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Prostaglandin (PG)E2 is a bioactive eicosanoid that regulates many
biologically important processes in part due to its ability to signal
through four distinct G-protein–coupled receptors with differential
signaling activity and unique expression patterns in different cell
types.AlthoughPGE2 hasbeen linkedtomalignancy inmanyorgans, it
is believed to play a beneficial role in the setting of fibrotic lung
disease. This is in part due to the ability of PGE2 to limit many of the
pathobiologic features of lung fibroblasts and myofibroblasts, in-
cluding the ability of PGE2 to limit fibroblast proliferation, migration,
collagen secretion, and, as originally reported in the Journal by us in
2003, the ability to limit transforming growth factor (TGF)-b–induced
myofibroblast differentiation. In the setting of lung fibrosis, PGE2

production and signaling is often diminished. In the last 8 years, sig-
nificant advances have been made to better understand the dysregu-
lation of PGE2 production and signaling in the setting of lung fibrosis.
We also have a clearer picture of how PGE2 inhibits myofibroblast
differentiationandthe receptor signalingpathways that can influence
fibroblast proliferation. This review highlights these recent advances
and offers new insights into the potential ways that PGE2 and its
downstream signals can be regulated for therapeutic benefit in
a disease that has no validated treatment options.
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Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive
interstitial lung disease characterized by alveolar epithelial cell
injury, fibroblast accumulation, and differentiation to myofibro-
blasts (1). The end result is contraction of alveolar architecture
and the relentless deposition of extracellular matrices including
collagen 1, collagen 3, and fibronectin (2, 3). The pathogenesis
of the disease is poorly understood, but studies in patients with
IPF have indicated that this disease is characterized by a loss in
production of prostaglandins, including prostaglandin (PG)E2

(4–6). PGE2 signaling has many inhibitory actions on lung cells
that could potentially suppress fibrogenesis, including the ability
of PGE2 to limit lung myofibroblast differentiation (7). This
observation, which is being highlighted in this issue, was first
reported by us in 2003.

More recent work in animal models and human tissues has
expanded our understanding of the regulation and role of
prostaglandins in fibrotic lung disease. These advances include
the identification of epigenetic changes that explain the in-
hibition of prostaglandin production in fibrotic lung tissue (8, 9)
and studies that have elucidated PGE2 signaling defects in

fibrotic fibroblasts (10–12). We also have a better understanding
of how epithelial–mesenchymal crosstalk is regulated by PGE2

(13–15) and the signaling pathways that allow PGE2 to limit
myofibroblast differentiation and migration (16, 17) and the
circumstances in which PGE2 can promote fibroblast prolifer-
ation to serve a profibrotic role (18–20). This review summa-
rizes the current state of our understanding regarding the
role(s) that PGE2 signaling plays in modulating lung fibrosis.

PULMONARY FIBROSIS: CLINICAL AND
PATHOLOGICAL FEATURES

The term ‘‘pulmonary fibrosis’’ is used clinically to describe se-
veral forms of diffuse interstitial lung diseases classified as idi-
opathic interstitial pneumonias (IIP) with a common hallmark of
fibrosis. Histopathological assessment can further differentiate
usual interstitial pneumonia (UIP) from other forms of IIP (21).
Idiopathic pulmonary fibrosis (IPF), the clinical correlate to his-
tological UIP in the absence of an identifiable cause, is the most
common and most progressive form of IIP (22), while being least
responsive to therapy. Although IPF is considered rare, precise
epidemiological data are lacking primarily due to methodologies
that lack histological confirmation. However, one study examin-
ing narrow criteria by diagnostic coding estimated prevalence at
approximately 14 cases per 100,000, with increasing prevalence
associated with aging (23).

