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Abstract

Genome-wide association studies (GWAS) can identify common alleles that contribute to complex
disease susceptibility. Despite the large number of SNPs assessed in each study, the effects of
most common SNPs must be evaluated indirectly using either genotyped markers or haplotypes
thereof as proxies. We have previously implemented a computationally efficient Markov Chain
framework for genotype imputation and haplotyping in the freely available MaCH software
package. The approach describes sampled chromosomes as mosaics of each other and uses
available genotype and shotgun sequence data to estimate unobserved genotypes and haplotypes,
together with useful measures of the quality of these estimates. Our approach is already widely
used to facilitate comparison of results across studies as well as meta-analyses of GWAS. Here,
we use simulations and experimental genotypes to evaluate its accuracy and utility, considering
choices of genotyping panels, reference panel configurations, and designs where genotyping is
replaced with shotgun sequencing. Importantly, we show that genotype imputation not only
facilitates cross study analyses but also increases power of genetic association studies. We show
that genotype imputation of common variants using HapMap haplotypes as a reference is very
accurate using either genome-wide SNP data or smaller amounts of data typical in fine-mapping
studies. Furthermore, we show the approach is applicable in a variety of populations. Finally, we
illustrate how association analyses of unobserved variants will benefit from ongoing advances
such as larger HapMap reference panels and whole genome shotgun sequencing technologies.

Keywords
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INTRODUCTION

Most ongoing genome-wide association studies (GWAS) rely on a commercial SNP
genotyping panel that directly assays only a small fraction of SNPs in the human genome
[Carlson et al., 2003; The International HapMap Consortium 2005]. In these scans, the
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majority of SNPs in the genome must be evaluated indirectly using one or more of the
genotyped SNPs as proxies [Barrett and Cardon, 2006; Pe’er et al., 2006]. Despite the ability
of individual genome-wide association scans to identify common alleles that make large
contributions to disease risk and a subset of the loci with smaller effect [Hirschhorn and
Daly, 2005], many alleles that contribute to complex disease can only be identified through
the meta-analysis of multiple genome-wide scans [for specific examples, see Lettre et al.,
2008; Sanna et al., 2008; Willer et al., 2008, 2009]. Although it is possible to assign SNPs
genotyped in each study as proxies for SNPs genotyped in the other studies [Carlson et al.,
2004; de Bakker et al., 2005; Lin et al., 2004; Nicolae, 2006; Zaitlen et al., 2007], meta-
analyses of GWAS conducted in this manner would be cumbersome because of the limited
overlap between the different commercial panels and because different choices of proxies
for a particular SNP might lead to somewhat different conclusions.

GENOTYPE IMPUTATION

A much more attractive approach for cross study analyses is to combine genotypes
generated by the International HapMap Consortium, [The International HapMap
Consortium, 2005] with genotypes from individual studies, and then use a haplotyping
algorithm that can handle genome scale data to impute genotypes at untyped markers in each
study [Scheet and Stephens, 2006]. This strategy results in a situation where all studies are
“genotyped” at all the markers examined by the HapMap consortium (albeit some markers
are genotyped using conventional means and others are genotyped in silico [Burdick et al.,
2006]). The approach relies on the intuition that even two apparently “unrelated” individuals
can share short stretches of haplotype inherited from distant common ancestors. Once one of
these stretches is identified using genotypes for a few SNPs, alleles for intervening SNPs
that are measured in one of the individuals, but not the other, can be imputed. Provided
shared haplotype stretches are identified correctly, imputed genotypes will be accurate
unless they have been disrupted by gene conversion or mutation events.

INITIAL EVALUATION OF IMPUTED GENOTYPES AND HAPLOTYPES

Here, we systematically evaluate the genotype imputation approach outlined in the
paragraph above using our Markov Chain Haplotyping algorithm (MaCH 1.0; see Appendix
for implementation details). To estimate haplotypes, our approach starts by randomly
generating a pair of haplotypes that is compatible with observed genotypes for each sampled
individual. These initial haplotype estimates are then refined through a series of iterations. In
each iteration, a new pair of haplotypes is sampled for each individual in turn using a
Hidden Markov Model (HMM) that describes the haplotype pair as an imperfect mosaic of
the other haplotypes. Model parameters that characterize the probability of change in the
mosaic pattern between every pair of consecutive markers and the probability of observing
an imperfection in the mosaic at each specific point are also updated. After many iterations
(typically 20-100), a consensus haplotype can be constructed by merging the haplotypes
sampled in each round.

HAPLOTYPING

Our approach was inspired by the Markov models commonly used for pedigree analysis [for
examples, see Abecasis et al., 2002; Kruglyak et al., 1996; Lander and Green, 1987] and
shares several features with other HMMs used to describe sampled haplotypes as a mosaic
of a set of reference haplotypes [Daly et al., 2001; Li and Stephens, 2003; Mott et al., 2000;
Stephens and Scheet, 2005a]. In order to evaluate its performance, we simulated two sets of
100 1 Mb regions that mimic the degree of linkage disequilibrium (LD) in the HapMap CEU
and YRI samples [Schaffner et al., 2005]. In each region, we simulated genotypes for ~200
markers, ascertained to mimic HapMap | allele frequency patterns [Marchini et al., 2006], in
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90 individuals with 2% of the genotypes missing at random. We then used our method to
reconstruct individual haplotypes and tallied three measures of haplotyping quality
[Marchini et al., 2006]: (1) the number of incorrectly imputed missing genotypes, (2) among
heterozygous sites, the number of consecutive sites that are phased incorrectly with respect
to each other (this is the number of “flips” required to transform estimated haplotypes into
the true haplotypes, after masking incorrectly imputed sites), and (3) the number of perfectly
inferred haplotypes. The three measures were averaged over all 100 regions and the results
are summarized in Table I. For comparison, the table also includes results for PHASE
[Stephens and Scheet, 2005b; Stephens et al., 2001] and fastPHASE [Scheet and Stephens,
2006], two state of the art haplotyping algorithms [Marchini et al., 2006], and for BEAGLE
[Browning, 2006] and PL-EM [Qin et al., 2002], two alternative haplotyping algorithms that
are very computationally efficient. Table I clearly shows that our method is competitive in
all three measures: our method results in slightly fewer incorrectly imputed genotypes,
requires slightly fewer flips to transform imputed haplotypes into the true haplotypes, and
produces slightly more correctly inferred haplotypes over the entire 1 Mb stretch than
PHASE, which was the second best method. Furthermore, note that estimates of haplotypes
and missing genotypes obtained in 5-20 min using our method are comparable in quality to
those produced by PHASE runs averaging ~1 day.

GENOTYPE IMPUTATION FOR UNTYPED MARKERS

Encouraged by these initial results, we proceeded to apply our method to impute genotypes
for untyped markers in the Finland United States Investigation of NIDDM genetics
(FUSION) GWAS [Scott et al., 2007]. Since a previous analysis suggested LD patterns in
the HapMap CEU and in FUSION are similar [Willer et al., 2006], we used genotypes for
290,690 autosomal markers with allele frequency >5% in the Illumina 317K SNP chip and
haplotypes for 2.5M polymorphic markers in the phased HapMap CEU chromosomes as
input. After running the haplotyping procedure described above, we estimated the most
likely genotype at each position (taking a majority vote across all iterations) and the
expected number of copies of the minor allele at each position (a fractional value between 0
and 2) for each individual. We obtained similar results running the haplotyping procedure
for 50-100 iterations or using only a smaller number of iterations (10-20) to estimate model
parameters and then calculating maximum likelihood estimates for the missing genotypes
and allele counts. Different chromosomes were analyzed in parallel and, overall, imputing
genotypes for 2,335 unrelated individuals took <2 days for each of the largest chromosomes
on a 2006 vintage 2.40GHz Pentium Xeon processor. In total, we imputed genotypes for
2,266,562 SNPs per individual. On average, our method used stretches of ~150 kb from the
HapMap CEU panel to reconstruct haplotypes for individuals in the FUSION sample.

IMPUTATION IN THE FUSION GENOMEWIDE ASSOCIATION STUDY

To evaluate the quality of imputed genotypes, we contrasted our estimates of the most likely
genotypes and the expected number of copies of the minor allele with actual genotype data
for three sets of markers: 521 SNP markers in a region of chromosome 14 previously
examined to fine-map a candidate linkage region [Willer et al., 2006], 1,234 SNP markers
selected to augment coverage of the Illumina 317K panel in regions surrounding 222
candidate genes [Gaulton et al., 2008] and 12,702 markers with MAF <5% not included in
the set of 290,690 markers used for imputation. We expected the last two panels of markers
to be harder to impute, because they represent SNPs that are not well tagged by the Illumina
317K SNP chip or that have lower MAF. We observed that 98.60% of imputed alleles
matched actual genotyped alleles in the fine-mapping panel, 96.24% in the candidate gene
panel, and 98.73% in the low MAF SNP panel. Furthermore, the average r2 between
imputed genotypes and actual genotypes was 90.4, 79.1, and 74.0% in the three SNP panels,
respectively. This represents an improvement of 14-39% compared to the best available
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single marker tags, which provided an average r2 of 76.5, 52.8, and 35.5% in the three SNP
panels, respectively.

MEASURES OF IMPUTATION QUALITY

Our Markov Chain produces three estimates of imputation quality and these can be used to
focus analyses on subsets of high-quality genotypes. First, it produces a quality score that
estimates the accuracy of each imputed genotype and is simply the proportion of iterations
where the final imputed genotype (by taking a majority vote across all iterations) was
selected. Second, it produces an overall measure of the accuracy of imputation for each
marker, which is the genotype quality score averaged across all individuals. Finally, by
comparing the distribution of sampled genotypes in each iteration with the estimated allele
counts that result from averaging over all iterations, it produces an estimate of the r2
between imputed and true genotypes (see Methods for more details). Quality measures for
individual genotypes were good predictors of imputation accuracy (Supplementary Figure 1,
Right Panel) and show that most imputed genotypes are called with a high degree of
confidence (Supplementary Figure 1, Left Panel). For example, as measured by their quality
scores, the top 95% of genotypes had average quality scores of 98.9% and actually matched
experimental genotypes 98.6% of the time. Most of the errors affect a single allele so that,
when measured on a per allele basis, concordance increases to 99.3%.

To avoid preferential removal of rare genotypes or alleles at each marker, we recommend
using the per marker quality scores to select a subset of imputed SNPs for analysis, instead
of the per genotype quality scores. Overall, we saw a correlation of 0.77 between the
estimated and actual accuracy of imputed genotypes for each marker. We also saw a
correlation of 0.84 between the r2 estimated by our method and the actual r2 that resulted
from comparing experimentally derived allele counts with their imputed estimates. Figure 1
shows the ROC curve [Pepe, 2003] for the two quality measures, showing that the estimated
r2 measure is a more effective way to identify poorly imputed markers. In the FUSION
GWAS scan [Scott et al., 2007], we used an r? threshold of 0.30 to decide which markers
were well imputed and should be included in further analyses, and which were not. At this
threshold, we expect to remove 70% of poorly imputed markers (those where r2 with
experimental genotypes is <20%) but only 0.50% of better imputed markers (those where r?
with experimental genotypes is >50%).

IMPUTATION OF STRONGLY ASSOCIATED SNPS

The results summarized so far compare a variety of imputed genotypes with experimentally
derived counterparts. However, a more interesting comparison focuses on imputed
genotypes that appear to show strong evidence for association, as those might motivate
further downstream experiments. To evaluate the accuracy of imputed genotypes for these
“strongly associated SNPs,” we compared imputed and experimental genotypes in regions
that were only selected for follow-up genotyping after imputation (for example, because
imputed genotypes resulted in strong evidence for association but nearby genotyped markers
did not). Table Il summarizes the comparison of allele frequencies, association test statistics,
and individual genotype calls between imputed genotypes and actual genotypes later
determined by genotyping. Overall, it is clear that even among these strongly associated
SNPs imputation provided accurate estimates of the true P-values. The largest observed
discrepancies were for rs17384005, rs11646114, and rs4812831, which were also the three
markers for which our imputation approach estimated lower r2 with actual genotypes.
Imputation is particularly useful because it allows evidence for association at SNPs with no
reliable proxies to be evaluated more accurately. For instance, after imputation, average r?
increased from 0.22 to 0.66 in the set of SNPs whose best genotyped proxy had r2<0.30 and
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from 0.33 to 0.75 in the set of SNPs whose best genotyped proxy had r2<0.5 [for specific
examples of disease susceptibility loci that would be missed without imputation, see Li et
al., 2009b].

USING IMPUTATION TO ESTIMATE PAIRWISE DISEQUILIBRIUM

Remarkably, we observed that imputed genotypes could also be used to obtain very accurate
estimates of LD between pairs of untyped markers, or of LD between a genotyped marker
and an untyped marker. As shown in Figure 2, estimates of LD between two SNPs obtained
using imputed data are much closer to the results obtained by actually genotyping the two
SNPs than estimates obtained by looking up the two markers in the HapMap CEU database
(Supplementary Figure 2 shows a similar comparison for D’ estimates). Even with some
imprecision in estimates of individual genotypes, the increased sample size compensates to
reduce variation in the estimated LD measures.

COMPARISON OF DIFFERENT GENOTYPING PLATFORMS

Our experience with the FUSION GWAS, summarized above, shows that imputation can be
an effective way to estimate unobserved genotypes and/or allele counts. These genotypes
can then be used in a variety of downstream analyses, including logistic regression analyses
for discrete traits and linear regression analyses for quantitative traits, and to facilitate meta-
analysis of studies based on different platforms. A key issue when considering imputation-
based approaches is whether similarly accurate estimates of unobserved data points can be
obtained with different genotyping panels or in different populations [Clark and Li, 2007],
and to evaluate this we conducted two additional experiments.

