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To assess the predictive value of a model-based approach for dose
selection across paediatric populations in early clinical drug

Abacavir was selected as a paradigm compound using data across a
wide age range. Abacavir pharmacokinetics (PK) in children were
analysed separately from infants and toddlers. Two independent models
were obtained, and systemic exposure (AUC) was then simulated across
populations based on the estimates from each model. Drug exposures
in infants and toddlers were predicted using pharmacokinetic param-
eter distributions obtained from children, and the other way around.

The pharmacokinetic models (a two-compartment PK model for infants
and toddlers and a one compartment PK model for children) accurately
described the exposure in the population from which they were built.
However, neither model predicted exposure in a different population:
in infants, the median AUC (95%Cl) was estimated at 7.03 (6.72, 7.48)
g ml~" h, whilst it was predicted at 5.75 (4.82,6.26) ig ml™" h; in
children, the estimated median AUC was 6.96 (5.85,7.91) ug ml™" h,
whilst the predicted value was 6.45 (5.80, 7.01) ug ml™" h.

These findings suggest that the assumption of an identical (linear or
nonlinear) correlation between pharmacokinetic parameters and
demographic factors may not hold true across age groups. Whilst the
use of modelling enables accurate characterization of pharmacokinetic

properties, extrapolations based on such parameter estimates may
have limited value due to differences in the impact of developmental

growth across populations.
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Introduction

Given the requirements of the new paediatric regulation in
the EU and the renewal of the paediatric equity act in the
USA, a higher demand for paediatric clinical trials can be
anticipated.Whilst bridging approaches should be encour-
aged to prevent unnecessary trials, guidance is lacking
about the dosing rationale and how to implement opti-
mally dose titration or adjustment across the paediatric
population.One should note that inaccurate dose extrapo-
lation across population groups has implications to the
overall paediatric development programme in which rigid
protocol designs and fixed dose levels are used. Perform-
ing a trial with a sub-optimal dose regimen may lead to
wrong conclusions about the exposure-response relation-
ship or about treatment efficacy in a particular population.
On the other hand, a higher than required dose may inflate
the side effects and toxicity. In either case, incorrect con-
clusions about the suitable dose in a given paediatric age
range may be carried forward when the dose is extrapo-
lated to other groups.

To prevent such a bias, differences in PK parameter dis-
tributions across populations rather than differences in
body size should be used as a basis for the dose rationale.
However, paediatric dose selection is still driven by empiri-
cism [1-4]. Clinical practice assumes linear correlations
between body weight (BW) and dose, which results in
dosing recommendations in children often expressed as
mg kg™ [5-7], irrespective of the changes in physiology
across age groups or differences in the pharmacokinetic
properties of different drugs and biopharmaceuticals.
Other methodologies use age as a scaling factor: the pae-
diatric population is divided into sub-categories (pre-term
newborns, term newborns, infants, toddlers, children and
adolescents) [8] and the recommended dose is selected
according to a child’s age [9]. Scaling the dose from adults
can also be performed by normalization based on body
surface area (BSA), under the assumption that metabolic
processes in humans are constant when expressed as a
function of BSA [10].

The assumption of a linear relationship between body
size and drug exposure or response is not always justifi-
able. Body size itself may not be a surrogate for the differ-
ences in physiology associated with growth during
childhood and adolescence. Implicitly and most impor-
tantly the wide-spread use of demographic variables
imposes unidirectional increase of the absolute dose with
body size, which constrains the paediatric dose to be
always smaller than in adults, irrespective of the relevance
of various pharmaceutical, physiological and disease
factors. These views also imply that pharmacokinetics can
be interpolated within and extrapolated between popula-
tions. Mounting evidence suggests, however, that non-
linear relationships must be considered when correlating
drug exposure to demographic covariates, and in particu-
lar to body weight [11].