Typical symptoms include progressive breathlessness and
nonproductive cough, with pulmonary function testing classi-
cally demonstrating reduced lung volumes and impaired gas
exchange (21). High-resolution computer tomography typically
shows lower lobe–predominant disease with septal thickening,
traction bronchiectasis, and often the presence of honeycomb-
ing, which represents cystic fibrotic airspaces (24). Such findings
in the proper clinical context are strongly related to the likely
finding of UIP by surgical lung biopsy (24). Histologically, there
is the presence of patchwork fibrosis containing significant
collagen deposition and patchy inflammation in a nonuniform
distribution (25). Securing a histological diagnosis of UIP
requires the identification of ‘‘fibroblastic foci,’’ which are focal
clusters of fibroblasts and myofibroblasts within young connec-
tive tissues thought to represent sites of ongoing lung injury.
The presence of these fibroblastic foci is inversely correlated
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with disease survival and response to therapy (26). Shortened
survival is associated with extent of fibroblastic foci rather than
degree of cellularity or alveolar wall fibrosis, suggesting that
mortality in IPF arises from abnormal fibrobroblast and myofi-
broblast accumulation rather than a predominantly inflamma-
tory process (26).

IPF carries an overall poor prognosis. A histological di-
agnosis of UIP is the most important factor determining survival
in patients with IIP (27). Median survival from time of diagnosis
has been reported as 2.5 to 3.5 years (28), with most patients
dying from disease progression to respiratory insufficiency.
Subsequent studies have revealed that there can be a variable
clinical course, ranging from subclinical and slowly progressive
disease to rapid acute decompensation and death (29, 30). The
search for biomarkers to predict disease progression is ongoing.
Treatment options generally center around immunosuppressive
regimens including prednisone and azathioprine, but there is
no clear clinical benefit for these therapies in most patients and
use of these drugs is being reevaluated in an ongoing NIH-
sponsored clinical trial.

FIBROBLAST/MYOFIBROBLAST FUNCTION IN
PULMONARY FIBROSIS

Fibroblasts are largely responsible for synthesizing the extra-
cellular matrix components seen in fibrotic lesions. The matrix
proteins in pulmonary fibrosis are mostly composed of collagens
type 1 and 3 and fibronectin (3). Many growth and differenti-
ation factors can affect the ability of fibroblasts to proliferate
and produce matrix proteins. The best studied molecule in this
regard is transforming growth factor (TGF)-b. TGF-b added to
purified fibroblasts can have proliferative or differentiative
effects (7, 31, 32). TGF-b induces expression of a-smooth
muscle actin (a-SMA) within fibroblasts. a-SMA expression is
associated with the formation of stress fibers in nonmuscle cells.
This fibroblast with contractile properties is designated as
a myofibroblast (33). Myofibroblasts are thought to be instru-
mental for the lung contraction, alveolar collapse, and matrix
deposition (3, 33, 34) seen in pulmonary fibrosis. As such,
strategies that limit myofibroblast differentiation may be ben-
eficial for the treatment of lung fibrosis. As discussed below,
PGE2 is a potent inhibitor of myofibroblast differentiation (7).

PROSTAGLANDIN BIOSYNTHESIS AND REGULATION

All cells are capable of arachidonic acid (AA) release and its
metabolism to bioactive eicosanoids (35). Free AA is liberated
from the sn2 position of membrane phospholipids via the
actions of phospholipase A2. Once liberated, the free AA can
be metabolized via either of two major pathways (36). The 5-
lipoxygenase pathway gives rise to leukotrienes and is found
primarily in leukocytes (37), although alveolar epithelial cells
can produce low levels of cysteinyl leukotrienes (38). In con-
trast, the cyclooxygenase pathway yields prostanoid products,
including prostaglandins, thromboxane, and prostacyclin
(PGI2). This pathway is active in bone-marrow–derived cells
and in structural cells (36, 39, 40). The initial step in this
pathway involves the conversion of AA to PGH2 via cyclo-
oxygenase (COX)-1 or COX-2 enzymes. Conventional dogma
suggests that the COX-1 enzyme is responsible for constitutive
production of PGH2, whereas the expression of the COX-2
enzyme is inducible and transient via a number of inflammatory
stimuli. However, bronchial and alveolar epithelial cells express
COX-2 constitutively (39, 41, 42). Formation of specific prosta-
noid end-products from PGH2 is mediated by cell-specific distal
prostaglandin synthase enzymes (e.g., PGE synthases), which