In the first experiment, we used genotype data generated by the International HapMap
Consortium. We considered each of the HapMap samples in turn and masked available
genotypes so as to mimic an experiment using one of several commercially available chips.
For example, to evaluate the Affymetrix 500K SNP chip, we marked genotypes for all
markers that are not on the chip as missing for the individual being considered. We then
used haplotypes for the remaining individuals on the same HapMap analysis panel (either
YRI, CEU, or JPT+CHB) to impute the missing genotypes. The results are summarized in
Table 111 and clearly show that a large number of SNPs can be imputed very accurately
using any of the commercially available panels (e.g. with r2>0.80 to experimental
genotypes) and that, compared to relying on single marker tagging, imputation results in
improved coverage of the genome.

Depending on the commercial panel and population being investigated, coverage of
HapMap SNPs (proportion of SNPs with r2>0.80) increased by 10-30% for low MAF
alleles (MAF<5%) and by 10-20% for more common alleles (MAF>5%). In agreement with
this result, the average r2 between each untyped SNP and imputed genotypes was up to 40%
higher on average when using imputed genotypes than when using the best available single
marker proxy. Imputation remained valuable even for panels with ~1 million directly
genotyped SNPs. In practice, the results shown in Table 111 are likely to represent an upper
bound on the performance of our method in real settings, because additional errors will
result from discrepancies in genotyping protocols between individual laboratories and the
HapMap and from differences in LD patterns between the HapMap and the samples being
studied. Nevertheless, they suggest our method is likely to be helpful for a variety of
currently available commercial SNP panels.
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IMPUTATION IN DIVERSE POPULATIONS

In a second experiment, we evaluated the performance of our method in 927 samples from
52 populations in the Human Genome Diversity Project (HGDP). In a previous evaluation of
tag SNP portability, these 927 samples were genotyped for 1,864 SNPs in 32 autosomal
regions (average minor allele frequency 0.15-0.24, depending on population) [Conrad et al.,
2006]. The regions were selected to represent regions of high and low LD across the
genome. Each region spanned ~330 kb, including a central “core” region of ~90 kb, where
~60 SNPs were attempted, and two ~120 kb flanking regions on either side, where ~12
SNPs were attempted. To evaluate the performance of genotype imputation across these
diverse populations, we selected a thinned marker set including 872 SNPs spaced ~10 kb
apart across all 32 regions. We then used these SNPs to impute genotypes for the remaining
992 SNPs and evaluated our approach.

Figure 3 shows the proportion of incorrectly imputed alleles in each of the populations.
Results are presented using a single HapMap analysis panel as a reference (either the CEU,
YRI, or CHB+JPT) or using all HapMap samples as a larger reference panel. For each of the
populations, the reference panel that resulted in the smallest overall error rate is highlighted.
Overall, African samples were the most difficult to impute, with error rates ranging between
5.13% for the Yoruba and 11.86% for the San when the HapMap YRI panel was used as a
reference. In other parts of the world, we generally observed that the HapMap CEU
provided a good reference panel for European populations and that the HapMap CHB+JPT
provided a good reference panel for East Asian populations, resulting in error rates of <3.34
and <2.89%, respectively. Outside Europe and East Asia, when imputation was applied to
populations from the Middle East, Central and South Asia, the Americas or Oceania, it was
generally better to use the combined HapMap sample as a reference than to use any single
HapMap analysis panel as a reference. It is interesting to note that, in all cases, combining
the three HapMap panels into a single reference set was either the best option or the second
best option. Furthermore, in situations where this combined reference panel reduced
imputation accuracy, it resulted in an average increase of only 0.15% in error rates. Our
results are consistent with those of Huang et al. [Huang et al., 2009] who showed, in a
smaller subset of HGDP populations and a different set of genotyped SNPs, that combined
reference panels could outperform panels that included only one population. The figure also
illustrates that, when a large number of individuals are genotyped in study samples, it may
be possible to bypass the HapMap reference panel altogether. In the last panel, rather than
using the HapMap genotypes to impute missing data, we used a combined dataset including
all other HGDP populations.

Figure 4 focuses on the estimated r2 between imputed and observed allele counts. In each
stripe, accuracy of imputation is assessed using a different reference panel. Superimposed in
pink is the coverage that would be provided by single marker tagging approaches. Broadly,
it is clear that imputation using an appropriate reference panel will improve coverage. Using
an inappropriate reference panel (for example using the HapMap CEU to impute genotypes
for one of the African populations), can result in imputed genotypes and allele counts that
are not as strongly correlated with the true genotypes as the best available single marker tag
but, even then, the loss appears to be small. Importantly—in all cases—combining the three
HapMap panels resulted in substantial improvements in coverage over single marker tagging
—suggesting that this might be a cautious approach when the choice of reference panel is
unclear. Combining the three HapMap panels is also a good choice for genotype imputation
in admixed populations [Mathias et al., 2010] where, depending on the ancestry of each
stretch of the genome, the best matching haplotype will likely originate from a different
HapMap reference panel. Our conclusion that the combined panel is a sensible reference for
all populations facilitates practical decision making on the choice of reference panel. The
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conclusion is also supported by Huang et al. [Huang et al., 2009]. Although their aim was to
find an optimal population-specific reference panel for each HGDP sample, their Figure 6
shows that a combined panel, including all HapMap haplotypes is the best compromise
choice, in the sense that it performs almost optimally in each of the 39 HGDP populations
examined. In the future, we expect that imputation methods that weigh the different
reference panels could further improve imputation quality.

IMPACT OF IMPUTATION ON POWER OF ASSOCIATION STUDIES

Our evaluation of imputed genotypes in the FUSION, HapMap, and HGDP samples clearly
shows that imputation can be very accurate in a variety of populations. In this way, we
believe it will be an important tool for combining results across studies that rely on different
marker panels. To investigate whether using imputed genotypes might also improve power
in individual studies, we carried out a simulation experiment. As previously described
[Schaffner et al., 2005], we simulated 10,000 chromosomes for a series of 1 Mb regions.
Within each region, simulated LD patterns mimicked the HapMap CEU or YRI [Schaffner
et al., 2005]. We then used a subset of 120 simulated chromosomes to generate a region
specific “HapMap.” As described in the methods, we then picked the minor allele for a
randomly selected polymorphic site in each region as the “disease susceptibility allele” and
simulated a set of 500 case and 500 control individuals using the remaining chromosomes.
The susceptibility allele varied in frequency between 2.5 and 50%, with larger simulated
effect sizes assigned to rarer alleles to ensure comparable power in a hypothetical fully
genotyped sample. We also simulated 2,000 datasets where the disease allele had no effect
to calibrate region-wide type | error rates for each approach.

To analyze each region, we thinned SNPs in the simulated HapMap to match the density and
allele frequency spectrum of the Phase 1l HapMap [The International HapMap Consortium,
2007]. Using the thinned data, we selected a panel of 100 tag SNPs for each region that
included the 90 tag SNPs with the largest number of proxies and 10 additional SNPs
selected at random among the remaining tags. This approach resulted in panels that captured
~78% of the common variants (MAF>5%) in the simulated CEU HapMap, similar to the
real life performance of the lllumina 317K SNP genotyping chip. Finally, we analyzed each
of the simulated datasets using the selected marker panel and one of three analysis
strategies: (a) single marker chi-squared association tests, (b) single and multi-marker
association tests [Pe’er et al., 2006] as suggested by the PLINK [Purcell et al., 2007]
program based on the simulated HapMap, or (c) tests using imputed allele counts for all the
markers in the simulated HapMap. Results are summarized in Table IV. The first row in the
table shows the significance thresholds used for each analysis (since approaches (b) and (c)
both increase the total number of tests, note that the P-value threshold increases slightly
when multi-marker tests are used and increases further when imputation is used).
Subsequent rows summarize power for markers of different allele frequencies. In
populations with strong LD, it is clear that for common susceptibility alleles the single
marker tests provide high power and that imputation or multi-marker analyses provide only
small gains in power. However, for rarer alleles (such as those with frequencies <5%),
imputation can provide dramatic increases in power. For instance, power increased from
24.4 to 56.2% when the disease allele frequency was 2.5% and imputation was used in the
panel with CEU-like LD. As large genome scans and meta-analyses that are well-powered to
evaluate rarer variants with modest effects are completed, we believe that imputation will
become an increasingly important primary analysis and there are now examples of
confirmed disease susceptibility loci that would have been missed without genotype
imputation [Li et al., 2009b].
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PRACTICAL CONSIDERATIONS

A key ingredient for any imputation-based approach is to ensure that alleles are consistently
labeled across studies. In our evaluation of FUSION and HGDP samples, using the HapMap
as a reference, we were fortunate that a subset of the HapMap individuals were genotyped in
each study for quality control. Contrasting the genotypes for these quality control samples
with those generated by the HapMap Consortium made the usually laborious process of
ensuring consistent allele labeling across labs much easier. We strongly recommend that all
labs conducting GWAS genotype a small number of HapMap individuals for this purpose.

Another practical consideration arises when integrating data from studies that use diverse
genotyping platforms. Superficially, it is tempting to first impute missing genotypes in each
sample and to then conduct a pooled analysis of all available data. However, this is almost
never a good idea, as illustrated by a particularly extreme case where a set of cases and
controls have been genotyped on two different platforms and a marker of interest has been
genotyped in cases but must be imputed in controls. If the marker of interest cannot be well
predicted by flanking markers, imputation will default to suggesting that the genotype
distribution at that marker matches the reference panel—but this could be a very poor
assumption if the reference panel and study sample have drifted apart, potentially resulting
in spurious association. Even if the marker can be well predicted by flanking markers, it is
possible that the reference panel and the case sample used different genotyping assays that,
for technical reasons such as the presence of a polymorphism that overlaps assay primers,
give consistently distinct results—again resulting in spurious association. To avoid these
sources of spurious association, we recommend that, when analyzing genotype data
generated using different platforms, different versions of the same platform, or using the
same platform but with experiments carried out at different labs, an initial round of
association analysis should be carried out using data from each platform/version/site
combination. The results from this initial round of analysis can then be meta-analyzed,
minimizing the risk of artifacts. This recommendation does preclude analyses where all
cases are genotyped at one site, and all controls are genotyped at a different site.

In the experiments described so far, we illustrated the accuracy of genotype imputation that
relies on existing resources (such as the Phase Il HapMap) and genotyping technologies
(including a variety of commercial genotyping chips). It is likely that both these resources
and technologies will continue to evolve rapidly and it is interesting to consider how these
developments might impact imputation-based approaches. For example, it is clear that
genotyping chips of the future will be able to examine an ever larger number of tag SNPs in
a cost-effective manner. Extrapolating from Table 11, it is clear these should provide
improved genomic coverage, eventually allowing investigators to impute nearly all HapMap
SNPs with near perfect accuracy. Nevertheless, it is also clear from Table I11 that when
coupled with imputation-based analyses even relatively low-density SNP chips can provide
excellent coverage of the genome in populations with LD patterns similar to the CEU, JPT,
and CHB. Thus, we expect the main advantages of new higher-density chips will be in the
study of populations with less extensive LD, such as the YRI, and in the analysis of rarer
variants.

THE FUTURE: LARGER REFERENCE PANELS

Another interesting possibility to consider is the impact of larger HapMap reference panel
on imputation or, similarly, the utility of using extra genotype data on a subset of individuals
in a study to aid imputation in the remaining individuals in the study. To evaluate these
possibilities, we generated a reference panel with varying numbers of Finnish individuals
(between 30 and 500, see Table V) and used these reference panels to impute genotypes for

Genet Epidemiol. Author manuscript; available in PMC 2011 September 19.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Lietal.

Page 9

521 SNPs in an independent set of 500 individuals from the FUSION study of type 11
diabetes. Imputation accuracy and genomic coverage increase noticeably with the larger
reference panels, with overall discrepancy rates between typed and untyped alleles as low as
0.40% when a reference panel of 500 unrelated individuals is available. One of the reasons
for this increase in accuracy is that the length of haplotypes shared between individuals in
the reference panel and those in the study sample increases gradually as the size of the
reference panel increases. For example, mosaic fragments used to reconstitute the FUSION
samples using the individuals in the 500-sample reference panel were slightly >1 Mb long
on average. These long stretches are easier for our Markov model to identify and are also
likely to descend from a more recent common ancestor. This means they will have
undergone fewer rounds of gene conversion and mutation, which gradually erode haplotype
similarities and reduce the quality of our imputed genotypes. Overall, our results suggest
that either genotyping a number of the study samples for markers of interest or increasing
the size of the public reference panels will greatly improve the quality of genotype
imputation.

THE FUTURE: COMBINING IMPUTATION WITH NEW SEQUENCING
TECHNOLOGIES

With the rapid development of very high-throughput re-sequencing technologies [Bentley,
2006], it is oft proposed that genotyping-based approaches will soon become outdated. Re-
sequencing-based approaches capture variants that are absent from public databases
including, potentially, population specific variants. Our haplotyping approach can use whole
genome re-sequencing data as input. In this setting, it uses information from individuals with
similar haplotypes to reconstruct patterns of variation in regions where deep coverage is not
available. In principle, the approach could be useful to help describe regions that, due to
chance, are poorly covered in a particular sequencing experiment or to allow for economical
evaluation of many individuals. To evaluate the possibilities, we simulated data for ten 1 Mb
regions and simulated shotgun sequence data for each region. We simulated reads that were
only 32 base pairs long and with a per base-pair error rate of 0.2%. Very roughly, these
correspond to the performance of early versions of next generation re-sequencing
technologies; newer versions of these technologies can generate longer and more accurate
reads and should thus outperform the simulations presented here. We then re-sequenced
between 100 and 400 individuals at different depths and used our approach to reconstruct
haplotypes and genotypes for each individual. Note that the simulated reads are typically too
short to include useful information on phase (because they will generally include only zero
or one sites that truly differ from the reference sequence). In addition, given the large
number of bases examined, they will also suggest a large number of false polymorphic sites.
To control false-positive variant calls, it is imperative to confirm true polymorphic sites
either by examining overlapping similar reads from the same individual or, potentially, from
other individuals who share a similar haplotype.