Model-based drug exposure prediction in children BJCP

Non-linearity may exist between pharmacokinetics and
demographic factors, due to the influence of developmen-
tal growth and organ maturation. In fact, different
examples show the implications of non-linearity for dosing
regimens in children [12-14] and how non-linear mixed
effects and Bayesian hierarchical modelling can take into
account such non-linearity.Recently, we have shown how a
parametric approach can be used that incorporates the
physiological factors underlying the changes in drug expo-
sure due to developmental growth. Based on parameter
distributions, it is then possible to extrapolate doses across
populations. In this case, estimation of pharmacokinetic
parameter distributions becomes critical to describe accu-
rately individual differences in exposure in paediatric
patients [15].

In the current investigation we focus on the dose
rationale for first time in children (FTIC), i.e. selection of
the safe and effective doses of a drug for a paediatric
indication involving a group or population which has not
been previously exposed to that drug. In particular, the
objective of this paper is to retrospectively evaluate the
predictive value of a model-based approach to establish
dosing requirements in a paediatric population. Expo-
sures in younger age groups were predicted using phar-
macokinetic parameter distributions obtained from the
analysis of exposure data in children and adolescents, and
vice versa. This scenario reflects a typical problem during
clinical development of compounds with a paediatric
indication for which deferral may be granted to trials in
younger patients. The proposed approach is illustrated for
the antiviral drug abacavir, a nucleoside reverse tran-
scriptase inhibitor (NRTI) used to treat HIV infection [16].
According to the ICH E11 guidelines [8], abacavir meets
the following requirements for bridging: 1) the patho-
physiological processes subsequent to viral infection in
adults do not differ significantly from those observed in
children, 2) the endpoint for efficacy in clinical trials is the
same in both populations, as indicated by the change
from baseline in viral load (plasma HIV-1 RNA) and CD4+
T cells count rise [17] and 3) given its mechanism of
action, the exposure—-effect relationship can be assumed
to be independent of age.

Methods

Patients

Paediatric data were obtained from two studies by the
Paediatric European Network for the Treatment of AIDS
(PENTA), in which abacavir was dosed firstly at 8 mg kg™’
twice daily and then at 16 mg kg™ once daily. The studies
were approved by the ethics committees of each partici-
pating institution. Written informed consent was obtained
from legal guardians, carers and children where appropri-
ate. PENTA 13 was a two-period, crossover, open-label mul-
ticentre pharmacokinetic study. Fourteen children were
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Table 1

Study characteristics and demographics

PENTA 15
[mean (range)]

PENTA 13
[mean (range)]

Number of patients 23 14
Ethnicity 16 African, African

4 Caucasian,

2 Other*
Age (years) 1.8 (0.43-2.89) 5.9 (2.14-12.84)
Weight (kg) 11.6 (7.4-15.9) 23.8 (13.7-60.5)
Height (cm) 81 (62-98) 115 (89-164)
BMI (kg cm~2) 17.8 (15.0-24.2) 16.8 (13.8-22.4)
Creatinine clearance (dl h-") 31.7 (16.4-50.4) 81 (59-159)
Male/Female 12/11 8/6
Normal/Fasted 8/5* 14/0
Samples 4-9 9
Administration route Oral
Dosage form 20 mg mi~" solution
Dose 8-16 mg kg’

*indicates missing data.

included in the study [18]. PENTA 15 had the same design,
but included 23 infants and toddlers (22 of them had PK
data after twice daily dosing.) [19]. For both studies plasma
samples for the analysis of abacavir concentrations were
collected at steady-state conditions, with each patient con-
tributing with four to nine blood samples. A summary of
the demographic variables and treatment regimens for
both PENTA trials is shown in Table 1.

Adult data were obtained from six clinical studies per-
formed by GlaxoSmithKline [20-25]. One hundred and
eleven adult subjects were retrieved from GlaxoSmith-
Kline’s clinical database and used as a reference population.
Further details on these trials can be found at GSK clinical
trial register (http://www.gsk-clinicalstudyregister.com/).

Pharmacokinetic analysis

Nonlinear mixed-effects modelling was used to analyse
the pharmacokinetic data in both study populations. The
first-order conditional estimation method with interac-
tion, as implemented in NONMEM VI (release 1.0) [26] was
used to fit all concentration data described later in this
section.

