠
α implies .

We first show . For any ξ > 0, note that B(ρ, t) is increasing for t ≥ maxg ρg,
therefore , otherwise it contradicts with  being the supremum. Fix δ > 0,

for any δ′ ≥ δ, let . Then

where ε1 = Σg |ng,0/Nâg − πgπg,0/ρg|/(Σg πgπg,0/ρg), and ε2 = supt∈S |GN (â, t) − G(ρ, t)|/(Σg

πgπg,0t′/ρg). Since  and infδ′≥δ B(ρ, t′) > α, it can be derived that Pr(∩δ′≥δ {BN (â, t′) >

α}) → 1 which implies .
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On the other hand, since B(ρ, t) has a nonzero derivative at , it must be positive,
otherwise  cannot be the supremum of all t such that B(ρ, t) ≤ α. Thus, t ↦ B(ρ, t) is an
increasing function and for any ξ > 0, . For any δ > 0, let ,

where  and B(ρ, t°) < α. Then Pr(BN (â, t°) < α) → 1. Deduce .

Combine this and previous result we get .

Next, we prove FDR(T ̂GBH) ≤ α/ming{bg} + o(1). Let

be the empirical distribution of p-values under null hypothesis for adaptive GBH procedure.

Note that  implies  for any δ > 0. Since , deduce
Pr(T ̂GBH > 0) → 1. On the other hand, the assumption ζ̂ < 1 rules out the situation where
T ̂GBH/âg → 0 for all groups. Therefore Pr(Σg Σi∈Ig {Pi ≤ T ̂GBH/âg} ≥ 1) → 1. Then the false
discovery proportion (FDP) is

where HN (â, T ̂GBH) satisfies

By Condition (3.2), Glivenko–Cantelli Theorem implies

. Therefore,
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(A.2)

Now that  and by (3.1),

(A.3)

Combine (A.2) and (A.3) we have

(A.4)

On the other hand,

where  by (A.1) and  by
continuous mapping theorem. Therefore,

(A.5)

Since  and ζ̄ < 1, we have . By (A.4) and (A.5),

By dominated convergence theorem,

(A.6)

Note that ζg ≥ bgπg,0 for some bg > 0. Deduce ρg ≥ bgπg,0/(1 − ζg). Since Ug(t) ≤ t for all t ≥
0, we have
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Hence, FDR(T ̂GBH) ≤ α/ming{bg} + o(1).
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Figure 1.
Breast cancer study, 24,184 genes. Plot shows the number of signals detected by GBH and
BH procedures versus prespecified FDR level. Left panel: adaptive LSL GBH procedure.
Right panel: adaptive TST GBH procedure. Details for LSL and TST approaches are in
Section 2.3. Genes are assigned into six groups using k-means clustering. Data from van’t
Veer et al. (2002). The online version of this figure is in color.
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Figure 2.
Power curves of the oracle BH and GBH procedures for independent p-values. The p-values
are generated based on model (4.1) with ξ1 = ξ2 = 0 and n = 10,000 for each group. Each
panel corresponds to one combination of πg,0’s for two groups. The online version of this
figure is in color.
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Figure 3.
Power differences of the oracle BH and GBH procedures for p-values with the PRDS
property. The p-values are generated based on model (4.1) with ξ1 = ξ2 = 0.5 and n = 10,000
for each group. Each panel corresponds to one combination of πg,0’s for two groups. The
online version of this figure is in color.
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Figure 4.
Comparison of the average FDP and the prespecified FDR for the adaptive BH and GBH
procedures. The dash line is the 45-degree line. The p-values are generated based on model
(4.1) with ξ1 = ξ2 = 0 and n = 10,000 for each group. Each point of the FDP is the average of
200 iterations. The online version of this figure is in color.
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Figure 5.
Power curves of the adaptive BH and GBH procedures for independent p-values. The p-
values are generated based on model (4.1) with ξ1 = ξ2 = 0 and n = 10,000 for each group.
Each panel corresponds to one combination of πg,0’s for two groups. The online version of
this figure is in color.
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Figure 6.
Breast cancer study, 9492 genes. The plots show the number of genes detected by the
adaptive BH and GBH procedures using Gene Ontology grouping. Left panel: the LSL
method. Right panel: the TST method. Data from van’t Veer et al. (2002). The online
version of this figure is in color.
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Table 2

Comparison of the adaptive LSL GBH and the adaptive LSL BH procedures for GO grouping. FDR level =
0.15

Group # of genes LSL BH LSL GBH

(1) Cell communication 593 0.995 0 3

(2) Cell growth/maintenance 4142 0.987 0 13

(3) Development 434 0.989 0 0

(4) Multifunction 4323 0.983 0 25

Total 9492 0 41
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Table 3

Comparison of the adaptive LSL GBH and the adaptive LSL BH procedures for k-means grouping. FDR level
= 0.1

Cluster # of genes LSL BH LSL GBH

1 1904 0.871 4 109

2 214 0.991 0 0

3 1368 0.999 0 0

4 2458 0.969 1 19

5 7058 0.999 4 2

6 11,164 0.996 3 6

Total 24,184 12 136
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