For each site, we counted the number of times that the reference base or an alternative base
was sequenced for each individual. For computational convenience, we only considered sites
where both bases were observed several times (see Appendix for detailed methods and
implementation details) in downstream analyses and assigned the most frequently sampled
base to all other sites. On this scale, the shotgun re-sequencing approach typically
characterized ~4,000 polymorphic sites across the sampled individuals - ~4 x the SNP
density of the Phase Il HapMap. Even relatively light shotgun re-sequencing provided very
accurate haplotypes for each individual. For example, when 400 individuals were sequenced
at 4 x depth, there were only 18.97 errors per individual on average (over 1,000,000 base-
pairs). Across ~980,000 sites that were monomorphic in the population only 82 false
polymorphisms were called on average. Accuracy was also excellent at sites that were
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polymorphic in the population. For example, 3,558 of the 3,641 simulated polymorphic sites
with MAF>0.5% were identified and, at these sites, alleles were called with an accuracy of
99.93% (see Tables VI and VI1I). For any given depth, imputed accuracy increased with the
number of sequenced individuals (for example, accuracy at sites with MAF >0.5% was
~98.8% when 100 individuals were sequenced at 2 x coverage but increased to ~99.7%
when 400 individuals were sequenced at the same depth; the number of errors per individual
decreased similarly from 106.3 per individual to 40.3 per individual). In addition, the depth
required to achieve a given accuracy decreased as the number of sequenced individuals
increased: achieving 99.9% accuracy for sites with population MAF >0.5% requires ~8 x
depth for 100 individuals, ~6 x depth in 200 individuals and only 4 x depth in 400
individuals. In each case, note that error rates are higher at heterozygous sites than at
homozygous sites. Again, performance of the approach with larger numbers of individuals
improves because the mosaic fragments described by our model increase in length and, thus,
become easier to find. This is also reflected in the accuracy of estimated haplotypes, which
—when compared with simulated haplotypes—have ~1 switch per 50 kb when 100
individuals are examined, but ~1 switch per 500 kb when 400 individuals are examined. We
expect that combining shotgun re-sequencing of whole genomes with imputation-based
approaches such as ours will allow economical association studies that evaluate SNP
variation in large numbers of individuals even more exhaustively than is currently possible.
Furthermore, we expect that whatever the characteristics of the re-sequencing technology
used, it will be possible to improve the quality of estimated genotypes and haplotypes at
each site by combining information across individuals, rather than simply increasing the
depth at which each individual is sequenced.

DISCUSSION

In summary, we have described and evaluated a very effective model for haplotyping and
genotype imputation in whole genome studies. The idea of genotype imputation is not new
and was outlined as early as 2006 [Scheet and Stephens, 2006]. Here, we evaluate the
practical performance of imputation based on a variety of genotyping platforms and
populations, using both simulations and real data. We show that our model leads to imputed
genotypes whose quality improves as more data becomes available, either because a larger
reference panel is used or because study samples are genotyped in finer detail. Similarly,
haplotype estimates improve in quality as more individuals are genotyped. Furthermore, we
have introduced novel approaches for the analysis of short read shotgun sequencing data,
which is likely to become extremely important as human geneticists move beyond chip-
based genotyping to resequencing (as in the 1,000 Genomes Project, whose initial design
was partly based on the simulations summarized in our Table VI, see
http://www.1000genomes.org for more details).

Other approaches for genotype imputation have been developed independently [Marchini et
al., 2007; Servin and Stephens, 2007]. We expect that our results demonstrating the utility of
larger reference panels, showing that the three HapMap analysis panels can be combined to
better impute genotypes in populations that are genetically distant from the HapMap
analysis panels, illustrating the ability of imputation-based approaches to estimate LD
between untyped markers, and comparing the relative performance of imputation-based
approaches for different commercial marker panels will apply when these alternative
approaches for genotype imputation are used. The approaches differ in the precise details of
how they search for shared haplotype stretches and also in the efficiency of their
computational implementations. For example, whereas [Marchini et al., 2007] rely on
recombination rates generated by the HapMap Consortium and assume a uniform mutation/
error rate for all markers, we estimate “recombination rates” within each dataset and allow
“mutation rates” to vary. These parameters capture not only intrinsic characteristics of the
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markers and regions being examined, but also—for example—the genetic distance between
the samples being imputed and the reference panel (which can impact apparent
“recombination rates”) and differences in genotyping protocols between the two samples
(which can impact apparent “mutation rates”).

We expect that, in small samples, the use of external recombination rate estimates (as in
IMPUTE) might be beneficial, but that with large sample sizes or in the presence of
genotyping error our approach, which uses available data to model “recombination” and
“mutation” rates should become advantageous. We performed two sets of preliminary
comparisons of MaCH and IMPUTE. In the first experiment, we applied IMPUTE
[Marchini et al., 2007] to the FUSION GWAS data for chromosome 14 and estimated
genotypes for 521 previously genotyped markers [Willer et al., 2006]. Genotypes estimated
by IMPUTE and MaCH were identical in 99.2% of cases. In the cases where the two
estimates differed, IMPUTE matched experimental genotypes 44.6% of the time, MaCH
matched experimental genotypes 52.3% of the time, and both estimates were wrong 3.06%
of the time. For the second experiment, we applied IMPUTE to the HGDP data of Conrad et
al. [2006]. Table V111 tabulates the proportion of markers imputed with r2>0.80 in each
population using either MaCH or IMPUTE (in each case, we selected the HapMap reference
panel that provided the best imputed genotypes). Overall, the two methods perform
similarly. MaCH slightly outperforms IMPUTE in 37 out of 52 populations, slightly
underperforms in 13 populations and the two methods are tied in the remaining two
populations. Our results are consistent with other published comparisons [Biernacka et al.,
20009; Pei et al., 2008], which include detailed comparisons of the performance of MaCH
and IMPUTE with each other and with alternative imputation approaches such as BEAGLE
and fastPHASE.

Our method uses an HMM to describe genetic variation along each haplotype. It is clear that
when HMM models are applied to genetic data, many opportunities for identifying
computational efficiencies exist [Abecasis et al., 2002; Gudbjartsson et al., 2000; Idury and
Elston, 1997; Kruglyak and Lander, 1998; Lander and Green, 1987]. In the methods section
we describe several optimizations that we have already implemented, including a general
strategy for reducing memory requirements for the Baum algorithm [Baum, 1972; Wheeler
and Hughey, 2000]. We expect that further efficiencies will be forthcoming. Our model is
implemented in the MaCH package (freely available with C++ source code from our
website, see http://www.sph.umich.edu/csg/abecasis/mach/). Our implementation can be
used to carry out all the analyses described in this paper. Specifically, it can estimate
haplotypes, impute missing genotypes in a variety of populations, using the HapMap sample
or another set of densely genotyped individuals as a reference, analyze shotgun re-
sequencing data from high-throughput technologies how being developed, and carry out
simple tests of association.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

We thank Mike Boehnke, Karen Mohlke, and the other FUSION investigators for helpful discussions. This research
was supported by research grants from the NIMH, NHLBI, and the NHGRI to GRA.

REFERENCES

Abecasis GR, Cherny SS, Cookson WO, Cardon LR. Merlin—rapid analysis of dense genetic maps
using sparse gene flow trees. Nat Genet. 2002; 30:97-101. [PubMed: 11731797]

Genet Epidemiol. Author manuscript; available in PMC 2011 September 19.


http://www.sph.umich.edu/csg/abecasis/mach/

1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Lietal.

Page 12

Barrett JC, Cardon LR. Evaluating coverage of genome-wide association studies. Nat Genet. 2006;
38:659-662. [PubMed: 16715099]

Baum LE. An inequality and associated maximization technique in statistical estimation for
probabilistic functions of Markov processes. Inequalities. 1972; 3:1-8.

Bentley DR. Whole-genome re-sequencing. Curr Opin Genet Dev. 2006; 16:545-552. [PubMed:
17055251]

Biernacka JM, Tang R, Li J, McDonnell SK, Rabe KG, Sinnwell JP, Rider DN, de Andrade M, Goode
EL, Fridley BL. Assessment of genotype imputation methods. BMC Proc. 2009; 3:S5. [PubMed:
20018042]

Browning SR. Multilocus association mapping using variable-length Markov chains. Am J Hum
Genet. 2006; 78:903-913. [PubMed: 16685642]

Burdick JT, Chen WM, Abecasis GR, Cheung VG. In silico method for inferring genotypes in
pedigrees. Nat Genet. 2006; 38:1002-1004. [PubMed: 16921375]

Carlson CS, Eberle MA, Rieder MJ, Smith JD, Kruglyak L, Nickerson DA. Additional SNPs and
linkage-disequilibrium analyses are necessary for whole-genome association studies in humans. Nat
Genet. 2003; 33:518-521. [PubMed: 12652300]
Carlson CS, Eberle MA, Rieder MJ, Yi Q, Kruglyak L, Nickerson DA. Selecting a maximally
informative set of single-nucleotide polymorphisms for association analyses using linkage
disequilibrium. Am J Hum Genet. 2004; 74:106-120. [PubMed: 14681826]
Clark AG, Li J. Conjuring SNPs to detect associations. Nat Genet. 2007; 39:815-816. [PubMed:
17597769]

Conrad DF, Jakobsson M, Coop G, Wen X, Wall JD, Rosenberg NA, Pritchard JK. A worldwide
survey of haplotype variation and linkage disequilibrium in the human genome. Nat Genet. 2006;
38:1251-1260. [PubMed: 17057719]

Daly MJ, Rioux JD, Schaffner SE, Hudson TJ, Lander ES. High-resolution haplotype structure in the
human genome. Nat Genet. 2001; 29:229-232. [PubMed: 11586305]

de Bakker PI, Yelensky R, Pe’er |, Gabriel SB, Daly MJ, Altshuler D. Efficiency and power in genetic
association studies. Nat Genet. 2005; 37:1217-1223. [PubMed: 16244653]

Gaulton KJ, Willer CJ, Li Y, Scott LJ, Conneely KN, Jackson AU, Duren WL, Chines PS, Narisu N,
Bonnycastle LL, Luo J, Tong M, Sprau AG, Pugh EW, Doheny KF, Valle TT, Abecasis GR,
Tuomilehto J, Bergman RN, Collins FS, Boehnke M, Mohlke KL. Comprehensive association
study of type 2 diabetes and related quantitative traits with 222 candidate genes. Diabetes. 2008;
57:3136-3144. [PubMed: 18678618]

Gudbjartsson DF, Jonasson K, Frigge ML, Kong A. Allegro, a new computer program for multipoint
linkage analysis. Nat Genet. 2000; 25:12-13. [PubMed: 10802644]

Hirschhorn JN, Daly MJ. Genome-wide association studies for common diseases and complex traits.
Nat Rev Genet. 2005; 6:95-108. [PubMed: 15716906]

Huang L, Li Y, Singleton AB, Hardy JA, Abecasis G, Rosenberg NA, Scheet P. Genotype-imputation
accuracy across worldwide human populations. Am J Hum Genet. 2009; 84:235-250. [PubMed:
19215730]

Idury RM, Elston RC. A faster and more general hidden Markov model algorithm for multipoint
likelihood calculations. Hum Hered. 1997; 47:197-202. [PubMed: 9239506]

Kruglyak L, Daly MJ, Reeve-Daly MP, Lander ES. Parametric and nonparametric linkage analysis: a
unified multipoint approach. Am J Hum Genet. 1996; 58:1347-1363. [PubMed: 8651312]

Kruglyak L, Lander ES. Faster multipoint linkage analysis using Fourier transforms. J Comput Biol.
1998; 5:1-7. [PubMed: 9541867]

Lander ES, Green P. Construction of multilocus genetic linkage maps in humans. Proc Natl Acad Sci
USA. 1987; 84:2363-2367. [PubMed: 3470801]

Lettre G, Jackson AU, Gieger C, Schumacher FR, Berndt Sl, Sanna S, Eyheramendy S, Voight BF,
Butler JL, Guiducci C, Illig T, Hackett R, Heid 1M, Jacobs KB, Lyssenko V, Uda M, Boehnke M,
Chanock SJ, Groop LC, Hu FB, Isomaa B, Kraft P, Peltonen L, Salomaa V, Schlessinger D,
Hunter DJ, Hayes RB, Abecasis GR, Wichmann HE, Mohlke KL, Hirschhorn JN. Identification of
ten loci associated with height highlights new biological pathways in human growth. Nat Genet.
2008; 40:584-591. [PubMed: 18391950]

Genet Epidemiol. Author manuscript; available in PMC 2011 September 19.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Lietal.