are present in constitutive and inducible isoforms (43). The
COX enzymes are the targets for nonsteroidal antiinflammatory
drugs, including aspirin and indomethacin (44). Biological
changes that result in the shunting of AA preferentially to the
lipoxygenase or the cyclooxygenase pathway can have profound
effects on homeostasis and disease.

COX-2 is considered the rate-limiting enzyme for the pro-
duction of prostaglandins, and numerous inflammatory and
injury signals are known to up-regulate COX-2 expression,
including lipopolysaccharide, IL-1b, TGF-b, hepatocyte growth
factor (HGF), and plasmin (8, 13, 45). Transcriptional up-
regulation of COX-2 is mediated via activation of transcription
factor binding to the 59 UTR of the COX-2 gene, which contains
DNA binding sites for NFkB, AP-1, and cAMP response
elements (CREs) (46). In addition, inflammatory and injury
signals regulate COX-2 via regulation of histone acetylation and
chromosome accessibility (8). In contrast, transcriptional silenc-
ing of the COX-2 gene is associated with hypermethylation of
the CpG islands in the 59UTR (47). Because COX-2 expression
must be tightly controlled, additional posttranscriptional and
posttranslational mechanisms have been described that limit
COX-2 activity. One such mechanism is mRNA stability, which
is influenced by the complex array of AU-rich domains within
the 39UTR of COX-2. Various transacting factors can bind to
these elements to regulate stability (reviewed in Ref. 48).
Additional regulatory mechanisms for COX-2 expression in-
volve miRNA inhibition of translation via interactions with the
39UTR of COX-2 (48), differential utilization of polyadenyla-
tion sites (48), proteosomal protein degradation pathways, and
suicide inactivation of COX catalytic activity (reviewed in Ref.
(49). Expression of the distal synthetic enzyme microsomal
PGE2 synthase-1 has also been shown to be regulated via
mRNA stability (50). Many diseases, including chronic inflam-
mation, fever, arthritis, and certain cancers, have been linked to
aberrant expression of COX-2 and enhanced prostanoid syn-
thesis (49, 51, 52). In some cases, these pathologies are linked to
the inhibitory actions of prostaglandins on innate and adaptive
immune function (53–55). In contrast, mounting evidence
(discussed below) suggests that decreased expression of prosta-
glandins relative to leukotrienes is predictive of, and contributes
to, fibrotic lung disease (4, 6, 8, 14, 56, 57).

PROSTAGLANDIN RECEPTORS

There are four E prostanoid (EP) receptors, designated EP1,
EP2, EP3, and EP4. In many cases, the differential effects of
prostaglandins in different cell types and tissues are mediated
through differential activation of 7-transmembrane–spanning EP
receptors (58). The functions of the EP receptors are dictated by
the intracellular signaling machinery coupled to each receptor
(reviewed in Ref. 58). Stimulation of EP2 and EP4 increases
cyclic adenosine monophosphate (cAMP) levels within the re-
ceptor-bearing cell and can signal smooth muscle cell relaxation.
Signaling via EP1 increases intracellular Ca21 and induces
smooth muscle cell contraction. The EP3 receptor decreases
cAMP and inhibits smooth muscle relaxation (58–61). Regarding
lung fibroblasts, the antifibrotic actions of PGE2 have been shown
to be mediated via stimulation of EP2 and EP4, resulting in the
activation of cAMP, and via downstream effects on protein
kinase (PK)A or exchange protein activated by cAMP (7, 11,
62). Inhibition of fibroblast collagen expression involves activa-
tion of PKA (62, 63), whereas inhibition of proliferation requires
exchange protein activated by cAMP (62).