To explore the predictive power of parameter distribu-
tions and get further insight into how to best select doses
in a staggered paediatric development programme, two
independent pharmacokinetic models were developed,
one to fit data from children (Model 1) using adult param-
eter distribution as prior, and the other to fit infants
and toddlers’ data (Model 2), without priors. The effects of
BW, height, age, body mass index, creatinine clearance,
gender and fasted/fed status were investigated as poten-
tial covariates on clearance, volume and absorption rate
constant. Significant correlations between covariates and
parameters were incorporated using an exponential
relationship for continuous variables, according to the
formula:
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EXP
cov ) (1)

®, =0 x(—_
median

where ©; represents the individual parameter of interest,
Oy the typical value for the parameter, median is the
median of the population, COV the covariate of interest
and EXP the exponent.

Priors based on adult parameters were used to stabilize
parameter estimation in children using the Wishart distri-
bution for parameter priors [27].

The minimal objective function value (OFV; equal to -2
log likelihood) determined by NONMEM was used as a
diagnostic criterion, with a AOFV of 3.84 points corre-
sponding to a statistically significant difference between
hierarchical models (P = 0.05, x* distribution with one
degree of freedom).The contribution of each covariate was
confirmed by a stepwise backward deletion (AOFV = 6.64,
P =0.01, * distribution). In addition, goodness-of-fit plots,
including observed (OBS) vs. individual prediction (IPRED),
OBS vs. population prediction (PRED), conditional
weighted residuals (CWRES) vs. time and CWRES vs. OBS
were used for diagnostic purposes [28].

Given that extrapolations are the primary objective of
this investigation, special attention was paid to the evalu-
ation of model misspecifications for the random effects.
The normalized prediction distribution errors (NPDE)
method was applied for diagnostic purposes [29]. This
method was implemented using the NPDE add-on soft-
ware package, which was run in R [30]. Mirror plots from
datasets simulated from both models were produced and
results compared with the original data.

Evaluating predictive power

The parameter estimates obtained from each model
(Model 1 and Model 2) were used to simulate plasma con-
centrations in a sub-population different from the one
analysed during model building. AUC(0,12 h) was selected
as endpoint for the purposes of this evaluation. The evi-
dence of similar parameter distributions was the basic cri-
terion for assessing the predictive power of each model.In
adults, the reference AUC value for efficacy is 6.02 ug ml™' h
[31].No reference toxicity values were available in the pub-
lished literature. Nevertheless, the use of a safety threshold
was deemed unnecessary,as the main concern is the occur-
rence of a hypersensitivity reaction, which appears to be
unrelated to abacavir concentrations [32].We hypothesized
thatthe AUCdistributionininfants and toddlers,as extrapo-
lated using Model 1,is comparable with the observed AUC
values by Model 2. The same methodology was applied to
Model 2 with the objective of predicting AUCs in patients
aged 2 to 13 years. For simulation purposes we used the
twice daily dose regimen, i.e.8 mg kg™.

Enrichment procedure Given the small group size and
skewed distribution of BW in the original datasets,
re-sampling was performed to obtain a distribution of
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Diagram depicting model building, simulation and extrapolation procedures

BW within the age ranges under evaluation. Data on BW
distribution were extracted from the growth charts pro-
vided by the National Center for Health Statistics (http://
www.cdc.gov/growthcharts/).Datasets were created which
included the population in the original studies and 104
simulated patients (56 children and 48 infants and tod-
dlers). Abacavir AUC distributions were then obtained for a
total of 140 individuals (70 infants and toddlers and 70
children).

Estimation step Drug exposure was simulated 100 times
for each group of 70 patients using Model 1 and Model 2.
Cumulative AUCs were calculated in NONMEM by integrat-
ing the amounts in a dummy compartment, according to
the equation:

AUC=] C, dt )

The geometric mean of each individual patient AUC
was calculated and summarized as median, 5th and 95th
percentiles. These results were then used to assess the
model’s predictive power.