Page 13

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R. The
Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009a; 25:2078-2079.
[PubMed: 19505943]

Li H, Ruan J, Durbin R. Mapping short DNA sequencing reads and calling variants using mapping
quality scores. Genome Res. 2008; 18:1851-1858. [PubMed: 18714091]

Li N, Stephens M. Modeling linkage disequilibrium and identifying recombination hotspots using
single-nucleotide polymorphism data. Genetics. 2003; 165:2213-2233. [PubMed: 14704198]

Li Y, Willer CJ, Sanna S, Abecasis GR. Genotype imputation. Annu Rev Genomics Hum Genet.
2009b; 10:387-406. [PubMed: 19715440]

Lin S, Chakravarti A, Cutler DJ. Exhaustive allelic transmission disequilibrium tests as a new
approach to genome-wide association studies. Nat Genet. 2004; 36:1181-1188. [PubMed:
15502828]

Marchini J, Cutler D, Patterson N, Stephens M, Eskin E, Halperin E, Lin S, Qin ZS, Munro HM,
Abecasis GR, Donnelly P. International HapMap Consortium. A comparison of phasing
algorithms for trios and unrelated individuals. Am J Hum Genet. 2006; 78:437-450. [PubMed:
16465620]

Marchini J, Howie B, Myers S, McVean G, Donnelly P. A new multipoint method for genome-wide
association studies by imputation of genotypes. Nat Genet. 2007; 39:906-913. [PubMed:
17572673]

Markianos K, Daly MJ, Kruglyak L. Efficient multipoint linkage analysis through reduction of
inheritance space. Am J Hum Genet. 2001; 68:963-977. [PubMed: 11254453]

Mathias RA, Grant AV, Rafaels N, Hand T, Gao L, Vergara C, Tsai YJ, Yang M, Campbell M, Foster
C, Gao P, Togias A, Hansel NN, Diette G, Adkinson NF, Liu MC, Faruque M, Dunston GM,
Watson HR, Bracken MB, Hoh J, Maul P, Maul T, Jedlicka AE, Murray T, Hetmanski JB,
Ashworth R, Ongaco CM, Hetrick KN, Doheny KF, Pugh EW, Rotimi CN, Ford J, Eng C,
Burchard EG, Sleiman PM, Hakonarson H, Forno E, Raby BA, Weiss ST, Scott AF, Kabesch M,
Liang L, Abecasis G, Moffatt MF, Cookson WO, Ruczinski I, Beaty TH, Barnes KC. A genome-
wide association study on African-ancestry populations for asthma. J Allergy Clin Immunol. 2010;
125:336-346. [PubMed: 19910028]

Mott R, Talbot CJ, Turri MG, Collins AC, Flint J. A method for fine mapping quantitative trait loci in
outbred animal stocks. Proc Natl Acad Sci USA. 2000; 97:12649-12654. [PubMed: 11050180]

Nicolae DL. Testing untyped alleles (TUNA)-applications to genome-wide association studies. Genet
Epidemiol. 2006; 30:718-727. [PubMed: 16986160]

Pe’er |, de Bakker PI, Maller J, Yelensky R, Altshuler D, Daly MJ. Evaluating and improving power in
whole-genome association studies using fixed marker sets. Nat Genet. 2006; 38:663—667.
[PubMed: 16715096]

Pei YF, Li J, Zhang L, Papasian CJ, Deng HW. Analyses and comparison of accuracy of different
genotype imputation methods. PL0oS One. 2008; 3:3551. [PubMed: 18958166]

Pepe, MS. The Statistical Evaluation of Medical Tests for Classification and Prediction. Oxford, UK:
Oxford University Press; 2003.

Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, Maller J, de Bakker PIW,
Daly MJ, Sham PC. PLINK: a toolset for whole genome association and population-based linkage
analyses. Am J Hum Genet. 2007; 81:559-575. [PubMed: 17701901]

Qin ZS, Niu T, Liu JS. Partition-ligation-expectation-maximization algorithm for haplotype inference
with single-nucleotide polymorphisms. Am J Hum Genet. 2002; 71:1242-1247. [PubMed:
12452179]

Sanna S, Jackson AU, Nagaraja R, Willer CJ, Chen WM, Bonnycastle LL, Shen H, Timpson NJ,
Lettre G, Usala G, Chines PS, Stringham HM, Scott LJ, Dei M, Lai S, Albai G, Crisponi L, Naitza
S, Doheny KF, Pugh EW, Ben-Shlomo Y, Ebrahim S, Lawlor DA, Bergman RN, Watanabe RM,
Uda M, Tuomilehto J, Coresh J, Hirschhorn JN, Shuldiner AR, Schlessinger D, Collins FS, Davey
Smith G, Boerwinkle E, Cao A, Boehnke M, Abecasis GR, Mohlke KL. Common variants in the
GDF5 region are associated with variation in human height. Nat Genet. 2008; 40:198-203.
[PubMed: 18193045]

Genet Epidemiol. Author manuscript; available in PMC 2011 September 19.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Lietal.

Page 14

Schaffner SF, Foo C, Gabriel S, Reich D, Daly MJ, Altshuler D. Calibrating a coalescent simulation of
human genome sequence variation. Genome Res. 2005; 15:1576-1583. [PubMed: 16251467]

Scheet P, Stephens M. A fast and flexible statistical model for large-scale population genotype data:
applications to inferring missing genotypes and haplotypic phase. Am J Hum Genet. 2006;
78:629-644. [PubMed: 16532393]

Scott LJ, Mohlke KL, Bonnycastle LL, Willer CJ, Li Y, Duren WL, Erdos MR, Stringham HM,
Chines PS, Jackson AU, Prokunina-Olsson L, Ding CJ, Swift AJ, Narisu N, Hu T, Pruim R, Xiao
R, Li XY, Conneely KN, Riebow NL, Sprau AG, Tong M, White PP, Hetrick KN, Barnhart MW,
Bark CW, Goldstein JL, Watkins L, Xiang F, Saramies J, Buchanan TA, Watanabe RM, Valle TT,
Kinnunen L, Abecasis GR, Pugh EW, Doheny KF, Bergman RN, Tuomilehto J, Collins FS,
Boehnke M. A genome-wide association study of type 2 diabetes in Finns detects multiple
susceptibility variants. Science. 2007; 316:1341-1345. [PubMed: 17463248]

Servin B, Stephens M. Imputation-based analysis of association studies: candidate regions and
quantitative traits. PLoS Genet. 2007; 3:e114. [PubMed: 17676998]

Stephens M, Scheet P. Accounting for decay of linkage disequilibrium in haplotype inference and
missing-data imputation. Am J Hum Genet. 2005a; 76:449-462. [PubMed: 15700229]

Stephens M, Scheet P. Accounting for decay of linkage disequilibrium in haplotype inference and
missing-data imputation. Am J Hum Genet. 2005b; 76:449-462. [PubMed: 15700229]

Stephens M, Smith NJ, Donnelly P. A new statistical method for haplotype reconstruction from
population data. Am J Hum Genet. 2001; 68:978-989. [PubMed: 11254454]

The International HapMap Consortium. The International HapMap Project. Nature. 2005; 437:1299—
1320. [PubMed: 16255080]

The International HapMap Consortium. A second generation human haplotype map of over 3.1 million
SNPs. Nature. 2007; 449:851-861. [PubMed: 17943122]

Wheeler R, Hughey R. Optimizing reduced-space sequence analysis. Bioinformatics. 2000; 16:1082—
1090. [PubMed: 11159327]

Willer CJ, Scott LJ, Bonnycastle LL, Jackson AU, Chines P, Pruim R, Bark CW, Tsai YY, Pugh EW,
Doheny KF, Kinnunen L, Valle TT, Bergman RN, Tuomilehto J, Collins FS, Boehnke M. Tag
SNP selection for Finnish individuals based on the CEPH Utah HapMap database. Genet
Epidemiol. 2006; 30:180-190. [PubMed: 16374835]

Willer CJ, Sanna S, Jackson AU, Scuteri A, Bonnycastle LL, Clarke R, Heath SC, Timpson NJ, Najjar
SS, Stringham HM, Strait J, Duren WL, Maschio A, Busonero F, Mulas A, Albai G, Swift AJ,
Morken MA, Narisu N, Bennett D, Parish S, Shen H, Galan P, Meneton P, Hercberg S, Zelenika
D, Chen WM, Li Y, Scott LJ, Scheet PA, Sundvall J, Watanabe RM, Nagaraja R, Ebrahim S,
Lawlor DA, Ben-Shlomo Y, Davey-Smith G, Shuldiner AR, Collins R, Bergman RN, Uda M,
Tuomilehto J, Cao A, Collins FS, Lakatta E, Lathrop GM, Boehnke M, Schlessinger D, Mohlke
KL, Abecasis GR. Newly identified loci that influence lipid concentrations and risk of coronary
artery disease. Nat Genet. 2008; 40:161-169. [PubMed: 18193043]

Willer CJ, Speliotes EK, Loos RJF, Li S, Lindgren CM, Heid IM, Berndt Sl, Elliott AL, Jackson AU,
Lamina C, Lettre G, Lim N, Lyon HN, McCarroll SA, Papadakis K, Qi L, Randall JC, Roccasecca
RM, Sanna S, Scheet P, Weedon MN, Wheeler E, Zhao JH, Jacobs LC, Prokopenko I, Soranzo N,
Tanaka T, Timpson NJ, Almgren P, Bennett A, Bergman RN, Bingham SA, Bonnycastle LL,
Brown M, Burtt NP, Chines P, Coin L, Collins FS, Connell JM, Cooper C, Smith GD, Dennison
EM, Deodhar P, Elliott P, Erdos MR, Estrada K, Evans DM, Gianniny L, Gieger C, Gillson CJ,
Guiducci C, Hackett R, Hadley D, Hall AS, Havulinna AS, Hebebrand J, Hofman A, Isomaa B,
Jacobs KB, Johnson T, Jousilahti P, Jovanovic Z, Khaw KT, Kraft P, Kuokkanen M, Kuusisto J,
Laitinen J, Lakatta EG, Luan J, Luben RN, Mangino M, McArdle WL, Meitinger T, Mulas A,
Munroe PB, Narisu N, Ness AR, Northstone K, O’Rahilly S, Purmann C, Rees MG, Ridderstrale
M, Ring SM, Rivadeneira F, Ruokonen A, Sandhu MS, Saramies J, Scott LJ, Scuteri A, Silander
K, Sims MA, Song K, Stephens J, Stevens S, Stringham HM, Tung YC, Valle TT, Van Duijn CM,
Vimaleswaran KS, Vollenweider P, Waeber G, Wallace C, Watanabe RM, Waterworth DM,
Watkins N, Witteman JC, Zeggini E, Zhai G, Zillikens MC, Altshuler D, Caulfield MJ, Chanock
SJ, Farooqi IS, Ferrucci L, Guralnik JM, Hattersley AT, Hu FB, Jarvelin MR, Laakso M, Mooser
V, Ong KK, Ouwehand WH, Salomaa V, Samani NJ, Spector TD, Tuomi T, Tuomilehto J, Uda
M, Uitterlinden AG, Wareham NJ, Deloukas P, Frayling TM, Groop LC, Hayes RB, Hunter DJ,

Genet Epidemiol. Author manuscript; available in PMC 2011 September 19.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vVd-HIN

Lietal.

Page 15

Mohlke KL, Peltonen L, Schlessinger D, Strachan DP, Wichmann HE, McCarthy MI, Boehnke M,
Barroso I, Abecasis GR, Hirschhorn JN. The Genetic Investigation of ANthropometric Traits
(GIANT). Six new loci associated with body mass index highlight a neuronal influence on body
weight regulation. Nat Genet. 2009; 41:25-34. [PubMed: 19079261]

Zaitlen N, Kang HM, Eskin E, Halperin E. Leveraging the HapMap correlation structure in association
studies. Am J Hum Genet. 2007; 80:683-691. [PubMed: 17357074]

APPENDIX

DETAILED METHODS DESCRIPTION
HIDDEN MARKOV MODEL

Our model resolves a set of unphased genotypes G into an imperfect mosaic of several
template haplotypes. We assume that H template haplotypes are each genotyped at L loci
and let Tj(i) denote the allele observed at locus j in reference haplotype i. Furthermore we
define a series of indicator variables Sq, Sy, ..., S| that denote an hypothetical (and
unobserved) mosaic state underlying the unphased genotypes. At a specific position j there
are H? possible states. A specific state, such as Sj = (xj, yj), indicates that the first
chromosome uses haplotype Xj as a template, whereas the second chromosome uses
haplotype y;j as a template.

We are interested in making inferences about the sequence of mosaic states S that best
describe the observed genotypes. Knowledge of S will implicitly order alleles at
heterozygous sites and suggest an allele for each untyped location. We define the joint
probability of the observed genotypes and an underlying haplotype state as:

L L
P(G,8)=P(s D] [P jis 0] [PGis ).

=2 j=1

In the model above, P(S;) denotes the prior probability of the initial mosaic state and is
usually assumed to be equal for all possible configurations, P(S; | Sj—1) denotes the transition
probability between two mosaic states and reflects the likelihood of historical recombination
events in the interval between j and j—1, P(G;l|S;) denotes the probability of observed
genotypes at each position conditional on the underlying mosaic state and reflects the
combined effects of gene conversion, mutation, and genotyping error. Interestingly, note
that, whereas, our model and IMPUTE both use a large number of haplotypes as templates,
fastPHASE [Scheet and Stephens, 2006] uses a smaller set of estimated haplotype
“groupings” as templates in an otherwise similar HMM, resulting in improved
computational efficiency at the cost of some fuzziness in haplotype templates.

MONTE-CARLO HAPLOTYPING PROCEDURE

To estimate haplotypes in a sample of genotyped individuals we first assign a random pair of
haplotypes to each individual, consistent with the observed genotypes. This involves
randomly ordering alleles at each heterozygous site and sampling alleles at untyped sites
according to population frequencies. Then, we update the haplotypes for each individual in
turn by using the current set of haplotype estimates for all individuals as templates and
sampling S proportional to the likelihood L(S|G) o P(G,S). Note that since the S; define a
Markov Chain this sampling can be done conveniently using Baum’s forward and backward
algorithm [Baum, 1972]. A new set of haplotypes for an individual is then defined according
to sampled mosaic and edited to ensure it matches the observed genotypes. We repeat the
update procedure several times, looping over all individuals (more updates result in gradual
refinement of the estimated haplotypes, but very accurate haplotype estimates can often be
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obtained in ~20 rounds, see Table I). After a pre-specified number of rounds are completed,
we generate a pair of consensus haplotypes for each individual. This consensus haplotype
pair is defined as the pair that minimizes total switch error when compared to the haplotypes
sampled at each round.

PARAMETER ESTIMATION

Key ingredients in the above procedure are the transition probabilities P(S; | Sj—1) and
emission probabilities P(G; | Sj). We define the transition probabilities as a function of the
crossover parameter 6;:

ef/Hl ifx; # xj_jandy; # yj_1,
P(S IS j-1)=4 (1~ 8,-)6’,-/H+6’§/H2 ifx; # xj_j0ry; # -1,
(1= 6)*+2(1 = 6))0;/H+63/H*  if x;=x;-1and y;=y;-1.