Similar to COX-2, expression of the EP receptors, especially
EP2, is also tightly controlled. EP2 is frequently silenced in
neuroblastoma cell lines, and the DNA methylation pattern in
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a portion of the CpG islands is correlated inversely with EP2
expression (64). Additionally, aberrant methylation of EP2 is
noted more frequently in advanced neuroblastoma cancers (64).
Similarly, a loss of EP2 expression is noted in many non–small
cell lung carcinomas, and expression can be restored after
treatment with a demethylating agent (65). Because PGE2 can
promote tumorigenesis in lung cancer, aberrant methylation,
which limited EP2 expression, was correlated with better
patient outcome. As discussed below, a similar epigenetic
reduction of EP2 expression in patients with lung fibrosis
(where PGE2 signaling is beneficial) can have the opposite
effect and worsen patient outcomes.

PGE2 MEDIATES HOMEOSTASIS IN THE LUNG

Homeostasis within the healthy lung microenvironment is de-
pendent on alveolar epithelial cell (AEC)–mesenchymal cell
crosstalk (2, 66). The evidence for this concept is: (1) in normal
lung sections, foot processes from AECs can be seen extending
through the basement membrane and making contact with the
mesenchymal cells; (2) in vitro, AECs from normal animals
inhibit fibroblast proliferation; and (3) fibrotic injury results in
loss or damage to AECs. The ability of epithelial cells to limit
fibroblast proliferation is critically dependent on the ability of
the AECs to produce prostaglandins (41). The actions of
prostaglandins (specifically PGE2 and PGI2) inhibit fibroblast
function. Specifically, prostaglandins decrease fibroblast chemo-
taxis (67), decrease fibroblast proliferation (11, 62, 63, 68–70),
decrease fibroblast growth factor receptor expression (71),
decrease fibroblast collagen synthesis (63, 72, 73), inhibit
myofibroblast differentiation (7, 16), and increase collagen
degradation (74). The pathways by which PGE2 limits myofi-
broblast differentiation are discussed in more detail below.

Prostaglandins also play important roles in the regulation of
apoptosis within the lung, and the fact that patients with IPF
exhibit increased apoptosis of AECs but diminished apoptosis
of fibroblasts has been termed the ‘‘apoptosis paradox.’’ Recent
studies have demonstrated that reduced expression of COX-2
and PGE2 in fibroblasts from patients with IPF is one factor that
promotes fibroblast survival in the fibrotic lung (14). In normal
human lung fibroblasts, PGE2 increases apoptosis and potenti-
ates apoptotic signals delivered by Fas ligand. The ability of
PGE2 to promote normal fibroblast apoptosis requires signaling
via EP2/EP4 and a reduction in activity of the prosurvival
molecule protein kinase B (Akt) (75). In contrast, fibroblasts
from patients with IPF are resistant to the proapoptotic effects
of PGE2 (75). Figure 1 diagrams the homeostatic and antifi-
brotic actions of PGE2 signaling in lung epithelial cells and
fibroblasts.

MYOFIBROBLAST DIFFERENTIATION AND INHIBITION
BY PGE2

In response to TGF-b, fibroblasts undergo Smad-dependent
signaling and develop characteristic changes known as stress
fibers caused by the reorganization of a-SMA into filamentous
bundles (7, 16, 76, 77). In addition, TGF-b signaling induces the
reorganization of the actin cytoskeleton and the formation of
adhesive signaling complexes known as focal adhesions. Focal
adhesions are populated by focal adhesion kinase, F-actin,
paxillin, vinculin, and avb3 integrins (78, 79). The formation of
these adhesive contacts is critical for myofibroblast differentia-
tion. When cells are treated with TGF-b in suspension culture, no
myofibroblast differentiation occurs (77). The formation of focal
adhesions involves activation of one or more members of the
small Ras GTPase family (Rho A, Rac, or CDC42) (80, 81).