Extrapolation from children to infants and toddlers We
evaluated whether drug exposure in infants and toddlers
can be predicted accurately under the assumption of com-
parable correlations between pharmacokinetic param-
eters and covariates across age ranges. Using Model 1, the
concentrations in the dataset for infants and toddlers were
simulated 100 times. Similarly to the procedures used in
the estimation step, the geometric mean of the AUCs for
each individual patient was calculated and summarised as

(n=70, children 2—12 years old)

(n=70, infants and toddlers |
3-36 months old)
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BASED ON MODEL 2
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>
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distribution

100 x Model 2

100 x Model 2 observed exposure

distribution
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extrapolated exposure
distribution

100 x Model |

PREDICTION OF PK IN INFANTS AND TODDLERS
BASED ON MODEL |

median, 5th and 95th percentiles. The AUC distributions
obtained in the estimation step were then compared with
the extrapolated values.

Extrapolation from infants and toddlers to children The
same methodology was applied to Model 2 to predict drug
exposures in children aged 2 to 13 years using the model
developed on infants and toddlers. Although in real life this
is a less common situation, extrapolating drug exposure
from neonates (for whom demographic covariates repre-
sent a surrogate for both function and maturation) to chil-
dren (for whom demographic covariates may only
represent differences in function or capacity) might give
some insight on the possibility of using demographic cova-
riates as surrogates for ontogeny.

In each scenario, the median, 5th and 95th percentiles
of the estimated and extrapolated exposures were com-
pared. A diagram of the data analysis procedures is sum-
marized in Figure 1.

Results

PK model in children (Model 1)

The PK of abacavir in children (2-13 years) was described by
a one-compartment model with first-order absorption and
first-order elimination. Between-subject variability (BSV)
was estimated for clearance (CL), volume of distribution
(V),absorption constant (K,) and bioavailability (F).Residual
variability was characterized by a proportional error model.
The incorporation of BW as covariate on CL and Vaccording
to an exponential model showed the highestimprovement
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in fitting. Further details of the parameter estimates and
their distribution can be found elsewhere [15].

Bearing in mind the objective of extrapolation across
populations,focus was given to the model validation steps,
which vyield information about the variance structure
and variance-covariance matrix. As shown in Figure 2,
goodness-of-fit plots reveal that the model provides an
accurate description of the data. Visual predictive check
(VPQ) plots indicate that the data are accurately described
for up to 4 h after drug administration, after which the
variance seems to be slightly overestimated. Bootstrap-
ping of this model (Table 2) yielded mean parameter dis-
tributions similar to the values estimated during data
fitting. All parameter estimates fell within 5% of the boot-
strapped mean, with the exception of BSV on F. Ninety-
eight per cent of the runs were successful.

Of particular interest were the mirror plots which
showed that the model was able to simulate data with a

variance structure similar to the original data. In addition,
NPDE summaries indicated that the discrepancy between
predicted and observed values can be assumed to be nor-
mally distributed. In spite of minor misspecification of the
variance, overall these diagnostic techniques confirm that
Model 1 is suitable for the purposes of data simulation
(Figure 2).

PK model in infants and toddlers (Model 2)

The PK of abacavir in infants and toddlers (3-36 months)
was characterized by a two-compartment model with
first-order absorption and first-order elimination. BSV
was identified on CL, peripheral volume and inter-
compartmental CL. In addition, inter-occasion variability
was also identified on CL.Residual variability was described
by a proportional model.In contrast to the previous model,
BW was found to be a significant covariate on CL only.
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Diagnostic plots of the model based on data from children (Model 1).(A) VPC, (B) conditional weighted residuals vs. predicted concentrations, (C) conditional
weighted residuals vs. time, (D, E) NPDE, (F) post hoc predictions vs. observed concentrations, (G, H, 1) mirror plots. All diagnostic measures indicate acceptable
goodness-of-fit and model performance, except for a slight skewness in the NPDE distribution and overestimation of variance after 4 h (panel A)
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Table 2