The possible values of P(S; | Sj—1) reflect both the overall rate of changes in the mosaic for
the interval, given by 0;, and the fact that when a change occurs a new mosaic state is
selected at random among all possible states.

We let T(Sj) = T(x)+T(y;) denote the genotype implied by state S and define the emission
probabilities P(G;j | Sj) as a function of the error parameter g;:

(1- sj)2+53, T(S ))=Gand G| is heterozygote,
2(1 -¢gjej, T(S)) # Gjand G;is heterozygote,

PGS =4 (1-¢g)>, T(S j)=G;and G| is homozygote,
(I-gje, T(S ;) is heterozygote and G ; homozygote,
s;, T(S ;) and G are opposite homozygotes.

Initially, we let set 6= 0 = 0.01 and ¢j = € = 0.01 or some other suitable constant. As we
sample a new mosaic state for each individual we keep track of the number and location of
change points in the mosaic and of the number of times that the genotype implied by the
sampled mosaic state matches the observed genotype (or not). These quantities are then used
to update the 0; and &j parameters for the next iteration. It is important to avoid setting either
0j =0 or g = 0, as that could make it difficult for our Markov sampler to investigate different
mosaic configurations. To avoid this, a combined crossover parameter is estimated for
intervals with a small number of sampled changes in mosaic state and an analogous
procedure is employed for markers with a small number of observed mismatches between
the mosaic and observed genotypes.

Overall, we expect the 0; will reflect a combination of population recombination rates and
the relatedness between the haplotypes being resolved and the true underlying haplotypes
(for example, if CEU chromosomes are used as templates to resolve CHB genotypes we
expect, on average, higher 6 estimates than when other CHB individuals are used as
templates). We considered using distance between flanking markers to inform estimates of
0j (since 0’s are generally larger in larger intervals), but did not find noticeable
improvements. Overall, we expect that &; will reflect a combination of genotyping error,
gene conversion events, recurrent mutation and, when genotype data from multiple
platforms or laboratories is used, assay inconsistencies between different platforms. We
observed slightly lower data quality measures (completeness, duplicate concordance,
Hardy-Weinberg test statistics) for markers with large estimates of j in the FUSION
GWAS.
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GENOTYPE IMPUTATION AND ESTIMATES OF IMPUTATION QUALITY

Genotype imputation analyses proceed similarly to the haplotyping analyses described
above, but do not require each sampled haplotype configuration to be stored. Instead, after
each iteration, a series of counters is updated to indicate the number of times each genotype
was sampled at a particular position. Once all iterations are completed, these counters give
an indication of the relative probability of observing each possible genotype and can be used
to impute the most likely genotype and to calculate various measures of the quality of
imputed genotypes.

Without loss of generality, consider a SNP with alleles A and B. Let na/a, Na/g, and ngyg be
the number of times each possible genotype was sampled after | = na/a + Na/g+ng/s
iterations. For downstream analysis of imputed alleles, we typically consider either the most
likely genotype or the expected number of copies of allele A. The most likely genotype is
simply the genotype that was sampled most frequently. The expected number of counts of
allele A is the genotype score g = (2na/a + nasg)/1. Both of these quantities can be
conveniently incorporated into a variety of analysis, including regression-based association
analysis of discrete or quantitative traits.

To measure the accuracy of imputation for a single imputed genotype IG, we define the
genotype quality score Q = n;g/l. This quantity can be averaged over all genotypes for a
particular marker to quantify the average accuracy of imputation for that marker. We have
found that a better measure of imputation quality for a marker is the estimated r2 between
true allele counts and estimated allele counts (Fig. 1). This quantity can be estimated by
comparing the variance of the estimated genotype scores with what would be expected if
genotype scores were observed without error. For a given SNP, let Var(g) be the variance of
estimated genotype and let p = Mean(g)/2 be the estimated frequency of allele A. The
estimated r2 with true genotypes can then be defined as

E(r2 with true genotypes)=Var(g)/[2p(1 - p)].

An alternative definition is

E(r* with true genotypes)=Var(g)/((4n, ,, +n, )/ — [(2n, , +n, ) /TT).

Empirically, we have found that while both definitions lead to similar conclusions, the first
definition appears to be marginally better.

ASSOCIATION ANALYSIS USING IMPUTED GENOTYPES

When analyzing the FUSION data [Scott et al., 2007], we included imputed genotype scores
as predictors in a logistic regression that also included age, sex, and geographic origin as
covariates. For analyzing simulated case-control data, we simply used a t-test to compare the
average genotype scores in cases and controls. Other approaches to the analysis of imputed
data are possible but, in our experience, the imputed genotype scores provide a good balance
between computationally demanding multiple imputation procedures [Servin and Stephens,
2007] and analyses that simply use the most likely genotype.

HMM FOR SHOTGUN SEQUENCE DATA (SIMULATIONS)

When shotgun re-sequencing, or another single molecule re-sequencing technology, is used
on diploid individuals, genotypes are not directly observed. In this case, we assume the data
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consists of counts Aj and Bj indicating how many times base A (or B) was observed at site j.
We then define our HMM as

L L
P(A,B,S)=PS D] [P jis 0] | {ZP(G JIS H)P(A}, B/IG ,)} 4

Jj=2 J=1 Gj

Here, we sum over possible genotypes at each site and calculate the probability of the
observed traits for each possible genotype set. In addition, we define the probability of
observing a specific set of traces given the underlying genotype as

Binomial(A}, A ;+B;, 1 —8), G=A/A,
P(A;,BGj)={ Binomial(A;,Aj+B;,0.5, G;=A/B,
Binomial(Aj, A,‘+Bj, 5), Gj:B/B.

The parameter & denotes the per base sequencing error rate and can be separated from the
effects of mutation and gene conversion captured in ¢, unless the re-sequencing depth is very
low.

In principle, the method could be applied to all sites where an alternative base call is
observed at least once. However, since we simulated many short reads and an error rate of
0.2%, the minor allele was observed at least once at nearly every simulated position. For
reasons of computational efficiency, we applied the MaCH 1.0 haplotyper only to positions
were the minor allele was observed multiple times. Specifically, we defined my; as the
number of traces where the minor allele was observed at position j in individual k. Then, we
defined the score wj = Xy myj(my; + 1)/2 and applied our haplotyping algorithm to all sites
where w; exceeded a predefined threshold (other sites were assumed to contain the major
allele). The score gives higher weight to sites where the minor allele is observed multiple
times in the same individual. We used thresholds for w;j of 5, 7, 9, 11, 13 depending on
whether the total coverage (defined as depth x individuals) was 200, 400, 800, 1,200, or
1,600 x. When the number of individuals sequenced was 400, these thresholds were reduced
to 4, 6, 8, 10, and 12, respectively. This means that, for example, when 400 individuals were
re-sequenced at 4 x depth (total depth = 1,600 x) we considered only sites where the minor
allele was observed in at least 12 traces from different individuals or slightly fewer traces
concentrated in one or more individuals.

HMM FOR SHOTGUN SEQUENCE DATA (SIMULATIONS)

The model described above is convenient for the analysis of simulated data where the per
base error rate is constant. For analyses of real data, where base quality scores are associated
with individual bases, we adapted our implementation to use P(base calls, quality scores |
G) as stored in Genotype Likelihood Files generated by samtools [Li et al., 2008, 2009a].

COMPUTATIONAL EFFICIENCY

A number of optimizations are possible to increase the computational efficiency of our
model. For example, since haplotype states are unordered only H(H+1)/2 distinct states must
be considered at each location, rather than H2 distinct states. Below, we summarize some of
the other efficiencies that we identified and how these are implemented in MaCH.

TRANSITION MATRICES

When sampling a mosaic state S conditional on the observed genotypes G, we rely on the
Baum algorithm. The algorithm requires a series left and right conditioned probability
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vectors which provide an indication of the relative probability of a specific state at a given
location conditional observed genotypes at markers to its left (or right). For example, the
probability of observing state (x,y) at location j conditional on all preceding genotypes is
simply:

Left(S j=(x,y)) =L(S j=(x,)IG1,Ga,...,Gj1)= ) Left(S j1=(a, HP(S j=(x, IS j-1=(a, LYP(G 1S j-1=(a, b)),

i (a.b)
Left(S,=i) =I.

The calculation of these probabilities can be sped up by taking advantage of the regular
patterns in the transition matrices. Specifically, we define the quantities:

C(a) =ZLeﬂ(S i1=(a, B)P(G j_1|S j-1=(a, b)),

c :Zblcm).

Then, the previous definition becomes:

Left(S j=(x, y)=Left(S ;-1 =(x, DP(G ;118 j1=(x. )1 = 0)*+C(x)(1 = )8,/ H+C(y)(1 - 6))6,;/H+C62/H?,
Left(S 1 =i)=1.

When this updated definition is used to calculate left conditional probabilities for each
possible state, computational requirements become O(H?) rather than O(H*) using the
original definition, provided that C(a) and C are pre-computed. An analogous speed up is
available for right-conditioned probabilities.

MEMORY EFFICIENCY

One large computational constraint when applying our algorithm on a genomic scale is the
storage required to track left-conditioned probabilities. Typically, this requires storage of L
vectors each with H2 elements (or, as noted above H(H+1)/2 elements). It is clear that this
requirement becomes cumbersome as the number of polymorphic sites increases. We
devised a solution that requires storage of only 2*sqrt(L) vectors. For notational convenience
let K =sqrt(L). Our algorithm pre-allocates 2K vectors and organizes these into two groups:
a framework set of K vectors, and a working set of another K vectors. When left-conditional
probabilities are first calculated, proceeding left to right, we store every Kth vector in the
framework set and discard other intermediate results. Then, as these vectors are used in the
second pass of the chain (which combines left and right conditional probabilities, proceeding
right to left), we recalculate K of these vectors at a time (starting from the nearest vector in
the framework set) and store them in the working set of vectors. Completing the full chain
requires calculation of all L vectors of left conditional probabilities, recalculation of K of
these vectors L/K times, and calculation of L vectors of right conditional probabilities.
Overall, our solution no more than doubles computing time (since each vector of left
conditional probabilities must be calculated twice), but reduces memory requirements from
O(L) to O(LY2). The solution is general and can be applied to many other HMMs (see also
[Wheeler and Hughey, 2000]).

REDUCING THE NUMBER OF TEMPLATES

If all available chromosomes are used as templates, the complexity of our algorithm will
increase cubically with sample size (because the cost of each update increases quadratically
and the number of updates increases linearly with sample size). One way to avoid this is to

Genet Epidemiol. Author manuscript; available in PMC 2011 September 19.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Lietal.

Page 20

restrict the size of the template pool. When there are more than a pre-specified number of
potential templates (say H > 300), we typically select a random subset of these for each
update. With this restriction, the complexity of our algorithm increases only linearly with
sample size (because the cost of each update now remains fixed and only the number of
updates to be performed grows). Furthermore, even though each update is based on only a
random sample of the available haplotypes, the overall quality of solutions still increases
with sample size. When the focus is on genotype imputation, rather than haplotyping, an
alternative is to use as templates individuals who have been genotyped for the markers being
imputed (e.g. the HapMap reference samples). Both of the above solutions are heuristics that
trade-off some accuracy for computational efficiency. An alternative strategy for reducing
the size of the template pool is to consider local similarities and redundancies among the
haplotypes in the pool. These redundancies are already exploited to increase computational
efficiency in the handling of other Markov models [Abecasis et al., 2002; Markianos et al.,
2001], and our preliminary implementations suggest that speed-ups of 5-10 x are possible
for our haplotyping model.
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Assessment of Quality Measures for Imputed Data
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Fig. 1.

ROC curve comparing two measures of data quality. For imputed SNPs on chromosome 14,
where both imputed and actual genotypes were available, we evaluated the ability of two
different measures of data quality (the estimated concordance between imputed and true
genotypes and the estimated r2 between imputed and true genotypes) to discriminate
between poor and well imputed SNPs. Both estimates of imputation quality are calculated
without using the actual observed genotypes.
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Linkage Disequilibrium Measures in FUSION Data (1%)
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Fig. 2.

Imputation improves quality of LD estimates. For imputed SNPs on chromosome 14, the
figure compares estimates of LD obtained by genotyping both SNPs (“Results from Actual
Genotyping,” X axis) with estimates of LD obtained by imputing genotypes for both SNPs
using markers on the 317K marker chip (“Results from Imputed Data,” Y axis, Top left),
obtained by imputing genotypes for one of the SNPs (“Results from Imputed Data,” Y axis,
Bottom Left) or obtained from the HapMap CEU panel (“Results from HapMap CEU,” Y
axis, Top and Bottom Right).
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Percentage of Alleles Imputed Incorrectly
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Fig. 3.

Evaluation of imputation accuracy across HGDP panels. For each of 52 populations in the
Human Genome Diversity Panel (HGDP) a set of 872 SNPs distributed evenly across 32
regions, each ~330 kb in length, was used to impute 992 other SNPs. The 992 imputed SNPs
were located near the middle of each imputed region. Imputation was done using either the
HapMap YRI, CEU, CHB+JPT, or a combination of three HapMap panels (first four panels,
best panel is shaded in gray) or using the remaining HGDP samples as a reference. In each
case, the proportion of correctly imputed alleles is tabulated. The figure is based on a re-
analysis of data of Conrad et al. [2006].
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Fig. 4.

Evaluation of imputation accuracy across HGDP panels. Genotypes for a set of 992 SNPs
were imputed in the HGDP and then compared with actual genotypes. For each pair of true
and imputed genotypes an r? coefficient was calculated and averaged for each population.
The best set of HapMap reference individuals for each population is shaded. The coverage
obtained by using the best available tag SNP (rather than imputed genotypes) is overlaid in
pink. See Figure 3 legend for further details.

Genet Epidemiol. Author manuscript; available in PMC 2011 September 19.

80



Page 25

Lietal.