Our original study published in 2003 demonstrated that
PGE2 signaling led to increased cAMP via the EP2 receptor,
which, in turn, could inhibit TGF-b–induced myofibroblast
differentiation and limit collagen secretion (7). Our study
showed that PGE2 did not function by interfering with TGF-
b–induced Smad phosphorylation or translocation to the nu-
cleus. Rather, PGE2 altered cytoskeletal architecture and dis-
rupted the formation of focal adhesions (16) (Figure 2).
Additionally, PGE2 signaling through EP2 activates phospha-
tase and tensin homolog deleted on chromosome 10 (PTEN),
and this results in diminished fibroblast proliferation (82). TGF-
b is only able to induce myofibroblast differentiation in the
absence of PTEN (76); thus, PGE2 activation of PTEN is
another mechanism by which this prostanoid limits myofibro-
blast differentiation. Strategies that amplify the inhibitory
cAMP signals generated by PGE2 are also beneficial in limiting
myofibroblast differentiation. Phosphodiesterase 4 (PDE4) in-
hibitors can prevent the breakdown of cAMP, and, as such,
potentiate the effects of PGE2 in limiting myofibroblast differ-
entiation (83, 84) and can limit collagen gel contraction and
chemotaxis (85). More recently, knockdown of PDE4B and
PDE4D subtypes were shown to limit TGF-b–induced myofi-
broblast differentiation on their own (86). In summary, these
data suggest that PGE2 signaling should be beneficial in limiting
fibrosis; thus, investigators were eager to understand why pro-
duction of PGE2 was diminished in IPF lungs (4–6). Further-
more, the observation that fibroblasts from fibrotic murine and
human lungs were often refractory to the inhibitory effects of
PGE2 (10–12) stimulated additional studies to understand this
disease-related heterogeneity.

EICOSANOID DERRANGMENTS IN IPF

Derangement of eicosanoid synthesis can be seen in human and
animal lung fibrosis studies. Leukotriene levels have been
reported to be greater in bronchoalveolar lavage fluid and lung
homogenates from patients with IPF than from healthy volun-
teers (87, 88). Alveolar macrophages are the main source of
leukotriene synthesis and are responsible for the increased
production of leukotriene C4 and leukotriene B4 noted in IPF

Figure 1. The homeostatic signaling of prostaglandin (PG)E2 in

alveolar epithelial cells (AECs) and fibroblasts. Diagram showing that

in the normal lung fibroblast, PGE2 functions to limit proliferation,
collagen secretion, and myofibroblast differentiation. With respect to

apoptosis, PGE2 can induce apoptosis in fibroblasts while protecting

lung AECs.
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lung homogenates (57). Animal models are also characterized
by increased leukotriene production after lung injury. Mice
genetically deficient in leukotriene production (5-lipoxygenase
knock-out mice) are protected from bleomycin-induced pulmo-
nary fibrosis (89). Because cysteinyl leukotrienes are known to
induce proliferation and collagen synthesis in mesenchymal
cells (68, 90, 91), increases in metabolism of AA via the
5-lipoxygenase pathway can enhance fibrogenesis.

Conversely, reduced PGE2 levels have been reported in bron-
choalveolar lavage fluid and alveolar macrophage–conditioned
media from patients with IPF (4, 56). These observations are
consistent with findings of reduced COX-2 expression in patients
with IPF (8, 14, 92). Fibroblasts from patients with IPF are unable
to up-regulate the COX-2 enzyme in response to stimuli and as
such are deficient in PGE2 production (5, 6, 93). Reduced PGE2

synthesis has also been reported for fibroblasts isolated from rat
lungs after bleomycin-induced pulmonary fibrosis (94). Animal
models characterized by reduced PGE2 synthesis in the lung via
administration of indomethacin (95) or the gene-deletion of
COX-2 (96) manifest worse bleomycin-induced fibrosis. Thus,
in the injured lung, the functional loss of prostaglandins has
severe consequences for fibroproliferation.