Final pharmacokinetic parameter estimates for abacavir, as estimated
based on 2-13 year old children (Model 1, left) and on 3-36 month old
infants and toddlers (Model 2, right)

Model 1 Model 2

Parameters Bootstrap mean Bootstrap mean
(units) Mean (CV%) Mean (CV%)
Fixed effects

CL(1h™) 40.6 39.6 (5.4) = =

CL/F(1h™) = = 134 13.2 (6.9)

V() 69.1 68.5 (4.5) - -

Ve (1) = = 4.94 4.45 (34)

Ve () = = 8.12 8.25 (18)

Q(h™ - - 1.25 1.26 (21)

Ka (h™) 3.58 3.57 0.758 0.754 (6.1)

F (%) 0.83 FIX 0.83 - -

Exponent on CL  0.722 0.694 (11) 1.14 1.16 (26)

Exponenton V.  0.810 0.798 (11) - -
Inter-individual

variability, %

CL 27 27 (11) 29 28 (41)

v 1 11 (6.9) - -

Ka 98 93 (13) - -

F 37 50 (64) - _

Vo - - 40 41 (42)

Q - - 31 51 (169)
Residual error, %

€ 3.6 3.6 (37) 14 14 (15)

CL, clearance; CL/F, apparent oral clearance; V, volume of distribution; V¢, central
volume of distribution; V,, peripheral volume of distribution; Q, inter-
compartmental clearance; K, absorption rate constant; F, bioavailability.

As shown in Figure 3, goodness-of-fit plots indicate
that the model accurately describes the observed data. In
addition, mirror plots revealed that the variance was well
defined, with the simulated datasets reproducing the
dispersion pattern observed in the original data. NPDE
confirmed that the difference between predicted and
observed values was normally distributed. Bootstrapping
results also confirmed the precision of the parameter esti-
mates obtained during the data fitting (Table 2).

Extrapolation of abacavir exposure from
children to infants and toddlers

To evaluate the use of a model-based approach in prospec-
tive drug development, the pharmacokinetic parameter
estimates from each model were used to predict drug
exposure, in terms of the area under the curve
[AUC(0,12 h)], in the other population. Pharmacokinetics in
infants and toddlers were extrapolated from the model
built on data from children and vice versa.The population
selected for the purposes of simulation and extrapolation
was defined in such a way that covariate factors could be
accounted for in a balanced manner.

The AUC distribution was expressed as median, 5th and
95th percentiles. AUC values in infants and toddlers, as
estimated by Model 2, were 7.03 (6.72,7.48) ug ml™" h with
all values above the target AUC observed in adults

Model-based drug exposure prediction in children BJCP

(6.02 g ml™" h). In contrast, predictions by Model 1 were
generally lower: the median AUC was 5.75 (4.82, 6.26)
ug ml h. This difference was statistically significant
(Wilcoxon-Mann-Whitney test, P < 0.001), with only 17% of
the values reaching the proposed efficacy threshold.
Figure 4 shows the discrepancies between predicted and
observed AUCsininfantsand toddlers,as extrapolated from
the model based on children (Model 1).

Extrapolation of abacavir exposure from
infants and toddlers to children

The AUC distribution in children aged 2—13 years, as esti-
mated by Model 1, yielded a median of 6.96 (5.85, 7.91)
ug ml~ h, whilst predictions from Model 2 resulted in
values of 6.45 (5.80,7.01) ug mI™" h.This difference was also
statistically significant (Wilcoxon-Mann-Whitney test, P <
0.001), with all values above the efficacy threshold defined
in adults. Similarly, predictions by Model 2 showed that
target exposure was reached in 88% of the cases. Figure 5
presents the observed AUC distributions in children and
the corresponding predictions by the model developed
from data in infants and toddlers (Model 2).