03X WINNUad ZHOEE'Z © 01 Jajal sBuiwn [y "uId 8A81S Aq papuawiwiodas sBuInss yym uni sem NI-1d ‘Bulumoig uerg Aq puswiiodal

se ‘sBumes 3nejep Yyum uni sem €Tz a1feag 198yds [ned Aq papuswiiodal se ‘sbuiss 1neyap Yim uni sem [900g ‘suaydais pue 188ydas] €T UOISIBA ISYHJISe) 'suaydals mayne|N Aq puswiiodal se
‘sBuimas 3ynegap Yyum uni sem [T00z **1e 19 suaydais ‘q500z ‘198Yas pue suaydais] T°T'Z UOISIaA JSWHJ "SUOITRI8] JO SIaquinu Juaiaydip pue sBuIas 1neyap Yim uni sem 0'T Yde|Al “pare|ngel aJe sannuenb
9911 asay} Jo sabeiany papiodal sem (198)43d #) sadArojdey parewnss Ajpoagiad Jo Jaquinu ay) pue (sdij4 #) sadAlojdey pajenwis ayy ojul sadAlojdey payewnss ayl LsAu0d 03 palinbal aseyd adAlo|dey

Ul S3UINIMS JO Jaquinu 3y} ‘(sJoui3 #) Appoasioour paandwi sadAlouab Buissiw Jo Jaquinu ay | "pareniens sadAloush payndwi pue suonnjos adAlojdey jo Afenb ayi pue (3719v3g pue INI-T1d ‘ISVYHJISe}
‘ISVHd ‘HO®IN) sladAiojdey aAl) J0 aU0 yim pazAfeue Usy) a1am elep sy ‘Wopuel Je padnpo.iul sem erep BUISSIW 9,z pue ei1dads Aouanbaly aa)je dep\deH d1wiw 01 paureladse alam siayiew

002~ ‘uoiBal yoea u| "AjaAndadsal ‘sajdwes [YA pue NID dendeH ayl ut @ Jo 9a169p ay) 199424 S18S 0M YL "SuoIfal QA T Pate|nwWIs Q0T 4O S18S OM] JO SISA[eU aU) WOy SHNS8J SAZIeWWNS 3|qel ay |

TeT [433 Tee T1¢ 0€e 6'€T nSC~ - J71ov3ag
<L 1145] 8'9¢ 8¢l 98¢ [Ax4 WS~ — N3-1d
L'TT TEE 6'¢c T0C 0c¢e 6'¢T uw /1~ - JASVHdJISe}
6'6T 0L¢ 8'6T €'6e 10¢ 9¢T yge~ - JSVHd
JAT4 1474 79T L'6C 8.1 §oT yee~ 000°€

§'Ge 8T¢ €97 €'6¢ ¢81 90T YT~ 0007

T'se (444 €91 T'6¢ <61 9'0T ulw GT~  00¢

Tve (414 99T ¥'8¢ 00¢ 80T ulw g~ 09

9'¢e 95¢ 6'LT §'9¢ 9T¢ 9Tt ulwe~  0¢ HOENW

Waplad#  sdid#  sdoq#  10eped#  sdid#  sdouu3#  swiuoneindwod  suonelsy # ENN

19 A dendeH Buppiwiw 1esereq N3O depydeH Bupjoiwiw 1esereq

sarewnss sadA1ousb Buissiw pue sadArojdey Jo Alfend
1 379VL

NIH-PA Author Manuscript NIH-PA Author Manuscript NIH-PA Author Manuscript

Genet Epidemiol. Author manuscript; available in PMC 2011 September 19.



Page 26

Lietal.

000'T 200T 6660 00T 0€T T100° €T »-0TxS6 G910 G910 Z8ZT08TS!
T96°0 T€L0 L0L°0 [440] LT €10 05T +0Tx68 9070 1600 ¥¥56.0881
€96°0 €180 5980 890 44 TT00° 92T +0Tx¢C8 9v9°0 T29°0 816077181
G€6°0 0€8°0 6¢8°0 L¥'0 (4 9700 92T 0T x€9 8790 6150 16¢99v¢s)
866°0 €56°0 0660 990 62T y-0IxCV¥ g1 »-0Ix8Y 6790 6290 G866T00TS!
G960 GT6°0 1880 290 T ¥100° 9T »-0TxSY 990 6990 9vEZ0Y6SI
866°0 9¢0'T ¥660 00T 82T ¢ 0IxCT 2T »0TxLT 1890 €890 0962011751
¥¥6°0 9190 1850 Sv'0 8¢'T G500 €5T 0T x97T 6¢T°0 S9T°0 TE8CT8YSI
886°0 ¥56°0 €€6°0 20 0T ¢-0Tx6€ g1 - O0IxVT ¥2e0 T€C0 ¥180.2T81
LE60 69.°0 1180 90 GZT »0Tx9C zeT g 0IxT6 €09°0 6090 996T20¢s!
956°0 ¢15°0 1890 €10 8E'T 0200 99T s O0TxT6 ¢60°0 6170 YTTOV9TTSI
866°0 976°0 €60 8¢°0 69T ¢0Tx06 2LT ¢ 0IxSGL 2900 650°0 89¢/6¢€ETS!
666°0 8160 966°0 €€0 62T o0Ix8Y gzT g O0IxEL T.LE0 TLE0 9T.E0TOSI
166°0 9/6°0 686°0 680 82T ¢-0IxSS g8gzT ¢-0Tx979 6.¥°0 9.¥°0 00¢S.T84
260 1190 1980 620 GET o-0Ix€L 6T o 0Tx6€ 9690 7990 ¥.2008Ts4
8/8°0 0¢6°0 ¢95°0 €0 GZT ¢-01x08 o0gT ¢ 0Ix0€ ST.°0 0850 YTY9GELTS]
066°0 €180 156°0 ¢L0 veT 90T xSY g1 ¢ 0Ix8¢C €790 0v9°0 6€€L9¢¢Cs)
116°0 §96°0 9€8°0 050 Wil ¢ 0IxTV¥ pT ¢-0Ix0¢ 89T°0 8€T0 SPy0SLLSI
¥.8°0 60€°0 e0 170 ST'T 110 8T 0T x6T 6Y1°0 S.T0 S00V8ELTSI
186°0 T06°0 9/80 S0 99T ¢ O0Tx6T 9T o 0TxLT T.00 080°0 L299E0TTSI
§.6°0 0€6°0 ¢e80 97’0 orT ¢-0Tx98 6yT ¢ 0ITxST ¢sTo 8€T0 99//€80TS1
6760 G890 §G.°0 120 17T ¢-0Tx8Y opT o0TxST SvS°0 ¢0S°0 88TITITTSI
000'T ¥56°0 686°0 180 89T o-0TxGS QLT o-0TxEL 800 G.0°0 CSETBOLTSI
0660 1160 G960 060 €T ¢ O0IxTT g1 o O0IxES €150 6150 SZL6YYTSI
¥66°0 0¢.°0 €v80 6€°0 0z o 0Tx€9 )G7 o01xS¢C €€0°0 SE0°0 L280T6CTS!

30UBPJIOJU0Y  palewnsy  [endY  SANS SYMO/M  HO anfen-d 40  enjea-d  padAouss  paandwi dNS
a119][e 4 XeinN

PS50 2 ‘sadAjousb [enjoy sadAjousb e1ep paindwi Kouanbauy
'sA paandw] [enyoe Jo sisA[euy Jo sisAfeuy ala|Ire NolIsn4

[200Z “'Ie 19 109S] NOISN4 Ul uoneIdosse Buons Bulmoys SdNS Jo 19sqns e 10J sadAlouab [euswiiiadxa pue paindwi Jo uostiedwo)
I1379VvL

NIH-PA Author Manuscript NIH-PA Author Manuscript NIH-PA Author Manuscript

Genet Epidemiol. Author manuscript; available in PMC 2011 September 19.



Page 27

Lietal.

‘pare|nge) ate padAiousb Ajjuanbasgns asem ydaiym pue erep pandwi ayp ul ¢_0T>

anjeA-d e yim sdNS 1V [800z [e 18 uoynes] sauab ajepipued gzz punoJe pue ui awouab ay) jo abeianod anoidwi 03 pa1as|as a1am Asyl () 10 SANS paindwil Agreau uey) UOITRIJ0SSE 10} 82UBPIAS Jabuons
pue sdNS padAlouab AgJeau Jaylo uey) UOITRID0SSE 10} 8oUapIAd JaBuoais Ajjenueisgns pamoys Ay () asnedaq Jayua BuidAlousb oy palos)as sem SdNS 40 18sgns e ‘Jayrey "Ajfejuswiiadxa padAioush

9I9M [9A3] 82UBIIHIUBIS SIU} T8 UOIIRId0SSE Buimoys SANS paindwil |[e JoN "SISAJeue Siy3 ul dn-moj|oy 10} palaa|as aq 0} A|aX1] 810W a1am SanfeA-d palejjul ul paynsas uonendwi a1sym SdNS ‘snyL 19844
8512 s _JauuIm,, e 03 10algns ale Asy) ‘erep NOISNH 8yl Ul uoneidosse Buols moys 1eyl SNS painduwi |je ale asay) asnedaq eyl aloN ‘sadAloush jenjoe pue paindwi usamiaq Buiyarew saajfe Jo uoiodoid
‘Alreuty ‘pue (Ayenb uoireindwi Jo ainseaw e se poylawW INo Wo.j Pajewss pue Z [emoe) sadAjousf panlasqo pue painduil usamiaq Z! ‘dNS siy1 pue |aued SWYAAD ay) ul Bey Jexew a1buls 1saq ay) usamiaq

! ‘sadA10uab panliap Ajjeluswiiadxa Buisn s]0u0d pue sased ul salouanbaly a1aje Burledwod 1581 UOIIRIJ0SSE 10} 013l SPPO pue anjeA-d ‘sadAiousb paindwi Buisn s]0J3u0d pue sased ul sarouanbaiy ajaje

Burredwod 1s8) UOIRID0SSE 0} O11R] SPPO pue anjeA-d ‘erep adAlouab [enioe Jo eyep panduwi Jayya Buisn ‘sjosuod pue sased NOISNH Ul Aouanbauy aa]|e palewsa ‘aweu gNS apnjoul SUWN|od aAISSadINS
“erep NOISN4 a8y} 40 SIsAjeue Ino ul ¢_0T> 40 anjeA-d & paydeal Jey) sdNS au J0 19sans e 1o} BuidAlouab [enioe Joy s}nsas Yim elep paindull Jo sisAfeue wolj s)nsal ay Jo uosiiedwod e smoys ajgel ay L

6660 ST0'T 966°0 00T (44" 2100 €T 0T %66 TLE0 2LE0 L1/7208€s4
80UBPJIOJUOY  paAleWwnsT BNV SANS SYMO/M O anjen-d H0 anjeA-d  padAjouss  paindwi dNS
alRIe o XeN
EIVEN
P 90 24 ‘'sadfioush femovy sadA1ouab eyep paindwi Aousnbauy
'sA paandwi| |enoe Jo sisAleuy 10 sisA[euy a19I1e NOISN4

NIH-PA Author Manuscript NIH-PA Author Manuscript NIH-PA Author Manuscript

available in PMC 2011 September 19.

)

Genet Epidemiol. Author manuscript



Page 28

Lietal.

0S'T 680 260 S9°0 190 SL0 <7A0] G680 650 L0 vr9'SSY'T 825'6€C 8£8'08 /78'869  000TV
09°C 080 /80 ¥8°0 650 690 090 920 l¥0O 290 2SS'€99'T L2v'89¢  180'6 G89'T6¢E 00SY
0Ly ¥90  LL0 LTT 87’0 690 90 590 9€°0 IS0 9eC'ez8'T 199'88¢ ETL'Y ¥.2'50C  NO0SZV
00'S 790 9.0 €T S0 890 [440] €90 €€0 670 0TS'0V8'T §92'06¢ 89¢'y TTY'98T  S0S2V
98'8 70 090 89T 2€0 vv¥0 820 LFO0 2Z0 SE0  TO0'6T6'T eV9'66C  ¥66'T 125'56 00TV
gHO+1dl
A 880 260 880 650 9.0 090 8L°0 0€0 €50 6€0'20L'T 99/'vl2 2ST'6VT  €05'88L 000TI
LT G680 060 86°0 G50 €40 950 6.0 €20  9v0 296'T88'T G8L'00€  /8V'8C  €S6'ELS 0591
€T'¢ 080 880 60T 190 0.0 90 890 0¢°0 27’0 880'T86'T T6€'T0E GSE'6T 6v0'vLY 0581
L6°€ 090 6.0 4 6€0 090 920 ¢S0 ST0 €60  €08'€9T'C T€9'GTE 9ve'ST 166'T.C 00€l
16T €80 060 <60 860 v.0 ¥5°0 €L0 €0 S50  TLC6VLT v6.'SLC 118'16 69€'.€L  000TV
0g'e 690 €80 ve'1 90 990 9€°0 090 120 7’0 €02'€T0'C SS¥'00€ 699'6 892'Tvy 005V
89'G 60 TLO Y91 €€0 €90 920 6¥°0 ST0 2€0  128'102'C Tee'LTE T.6'7 9z20'T€C  N0SZV
509 7’0 690 €LT 620 050 220 L¥O €T0  0E0  ¥06'02CC 089'8T€ 869 A A\ AR 1A
¢e0T 9¢0 090 (444 8T0 S€0 10 €€0 800 120 6Ev'0ze'C cLL'9ze gze'e 129'00T 00TV
14A
€L0 G660 960 190 T.0 180 680 €60 ¥S0 0L0 VET'9SK'T 6EV'ScC  YT0'0ET  008'6.L  000TI
880 ¥6'0  S6°0 ¢L0 890 080 980 16°0 870 990  86C'0€9'T TeV'vie 129'7T 798'8LS 0991
06°0 ¥6'0  S6°0 9.0 190 6.0 G8°0 06°0 [0} 40] 650 TOS'T89'T €8T'vS¢C 8€¢ 6LL'€TS 0S8l
6ET 060 €60 80T vS0 0.0 ¥.0 ¥80 800  0E0  98STI8T €.6'29¢  SIT'E 050'50€ 00€l
€T 760 €60 €L°0 890 6.0 9.0 980 150 TL0  T2E'08S'T 9€9'60¢ 99.'/8 28T'9.9  000TV
4% ¢80 680 €6°0 090 €L0 1790 L1170 0 190 2S€'608'T 670'vEC 62¢'6 T19'CTY 00SVv
76'€ 890 080 92T 670 €90 80 .90 ¥€0 090 9PT'E86'T v9e'05C  9€8'Y Ly2'9TC  NO0SZV
494 G690 640 €T 90 190 1240 §9°0 T€0 87’0  ¥12'200'C L08'TSC €6y 798'G6T  S0SZV
G8°L 90 €90 08T ¢€0 V0 T€0 050 [44] 9€'0  069'980'C 192'65¢ 609'T 7v8'00T 00TV
n3do

(%) 10043 80<zd 4 (%)doq  80<zd  d 80<d  d 80< o %GIAVIN %G>dVIN S0 pasn

%S<I4dVIN %S>4VIN %S<4VIN %S>4VIN SANS panduw] # SANS [sued #

SdNS paindwi Aq abeaanod sbey aaxaew-a)buis Aq abeaanod

uolrelndwi Ja)e pue a10jaq ‘sjaued BuidAjoush Jeiasswiwiod yum dedeH | aseud a8y Jo abetano)

n3I3navie

NIH-PA Author Manuscript NIH-PA Author Manuscript NIH-PA Author Manuscript

Genet Epidemiol. Author manuscript; available in PMC 2011 September 19.