MECHANISMS FOR PGE2 DEFICIENCY IN LUNG FIBROSIS

The mechanisms responsible for PGE2 loss in the fibrotic lung
are varied and include effects of soluble mediators and epige-

netics. Profibrotic injury to epithelial cells often results in the
release of chemokines, including CCL2 (97). In the presence of
CCL2, PGE2 production by lung AECs is diminished, and
fibroproliferation increases (15). This is one mechanism that
explains why mice defective in CCR2 (the receptor for CCL2)
are protected from fibrotic injury (97, 98). Another well known
consequence of fibrotic injury is the leakage of plasma from
damaged vasculature and the activation of the coagulation
cascade. However, in the fibrotic lung, the extravascular fibrin
is not effectively cleared, and epithelial repair is blocked due to
a marked increase in the expression of plasminogen activation
inhibitor (PAI)-1 relative to urokinase-type plasminogen acti-
vator (uPA) (99–101). PAI-1 blocks uPA and thus prevents the
generation of plasmin and inhibits the proteolytic activation and
release of the epithelial repair molecule HGF (102, 103). We
recently showed that plasmin up-regulates COX-2 and stimu-
lates PGE2 production in AECs, fibroblasts, and fibrocytes via
HGF (13). Thus, one consequence of the increased PAI-1 levels
noted in fibrotic lungs is diminished production of PGE2.
Because PGE2 has also been shown to promote HGF activation
(104), this positive antifibrotic feedback loop is likely missing in
IPF.

More recently, epigenetic changes have been identified that
contribute to diminished expression of COX-2 and thus PGE2 in
fibrotic lungs. Using fibroblasts isolated from normal or fibrotic
lungs, Coward and colleagues demonstrated that COX-2 mRNA
levels were reduced in fibrotic fibroblasts, but mRNA degrada-

Figure 2. Transforming growth factor (TGF)-b1 induces

the formation of focal adhesions, but cotreatment with

PGE2 prevents focal adhesion formation. IMR90 lung
fibroblast cells were serum starved before treatment

with serum-free media alone (control) or TGF-b1 alone

(2 ng/ml) or in combination with 10 nM PGE2 for

24 hours. Cells were fixed and stained with FITC-
phalloidin (green) to visualize F-actin, Cy3–anti-paxillin

(red), and DAPI (blue) for the nuclei and analyzed by

laser-scanning confocal microscopy. Areas of coimmu-
nofluorescence with FITC and paxillin are focal adhe-

sions (orange/yellow). The colocalization of F-actin and

paxillin was confirmed by Z-stack analysis.

Figure 3. Alternations in PGE2 production and signaling

that have been noted in fibrotic fibroblasts. Schematic

showing the epigenetic and inflammatory signals that
contribute to the dysregulation of PGE2 production and

signaling in the fibrotic lung. Green boxes represent

changes due to epigenetic alterations. Yellow boxes denote
changes due to inflammatory signals.
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tion rates were similar (8). Further investigation demonstrated
that although some fibroblasts from IPF lungs contained appro-
priate levels of transcription factors that drive COX-2 expression
(including NFkB p65, CEBPb, and CREB-1), these factors were
prevented from binding to the COX-2 promoter in the native
chromatin configuration. This inhibition of transcription factor
binding was correlated with defective histone H3 and H4
acetylation due to reduced recruitment of histone acetyltrans-
ferases and increased recruitment of histone deactylease con-
taining co-repressor complexes (8). In other fibrotic fibroblasts,
the phosphorylation of CREB (a downstream effector of cAMP
activation of PKA) was shown to be defective (105). Taken
together, these epigenetic changes noted in fibroblasts from
patients with IPF prevent COX-2 gene transcription in IPF and
contribute to diminished production of PGE2. Figure 3 highlights
alterations in the PGE2 production and signaling pathways that
have been noted during lung fibrosis.