Discussion

Bridging strategies

One of the challenges in paediatric research protocols is to
identify the dose or dose range to be used for the first time
in a new population.In drug development, bridging oppor-
tunities exist for paediatric indications when no relevant
differences can be anticipated in disease, disease processes
or PKPD relationships. In these circumstances, bridging
should ensure appropriate drug exposure in the target
population without the need for dose finding studies.Some
initial estimation of the paediatric dose should be obtained
via extrapolation approaches. However, empiricism must
be avoided [4]. This is particularly important as the imple-
mentation of suitable bridging studies may eliminate the
need for formal efficacy trials.

In defining paediatric dosing recommendations, one
must identify which demographic or physiological
factor(s) (i.e. covariates) best describe the changes occur-
ring during developmental growth, which can easily be
used for the purposes of dose adjustment in a new popu-
lation. This requirement may prove challenging if stagger-
ing of the target population according to age groups and
disease prevalence is stipulated by protocol. This implies
that any covariate analysis must be performed under the
assumption that the correlation between parameter and
covariate holds true for the overall population or that
assumptions can be made about changes in these correla-
tions beyond the age range from which they have been
derived.

Our results support the current dosage in children and
adults (8 mg kg™" with a maximum of 300 mg for children

Br | Clin Pharmacol / 72:3 / 459
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and 300mg for adults twice daily): when estimated
by Model 1, 100% of derived exposures are above the
reference threshold (6.02 g ml™" h). The same consider-
ation can be applied to the age group regarding infants
and toddlers, for which the current dosing regimen yields
exposure levels comparable with adults as well.

Model-based dose selection

In a recent publication we have indicated some of the
advantages of a model-based approach to design bridg-
ing studies, analyse pharmacokinetic data and derive
dosing recommendations for the paediatric population
[15]. Furthermore, the use of PKPD relationships as a basis
for bridging also explains a wide range of scenarios in
which body size and developmental growth alone are not
sufficient to define dosing requirements. Although the
current investigation is limited to a single paradigm com-

460 / 72:3 / Br] Clin Pharmacol

pound, the findings clearly illustrate the implications
and challenges for drug developers in early clinical
trials. Estimation of the effect of covariates reflecting
developmental growth and subsequent use of simula-
tions based on estimated parameter distributions is
critical, but not sufficient for characterizing potential dif-
ferences across a population. The dosing rationale for
paediatric populations must be defined on a case by case
basis, taking into account pharmacokinetic and pharma-
codynamic factors.

On the other hand, from a methodological perspec-
tive the use of parameter distributions from a reference
population to extrapolate drug exposure and dosing
requirements in a new population should be indepen-
dent of the group used as reference population, i.e.
model-based extrapolations should be bidirectional.
Unfortunately, this requirement has not been fully met for
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abacavir and is likely to reflect the difficulties with dose
selection for other drugs as well. Extrapolation from chil-
dren to infants and toddlers yielded predicted AUCs
(5.75 ug mlI™" h) which were smaller than the estimated
population values (7.03 ug ml™" h). At a first glance, this
small difference could be considered clinically irrelevant.
However, from a clinical pharmacology perspective, the
objective of a bridging exercise is to define a dosing
regimen that warrants an exposure range or distribution
comparable with what has been observed in the refer-
ence population. With this in mind, the lower exposure in
infants and toddlers would suggest the need for an
adjustment of the dosing regimen. Using a model built
on data from children the target exposure would be met
only in 17% of the younger patients. According to model
parameter predictions, a drastic increase of the dose
would be required to ensure exposure remains compa-
rable with adults in most of the toddlers and infants. This
contrasts with the data observed in the clinical studies,
which show that no dose adjustment is required. A similar
problem occurs when model parameter distributions
from infants and toddlers are used to extrapolate expo-
sures in older children: target exposure is achieved in 88%
of the patients. Again, one could decide to increase the
dose to guarantee the target exposure in all patients,
whilst the appropriate exposure is obtained with the
current dosing recommendation.