Page 29

Lietal.

‘wioyreld yoes Joj parejnqel ate sadAjoush jenjoe pue sadAloush paandwi UssMIBg UOITR[S1I00 8yl Ylm Jay1abo) ‘Aj1oali0oul paindwil alem Jeyl sa|aje 4o uoriodoid

ay sadAjouab paxsew ayy andwi o3 siapunoy dejydeH Jayio ays Joj sadArojdey yum Jayiaboy sadArouab (paxsewun) Bulurewas ayy pasn am ‘Ajjeuld ‘pajenjeas Buiaq wiogre|d [e1oIaWwwod ay} ul jussaid
J0U SJaxJew |[e 4o} sadAlouab |[e paysew pue uiny uj Japunoy depydeH yoes palapisuod uayl apn “deNdeH |1 aseyd ayl pue wioeid ayy usamiaqg padde|Jano yeys S1ax ew ay} uo pasnaoy am ‘uolrendwi
Buisn wuoeld BuidAloush yoes Jo abeianod ayl alenjens o ‘dNS awes ay) 1oy sadAjoush aniy pue dNS yoes Joy sadAlousah paindwi ussmiag diysuoiie|al syl 01 Jajal pue parejngel osfe ale uoneindwi Buisn
sansies abelano) ‘jaued ayy uo Bey 1saq sy pue jaued ayl uo Jou NS depndeH e usamiaq 71 Wnwixew ay) o} Iajal pue papinoid ate Buibbey Jaxrew-a)Buls reuonuaauod Buisn sonsiyels abelano) suola|buis

anduwi 01 1dwane 10U PIP 9N "%G< 10 9S> Aouanbauy aja|e Joulw yum Jayna ‘aindwi 03 pardwane am eyl SdNS 40 Jaquinu ay) Aq pamoy|oy S Jaquinu siy | d1ydiowouou a1am asay} J0 1sow ‘paisi|
os|e ale deyydeH paseyd ayp Ul Jou aJam eyl SANS 40 Jaquinu ay L “(eTg asesjal) sawosowolyd dejydeH paseyd ayp yim depsano yeyy waoield syl Ul SANS JO Jaquinu ayl sisi| a1qel ayy ‘wojreld yoes 1o

16'0 v60 960 180 0.0 80 S80 060 190 €0 BIS'S9E'T  2GZ'6€C  09G'9ST  /€8'82.  000TI
6T'T 260 60 190 690 9,0 080 880 /S0 TL0 GI6VEST  C96'65¢  GST'€Z  L08'TES 0391
9T 160 €60 ¥9°0 190 G0 8.0 /80 ¢S50 /90 €ST/8S'T  662'69¢  ¢CE'E€T  €10'/9% 058l
A4 780 880 88°0 /G0 690 850 S0 860  ¥S0 68C'SSL'T  9Sv'/82  1S8'ZT  TSL'.T 00¢l
(%) 10443 80<zd 4 (%) dog 80<  80<gd 80 %GAVIN  %S>HVIN IS0 pasn

%SZ4VIN %S>4VIN %S4VIN %G>4VIN SdNS pamnduy # SANS |dued #

SdNS paindwi Aq abeaanod

sbey aaxaew-a)buis Aq abeuanod

NIH-PA Author Manuscript

NIH-PA Author Manuscript

NIH-PA Author Manuscript

available in PMC 2011 September 19.

)

Genet Epidemiol. Author manuscript



Page 30

‘(pa1sa) aJe SdNS Juapuadapul

00T Sawnsse 1ey} pjoysaly} 1uoliaguog e 0} buipuodsariod ‘00T/S0°0) PAsN SI S000°0 4O PIOYS8IYl anfeA-d e pue padAl I luelIeA A3jigidadsns ay) uaym sisa) Jaxtew ajbuls 1oy Jamod 9,08 01 puodsaliod
sbumes asay | “AjaAnoadsal ‘960G pue 0Z ‘0T 'S ‘G2 = 4VIN YNM SANS 104 07T pue ‘0£S'T ‘STL'T '020°Z ‘00G'2 = HYD 195 8Mm ‘A|[eai3108dS "SANS Jaiel Jog st aAne|al adAlouab pasesioul am ‘4vIA
BuiAren ssoloe Jamod ajgesedwod ainsua o] “depydeH d1419ads uoifias yoea Joj paulelsadse siaxsew ayl Ul 10 1as dNS Bkl ayl ul papnjoul A1/essadau Jou Sem pue 4| ausinbal ayy ynm SdNS pale|nwis

11e Buowe wopuel Je paxdId sem juelieA A11j1gndsdsns ay) eyl 810N ‘Ploysalyl anjeA-d [eauidwa ay) spaadxa anjeA-d doy ayl aiaym sayedijdal Jo uontodoid sy 01 siagal Jamod ANj1qidadsns yiim parerdosse
Sem 4/l PaILIoads ayl Yim JuelieA e a1aym (Yoea S|01U0d 0OG pue sased 0og ‘uolbal Jad G) slaselep |041U02-ased 00G pare|nwis am ‘(4/IN) Aousnbauy a]ajfe Joulw paje|ngel yoea Jo} ‘Usy L "% J0 alel
10113 | dA) e Ul paynsal ‘uoiBal yaea ul 3 nsal Juedliubis 1sow ayy 03 paljdde Usym ‘Teyl pjoysalyl anjeA-d [ealdidwa sy} ysijgeIsa 01 pasn a1am SISA[euR asay | "|0JU0D pue aSed Ydea 0} SSL0SOWOoIyD Wopuel
10 Jred e Bulubisse Aq siaserep (uoibial Jad 0g) |INU 000°Z PazAeur pue pajejnwis 1si1y am ‘ased yoes uj *(.sedAouss paindwy,,) sadAiousb paindwi Jo sisAjeur ayy yum Jo (. sbe ] JaxteN nInn,,) [2002 ‘e
19 [1991nd 19002 ‘[ 18 18,8d] MNIT1d Aq paisabbns se sbey Jaxew-13jnw Jo SIsAfeue ayl yim pajuswbne uay) aiam synsai asay “Ajfeniul ‘(.sbel Jaxel ajbuls,,) Jaxew dNS Bel yoes e N0 pallied alam
S1S8) UOITRII0SSY "S|0JIU0D 00G PUB S8SEI 00G YIM UIed ‘SaIpnIs [04)U0D aSed JO SaLIas e pazAfeue pue pajejnwis uayl apA “(I4A Ul 9°0~ ‘NID ul 80~ abeJsane) uoibal ay) Jo abesanod pooh papiroid yeyy

sdNS Be1 00T >o1d 01 [aued siy1 pasn pue sdNS 00z~ Buipnjour depydeH paiejnwis e patelaush am ‘uoifal yoes 1o suoiBal QT pare|NWIS 00T JO SIS OM] JO SISAJeur 3y} WOJY S}NS8I SSZIIeWWNS 3]qel 3y L

%998 %t LL %t'GL %96 %9°€6 %0'€6 %05 = IVIN
%2'8L %9°0L %889 %16 %2 98 %9°'G8 %02 = 4VIN
%0'€L %8'€9 %29 %88 %b'8L %t LL %0T = 4VIN
%0°GS %0°'9€ %9°'GE %07L %95 %8'GS %G = AVIN
%9 €Y %9°2C %2 TC %2 95 %0°Ge %t 7T %G'C = 4V
LT0000 290000 £9000°0 0£0000  TL000'0 180000 PIOYsaIY} BN[eA-d [eauidw
sadAjousb  sBeyuaydew  sbeyuayew  sadAloush  sbey asexdew  sbey

paindwi  mNN albuis paindwi NN Jaxrew ajbuls

(14 A soiwiw @) 4emod (N30 satwiw @) 4emod

Lietal.

Jamod pasealoul ul 1jnsai sadAlousb paindw)
Al 3719VL

NIH-PA Author Manuscript NIH-PA Author Manuscript NIH-PA Author Manuscript

available in PMC 2011 September 19.

)

Genet Epidemiol. Author manuscript



Page 31

Lietal.

005 10 00Z = sazIs [aued 10} SpUNoJ QOT> PUe ‘00T = 9IS [aued YIIM SPUN0J 00Z~ ‘09 PUB OF = azIs [aued YlIm spunol 00g~ Jale pabiaauod ainpadoid uoneindwi ay | “sjgejrene alam sadAlousl diyo
dNS M/TE BUILN||| 8Y AJUO WOYM UO S[enpIAIpUl NOISN4 00§ 40 18s Juspuadapul Ue 4o} sadAiousb sndwi 01 [900Z ““Je 18 J3[JIA] T swosowolyd Jo uoifial ayepipued e uo SdNS TZS osfe pue diyd dNS
M/TE eulwn||| 8y} uo siaxsew loy adAjousb Apnis NOISNH 8yl WOy S[enpIAIpUL JO Siaquinu Jualaip pasn am ‘uoireindwi adAloush Jo Aoeindade ayy uo jaued aouaiayal Jablie| e Jo 10edwi 8y} slenjens o

6'86 7'96 120 ¥5°0 e 89'¢ 0¢0 005
L'86 6'v6 9¢€'0 L0 8EY €8y 9¢'0 00¢
v'L6 S'16 790 9T ¥8'L G509 vS'0 00T
L'96 006 96°0 88'T 9T¢ct evet 950 09
€6 6'€8 90°¢ 66'C 08'T¢ Ly'ee 10T 0€

%02<dVIN
2’66 L'L6 150 10T 09T T€T 690 005
6'86 0'L6 990 0€'T 9g¢ 89T ¢80 00¢
L'86 ¢'S6 0Tt 154 €9'¢ Gl'¢ et 00T
L'l6 1726 9T €Te 05'S €0y €8T 09
L'v6 ¥'S8 L€ 96'9 6Tl 10T 8Tt 0€

%0¢<AVIN
9v6 076 0T 00'¢ 90’6 9.9 70T 005
€16 §'/8 LET 89'C 6T€T 96'TT SE'T 00¢
6'/8 0c8 00¢ 68'¢ ce6l LTYT €6'T 00T
S8 'L 66'C €L ¥9'G¢ 6¢'8¢ 60'C 09
99 §'€9 ¥6'S 00'TT 96’y G599y ¥S'€ 0€

§'0>z4 Bel dNs a1buls 1sag

166 7.6 ov'0 6.0 e 96'T 90 00S
8'86 196 ¢s0 €0'T T4 LT'E 950 00¢
¢'86 9'€E6 880 €L'T 8y's 12504 S6°0 00T
G'/6 S'16 €T K4 '8 66, €T 09
916 L'v8 S6°¢C 99'g LC9T E€V'9T 8T'¢ 0€
SdNS IV

(%) 20 (%) (%) Joaus (%) 11e13n0 (%) d100Azowoy (%) (%) az1s [aued
uelpalN uesyy  Buryorew ois| v a|9|1e JoulN 91006AzoJs1oH  8106Azowoy  douala)eM #

a)9|e Jole|\

sayed 10449 Buiyorew a1dAouss

Aoeinaoe uoneindwi uo azis [aued aoualsyal Buisealoul Jo 198443
A 3J1gvLl

NIH-PA Author Manuscript NIH-PA Author Manuscript NIH-PA Author Manuscript

Genet Epidemiol. Author manuscript; available in PMC 2011 September 19.



Page 32

Lietal.

'sallofayes adAloush Aq pue
11eJan0 Y10 pajenjens ale [aAs] 91dA1ouab auy Je sajel Jo.ia uoreindwi pue (940z 40 4J0Ind Aouanbauy ajajfe Joulw) 4N & Buisn SNS aJel pue uowwod AjpAIe|al AQ UMOP UsX 04 aJe sainseaw Aoeindoe
uoneindw ‘sadAjousab paindwi pue anJ usamiaq 21 U1 81en[eAa 01 pue [aAs] Bf8][e pue adA1ouab ay 1e Aoeindge aulwialep 03 sadAlouah [ejuswiiadxa yiim patedwod aiam sadAlouab paindw) ‘sjenpialpul

NIH-PA Author Manuscript NIH-PA Author Manuscript NIH-PA Author Manuscript

Genet Epidemiol. Author manuscript; available in PMC 2011 September 19.