MECHANISMS FOR DIMINISHED PGE2 EFFECTS
IN LUNG FIBROSIS

Not only is PGE2 production altered in the fibrotic lung, but
PGE2 signaling can also be impaired. Transcriptional or epige-
netic decreases in EP2 or EP4 expression can limit the in-
hibitory signaling of PGE2 in fibroblasts. We have previously
shown that EP2 levels are diminished in fibroblasts isolated
from mice on Day 14 after bleomycin or fluorescein isothiocya-
nate treatment (11). This loss of EP2 expression resulted in
blunted cAMP responses and a reduced ability of PGE2 to
inhibit proliferation and collagen secretion in these cells.
Fibroblasts from patients with IPF have also been shown to
be refractory to PGE2 signaling and identified mechanisms
include decreased expression of EP2 as well as diminished
expression of PKA (a downstream target of cAMP and EP2
signaling) (10). More recently, hypermethylation of the PGE
receptor 2 gene (PTGER2) promoter has been identified as
a mechanism for reduced EP2 expression in fibroblasts from
patients with IPF and fibrotic mice (9). An increase in Akt
signal transduction is believed to be one mechanism that drives
the hypermethylation status of the PTGER2 promoter (9).
Additionally, action of the enzyme PTEN is known to up-
regulate EP2 expression (12) and IPF fibroblasts; particularly
those in the fibrotic foci are known to be PTEN deficient (76).
Each of these mechanisms would result in diminished signaling
via the inhibitory EP2 receptor, and, as such, these findings
explain in part why fibroblasts from patients with IPF are
largely refractory to PGE2 inhibitory signaling. Understanding
the differences that exist in the cell types that comprise the
normal and fibrotic lung is important for the design of future
therapeutics.

PROLIFERATIVE EFFECTS OF PGE2 SIGNALING
VIA EP1 AND EP3

Although we have detailed the antifibrotic actions of PGE2

signaling via EP2 and EP4 and noted that lung fibrosis is often
associated with reduced production of PGE2 or defective EP2
signaling, in some instances, PGE2 can promote fibroblast
proliferation. When this occurs, it is via EP1 or EP3 signaling.
Studies looking at the fibroproliferative response after acute
lung injury (ALI) identified a dose-dependent effect of PGE2

on fibroblast proliferation. At midrange concentrations (1029 to
1027 M), PGE2 enhanced proliferation of lung fibroblasts via
EP3 stimulation, whereas at extremely low (, 10210 M) or high
concentrations (. 1026 M), PGE2 suppressed lung fibroblast
proliferation via EP2 stimulation (20). This study found that the

range of PGE2 concentrations noted in edema fluid from
patients with ALI were in the concentration range to stimulate
fibroblast proliferation, thus implicating EP3 stimulation in the
fibroproliferative consequences of ALI (20). EP1 stimulation
has also been reported to promote fibroblast calcium mobiliza-
tion and increased proliferation of NIH 3T3 fibroblasts (19).
Additionally, in recent studies using neonatal rat ventricular
fibroblasts that expressed all four EP receptor subtypes, PGE2

stimulation increased the number of cells in S phase and
increased expression of cyclin D3. These same effects were
mimicked with the EP1/EP3 agonist sulprostone (18) and
implicate EP1/EP3 stimulation in cardiac fibrosis. Thus, PGE2

is capable of inhibiting fibroproliferation via EP2/EP4 or pro-
moting proliferation via EP1/EP3 stimulation depending on the
particular context of the fibroblasts.