In summary, both models accurately described the
pharmacokinetics in the population upon which they
were built. However, both models failed to predict expo-
sure (AUC) distribution in the other population, prevent-
ing straightforward extrapolations and recommendations
across populations. Whilst extrapolation of exposure in
children from model parameters in infant and toddlers
results in trivial differences, the same cannot be said
about extrapolations in the opposite direction. The pre-
dicted exposure in infants and toddlers from model
parameters in children results in large differences
between the predicted and observed AUC, indicating that
the covariate-parameter correlation observed in children
does not appear to describe the influence of develop-
mental factors which occur during growth in the younger
group of infants and toddlers.

Differences in parameter-covariate correlations
Our results also illustrate that extrapolation of exposure
across different populations or groups cannot rely on
the assumption that covariate-parameter interactions
remain constant beyond the range of observations.
Re-parameterization of the drug disposition process may
be required to mechanistically describe changes in expo-
sure associated with ontogeny and growth. Information
on the maturation profiles of the metabolic pathways
that determine drug elimination may be required. Thus
far, parameters associated with organ function or reflect-
ing physiological status remain formally time invariant.

Br | Clin Pharmacol / 72:3 / 461



BJCP M. Cella et al.

These findings call for caution when applying modell-
ing and simulation techniques for the purposes of
extrapolation. All standard diagnostic criteria (post hoc
predictions vs. observed concentrations, conditional
weighted residuals vs. predicted concentrations, visual
predictive check, mirror plots and NPDE) concurred in the
validation of the models, but they were not sensitive to
differences in parameter-covariate correlations. This also
highlights why size cannot be taken for granted as a sur-
rogate measure of function and as such used linearly
across populations.

The simulation of a new population assumes that not
only the pharmacokinetic model (structural model), but
also the correlations between parameters and covariates
(i.e. the covariate model) are applicable. This may be
appropriate as long as the new population can be con-
sidered as part of the same parameter distributions
(i.e. part of the reference population). When this require-
ment cannot be warranted, additional considerations
may be necessary to enable accurate dose selection
and adjustment during clinical development. Without
such a prerequisite, one cannot exclude the risk of sub-
optimal dosing or toxicity due to the effect of ontogeny
of metabolic pathways, as for example in neonates and
toddlers.

Clearly, limitations exist even when modelling and
simulation are used to support clinical drug develop-
ment. Parametric modelling approaches, which provide
accurate estimates for the parameters of interest may
not be sufficient for extrapolation purposes [33]. Deeper
understanding of the factors affecting pharmacokinetics
is required for accurate model building. Physiologically-
based pharmacokinetic modelling may be useful as much
as parameterization of the ontogeny of enzymatic
systems associated with drug metabolism. In other words,
trying to predict drug disposition in individuals beyond
the range of current observations requires a more mecha-
nistic approach compared with what is currently possible
using compartmental modelling. Demographic covariates
may not be suitable surrogates for describing the matu-
ration process and changes in physiological function
which take place during developmental growth. An
analogy can be made to dose adjustment requirements
in special populations (e.g. renal failure): the dose is
adapted irrespective of any demographic covariate.
Instead, the decision to adjust the dose relies primarily on
organ function rather than on size [34, 35]. Often, in these
cases, information from metabolic probes is used as the
basis for the potential adaptation of the dose [36]. A
similar approach would be desirable in paediatric
research.

In conclusion, model-based approaches should repre-
sent best practice for the analysis and design of paediat-
ric clinical trials. Decisions regarding dosing rationale
should be based on parameter estimates and their distri-
butions, rather than on empirical extrapolations. However,
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we show that despite statistical validation, the use of a
population pharmacokinetic model may not suffice to
predict parameter distribution and drug exposure in a
new population, with clear implications for the selection
of a dosing regimen beyond the observed population.
Current methods for covariate model building do not
provide the means to incorporate variation in covariate-
parameter correlations across populations. Models for
simulation are not necessarily the same as models for
estimation. Bayesian Model Averaging concepts could be
considered as an alternative approach to deal with the
current limitations of paediatric data analysis [37], improv-
ing extrapolation and predictive performance [38, 39].
Dose adjustment in new populations cannot therefore
rely on model predictions only. A more complex bridging
strategy is required, in which the population approach
represents the first step.
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