Page 33

Lietal.

annisod-asfe) g ‘yidap x ¢ 1e sfenplAIpul 0oy ul) pajjed alam swisiydiowAjod aanisod asje) may e Ajuo ‘AjjealdA ] “saiis asoyl 1e saseq 40 Aoeinade ayl Yim Jay1abol paisi| i salls aAnIsod-as|e)

10 Jaquinu 8y “wsiydiowAjod e pajjea JadAojdey ayy a1aym suonisod Joj S)NSal 9ZLIBWWNS SUWN|OI [BJBASS 1XaU 8 ‘[enpiAlpul yoes ul sadAiousb parejnwis [enioe ayl woJy palayip sadAioush paindwi
16°8T 40 abeiane ue ‘Yidap x  1e paouanbas alem sjenpiAIpul 00 Uaym ‘ajdwexa 1o+ ‘sa}is dlydiowouow pue dlydiowAjod ssosoe ‘Aaeinae BuidAoldey |[esano ayl sazirewwns [enpiaipul Jad sioss
abeiane Yim uwinjod ayl "0°'T HORIN ‘JedAojdey Jno 01 Indul se papiaoid usyl alem (SPOYIBIN 93S) PaAIasqo alam aseq aAljeulsle yoes Jo saidod ajdinw alaym salls Je SJunod peay %z 0 JO aled Jo1le aseq
J1ad e pey pue Buo| dg-zg a1am speal pare|nwis "(00T = U 10} paulexa os[e sem abesanod x 00z) uoibal ayl Jo abelanod x 009'T PUe x 00y USaMIS] JO JUBWISAAU [e10) e Juasaldal 0) palaa|as alam syidap
3yl (x 91— x T) syidap BuiAren 1e (00 10 00Z ‘00T = U) S[enpIAIpUI JO 185gNS e 10} Blep aduanbas unbioys payesausb am ‘usyl 'qT 40 seaibap axij-deindeH yim sfenpiAipul ul suoibal qINT paleinwis apn

- 9TT'C - 065 - 1474 - 60S - 62L'y - - - e8] e8]
76'66 9TT'C 16°66 065 16'66 %47 06°66 ey 26'66 85¢'T L1'66 8 16'8T 8E'6TS x 009T Xy
68'66 91T'C 7866 065 €8'66 (53474 7866 68€ 98'66 906 G966 a4 86°G¢ 0v'€SS x 00T x€
11'66 9T1T'C G966 689 7966 €6€ 89'66 10€ ¢L'66 ¢eS Y766 e€ve e oy G8'8YS x 008 x¢
¥1°66 9TT'C 76°86 0.5 GT'66 96¢ 2E'66 6v1 05'66 €81 20'66 474 G678 €5°0LY x 00¥ xT

yoeoudde unhioys e Buisn paouanbasai sfenpialpul 00y = U

- 9T1T'C - 065 - {1474 - 1214 - 628'C - - - e8] e8]
16'66 9TT'C 16°66 065 L6'66 STy 16'66 Sz 86°66 ¥59°T 89'66 ve 62'6 0€'66T x 009T x8
96'66 91T'C ¥6°66 06S 7666 SOy §6°66 98¢ §6°66 0.2'T L9'66 14 9EVT ¥¥'60C x 00T x9
06'66 9T1T'C 9866 189 G8'66 8.€ G8'66 0Te ¥8'66 YEL Ly'66 4] 81'G¢ S0'8¥¢ x 008 4
6566 9TT'C Tv'66 999 9v'66 862 2566 98T 95°66 G9¢ /8'86 6T¢ AWie] ¥.°05¢ x 00¥ xC

yoeoudde unBloys e Buisn paousnbasau sfenpiAlpul 00z = U

- 9TT'C - 689 - SOy - ¥8¢ - 928'T - - - e8] e8]
66'66 9TT'C 00°00T 989 00°00T L6€ 00°00T 89¢ 66°66 et 67'66 €€ 6T°¢C 6ETS x 009T x 9T
86'66 91T'C 6666 G89 66'66 S6€ 86°66 1S€ 86°66 0TE'T 7’66 [44 09y 9v'GS x 00¢T xcl
¥6'66 STT'C ¥6'66 <89 7666 69¢€ 76°66 60€ ¢6°66 566 0€'66 69 06°CT 68°€S x 008 x8
99'66 STT'C 29'66 0SS 09'66 98¢ 29'66 88T 15°66 (0147 Zv'86 ey 10°SY 2998 x 00¥ X ¥
¥8'86 60T'C 8186 Sor 18'86 9.7 8.°86 06 6.°86 9.7 176 66 ¢€90T ST'SL x 00¢ x¢

yoeoudde unbioys e Buisn paouanbasal sfenpialpul 00T = U

(%) sdNS (%) sdNS (%) sdNS (%) sdNS (%) SdNS (%) sdNS fenpialpur - diyaad - JuawIsaAUl urdap
Adeandoe  peyoslag  Adedndde  paldele@  Adeundoe  payoslag  Adeanddy  peloslag  Adedndde  paldals@  Adedandoe  ssaisod  uad saoads (g un) el Buiouanbas
PRIV RIEN PRIV PRIV IEN asjed abesany Wbus)
abeaany
%S<dVIA yum %S¢ AVIN %¢-TdVIN %T1-50dVIN %G >4VIN yum Sals sased 000'000°T
SIS 9TT¢C Yum salis 065 UM S3)IS Gz UMM $3)IS 0TS SaMIs 9T/9T a1ydowouow zv9'6.6

Aduanbauay uonireindod o3 Buipaodoe payehaabss ‘sans oiydiowAjod 85e‘0z

ndui se eyep aousnbas unbioys Buisn sadAjousb paindul Jo AoeIndoy
IN319VvLl

NIH-PA Author Manuscript NIH-PA Author Manuscript NIH-PA Author Manuscript

available in PMC 2011 September 19.

)

Genet Epidemiol. Author manuscript



Page 34

Lietal.

‘Burouanbas 10y pPa1da]as S|eNPIAIPUI JO 13S 8y} Ul JUBLIBAUL aJe A8y} asnedaq Ajduwis a1ydiowAjod se paiods Jou ale says Auew
‘SdNS JaJel oy Aj[e10adss ‘Jeyy 810N ‘salls asoy) e Aoeinade Buljjed aseq [e4an0 ay) pue paijnuspl salis alydiowAjod Jo Jaquinu ayi uo papiao.d si uorewloul ‘ssejd Aouanbal) yoes 104 *(SBWOSOWOIYd
000°0T = N Jo ajdwes e wouy parejnajed) Aouanbaiy Aq padnolb are asay) pue uoireindod ay3 ul o1ydiowAjod Ajniy a1am Jey sauls 10} S} NSal 9ZIIBWWINS SUWN|0D 1XauU a8y "(paniasqo atam swisiydiowAjod

NIH-PA Author Manuscript NIH-PA Author Manuscript NIH-PA Author Manuscript

Genet Epidemiol. Author manuscript; available in PMC 2011 September 19.



Page 35

Lietal.

‘pare|nge) osje si sadAjouab aniy

pue s|jea adAlouab pandwi ussmiag 21 pereLunss ey ‘uonippe uj ‘saus snobAzowoy pue snobAzois1ay e Adeinaoe ajeedss eyy solew Ajenb jeuonippe siuasald Ing ‘| A 8]qeL 01 snobojeue si ajqel SIyL

05'66 16°66 76°66 9v'L6 15°66 16°66 9I'v6 18'86 16°66 65°68 0€'26 06'66 1908 69'96 26°66 % 009T xm\
166 7866 6866 Ly'S6 S0'66 7866 0¥'06 89°L6 €866 L1978 G8'G6 ¥8'66 L6'TL €156 9866 x 00CT VW
81'86 €966 11°66 0016 ¥9°L6 G9'66 28'¢8 90°56 ¥9°66 9L'vL ¢E'E6 89'66 ¢c09 02'€6 ¢L'66 x 008 vm
/8'€6 2’86 ¥1°66 Tr'SL L0°06 76°86 zEY9 Gv'98 GT'66 8999 9T'98 ZE'66 6797 66'68 05'66 x 00¥ m
yoeoudde unbioys e Buisn paouanbasal sjenpiAipul 0oy WM_

18'66 96°66 16°66 6766 2866 16°66 0¢'86 95'66 16°66 L0°L6 €66 L6'66 8516 8566 86'66 x 009T VW
99'66 76°66 96°66 LE'86 69'66 76°66 12796 2E'66 76°66 TEV6 6.°86 G6'66 T€'68 81'66 56°66 x 00CT Mo
61°66 98'66 06°66 7856 2’66 98'66 €816 8¢'86 G8'66 vE'L8 69°L6 G8'66 81'8L ¢E'86 7866 x 008 VM
86'96 €66 6566 ¥6'G8 16°G6 766 S6°LL 9T'v6 9v'66 6€°TL LT'V6 ¢5'66 LT'19 L¥'96 99'66 x 007 me
yoeoadde unfroys e Buisn paousnbasai sfenpiAipul 002 HW

L6°66 86'66 66°66 06'66 86°66 00°00T 0866 96°66 00°00T 0,66 56°66 00°00T 6€°66 66'66 6666 x 009T X m
68'66 96°66 86°66 ¢9'66 06°66 66°66 0€°66 1866 66°66 8/'86 18'66 86'66 07'86 96'66 86'66 x 002T X m_”
€9'66 06°66 76°66 Zv'86 09'66 76°66 41 7566 76°66 85°96 2566 76'66 ¥6°'16 98'66 26°66 % 008 VWW
6L°L6 1566 99'66 LT'16 ¥1°86 29'66 GE'G8 S.°L6 09°66 0808 G1'86 ¢9'66 66°89 61°66 1966 x 007 e
8L'C6 1816 7886 19'9L 66°€6 8.'86 €789 ¥6'€6 1886 w19 87'G6 8/'86 85°09 Cv'86 6186 x 002 VMN
yoeoudde unbioys e Buisn pasusnbasal sfenpiaipul 00T 53

(%) 21 (%) (%) (%) 21 (%) (%) (%) 21 (%) (%) (%) 24 (%) (%) (%) (%) (%) WawIseAUl udgp
abesog  Adeanaoe  Aoeunode  gfesoq  Adeandoe  Aoedndoe  ofesoq  Adeunooe  Ajeandoe  ofesoq  Adedndde  Adeunooe  gfesog  Adednade  Adeunaode  [el0L Bulouanbay

o[ IeH - dRIE IV oI IeH - 2RI IV JljRlleIH  dlRIE IV JgleIeH  dlRIE IV B[R IeH  dRIE NIV
%S<dVIN %S¢ 4VIN %¢-T 4VIN %71-9'0 dVIN %S'0>4dVIN
Y3IM S8)IS 9TTZ UMM SIS 065 UM S3MIS i YHM 9IS 0TS UM S81IS 9T/‘9T

Aouanbauy uoireindod o3 Buipaodoe payehiaabas ‘sans olydiowAjod 85e‘0z

NIH-PA Author Manuscript

saLaw Ayifenb feuonippe ‘andui se eyep sausnbas unbioys Buisn sadAlousb paindwi Jo Aoeindoy

IIN319VL

NIH-PA Author Manuscript

NIH-PA Author Manuscript



1duasnuey Joyiny vd-HIN 1duasnue Joyiny vd-HIN

wduosnue Joyiny vd-HIN

Lietal.

TABLE VI
MaCH vs. IMPUTE in the HGDP populations

Best Best
Population Continental group  MaCH (%) IMPUTE (%)
Bantu Africa 42.64 42.64
BiakaPygmy  Africa 33.06 33.17
Mandenka Africa 51.31 50.71
MbutiPygmy  Africa 29.74 30.44
San Africa 25.81 25.91
Yoruba Africa 52.42 53.93
Colombian Americas 58.06 57.46
Karitiana Americas 49.19 49.09
Maya Americas 67.14 66.43
Pima Americas 54.54 53.73
Surui Americas 45.56 45.36
Balochi Central South Asia 65.42 64.31
Brahui Central South Asia 66.63 65.02
Burusho Central South Asia 69.56 69.46
Hazara Central South Asia 69.05 68.15
Kalash Central South Asia 67.14 64.92
Makrani Central South Asia 69.56 67.44
Pathan Central South Asia 67.04 67.14
Sindhi Central South Asia 67.54 66.23
Uygur Central South Asia 70.77 69.35
Cambodian East Asia 65.83 64.52
Dai East Asia 62.90 62.60
Daur East Asia 64.42 64.92
Han East Asia 69.25 69.46
Han-NChina  East Asia 63.21 62.00
Hezhen East Asia 65.42 65.02
Japanese East Asia 67.54 66.73
Lahu East Asia 60.69 61.09
Miao East Asia 62.80 61.69
Mongola East Asia 64.92 65.83
Naxi East Asia 62.30 62.10
Orogen East Asia 69.76 69.35
She East Asia 62.80 63.10
Tu East Asia 67.24 66.94
Tujia East Asia 63.41 63.21
Xibo East Asia 65.12 64.72
Yakut East Asia 70.67 69.86
Yi East Asia 63.71 62.20
Adygei Europe 69.25 67.04
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Best Best
Population Continental group MaCH (%) IMPUTE (%)
Basque Europe 73.39 72.68
French Europe 71.47 71.27
Italian Europe 70.67 70.26
Orcadian Europe 64.01 64.52
Russian Europe 72.58 71.88
Sardinian Europe 67.94 67.94
Tuscan Europe 64.01 64.92
Bedouin Middle East 63.71 62.40
Druze Middle East 66.73 66.83
Mozabite Middle East 63.71 63.51
Palestinian Middle East 67.94 66.03
Melanesian Oceania 56.75 56.15
Papuan Oceania 52.12 49.50
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For each of the 52 HGDP populations, we picked the reference panel (CEU, JPT+CHB, YRI, or three combined) that resulted in the highest

coverage (measured by r2 between experimental genotypes and imputed fractional counts) for MaCH and IMPUTE v0.5.0.
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