CONCLUSIONS

Homeostatic balance within the lung requires appropriate
crosstalk between alveolar epithelial cells, fibroblasts, and infla-
mmatory cells (see Figure 1). Production of PGE2 by alveolar
epithelial cells is believed to be an important factor for limiting
fibroproliferation and promoting appropriate alveolar epithelial
repair. In the normal lung, PGE2 signaling via EP2 receptor–
mediated elevations in cAMP can induce fibroblast apoptosis
and, as we showed, limit myofibroblast transformation, prolife-
ration, and collagen secretion. However, in the fibrotic lung,
various perturbations alter the homeostatic balance. PGE2 pro-
duction is limited via inflammatory mediators and epigenetic
silencing of the COX-2 promoter. Furthermore, fibrotic fibro-
blasts lose EP2 receptor expression and may lose expression of
the downstream effectors PKA and phospho-CREB. It is also
interesting that fibrosis is a male-predominant disease, and at
least one study has suggested that male gender is associated
with reduced EP2 and EP4 levels and reduced PGE2 production
in splenic macrophages after trauma (106). If these gender
differences are true in response to lung injury as well, it may in
part explain the gender differences that are noted in IPF.

FUTURE DIRECTIONS AND CLINICAL IMPLICATIONS

It is clear that PGE2 production plays an important role in
determining homeostasis in the normal lung. As such, it is
tempting to suggest that strategies aimed at delivering PGE2 to
the lung might be beneficial in treating patients with IPF. How-
ever, there are several caveats to this type of therapy. First, the
therapy would only be effective in patients in whom EP2
signaling was intact. Determining this may require surgical or
transbronchial biopsies, and PGE2 responsiveness in isolated
fibroblasts must be determined on an individual patient basis.
Second, the half-life of PGE2 is quite short, so new innovations
would be needed to deliver this lipid as a therapeutic. One
possibility includes creating derivatives with similar EP2 bind-
ing and signaling capacities. Alternatively, EP2 agonists may be
more stable. Another important aspect to consider is that PGE2

has differential effects depending on the cell type and the EP
receptor profile it encounters. Thus, intravenous administration
may not be effective due to deleterious effects on the vascular
system. It is also possible that systemic administration of PGE2

could promote diseases that are often associated with patho-
logical overexpression of PGE2, such as colon cancer, persistent
inflammation, and arthritis (49, 51, 52). This means that in-
halation therapy may be the best option for patients with lung
fibrosis, but at present nebulization of PGE2 or EP2 agonists is
not practical. Alternative therapeutic strategies could be to
prevent the breakdown of cAMP to maximize its inhibitory
signaling capacity in fibrotic lungs. This may be achieved by
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administration of PDE4 inhibitors. Again, this therapy would
only be effective in patients in whom modest PGE2 production
and cAMP generation was intact in the lung, and this type of
therapy may predispose to other diseases and malignancy.
Methylation of the promoters for COX-2 and EP2 has been
demonstrated to limit PGE2 expression in some patients. Thus,
it is possible that inhibitors of methyl transferases may be
effective in reversing the methylation status of these genes and
increasing PGE2 production and signaling. The potential down
sides to this therapy involve the off-target effects that these
agents could have on other genes. Global demethylation may
not be beneficial.

It may be possible to target signals downstream of EP2, such as
cAMP elevation or PKA activation. Particularly if these thera-
pies could be delivered in a cell-specific manner, they may be
effective in inhibiting myofibroblast differentiation and activa-
tion even in patients with EP2 receptor defects. This targeted
therapy may also avoid the potential proliferative effects of PGE2

binding to EP1 or EP3 receptors in some organs. Finally, it is
possible that cell-directed therapies could be evolved to treat
patients with IPF. Fibrotic regions of the lung may be quite
difficult to treat by inhalational therapies due to limited airflow in
these regions. It is possible that cells such as mesenchymal stem
cells or potentially fibrocytes could be engineered to deliver
abundant PGE2, EP2 agonists, or adenyl cyclase stimulators. In
this way, the therapeutic cell type may be able to use chemokine
receptors and inflammatory signals to colocalize to areas of
fibrosis and as such may offer a more targeted delivery of an
antifibrotic therapy.
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