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Abstract
Genome-wide association studies (GWAS) can identify common alleles that contribute to complex
disease susceptibility. Despite the large number of SNPs assessed in each study, the effects of
most common SNPs must be evaluated indirectly using either genotyped markers or haplotypes
thereof as proxies. We have previously implemented a computationally efficient Markov Chain
framework for genotype imputation and haplotyping in the freely available MaCH software
package. The approach describes sampled chromosomes as mosaics of each other and uses
available genotype and shotgun sequence data to estimate unobserved genotypes and haplotypes,
together with useful measures of the quality of these estimates. Our approach is already widely
used to facilitate comparison of results across studies as well as meta-analyses of GWAS. Here,
we use simulations and experimental genotypes to evaluate its accuracy and utility, considering
choices of genotyping panels, reference panel configurations, and designs where genotyping is
replaced with shotgun sequencing. Importantly, we show that genotype imputation not only
facilitates cross study analyses but also increases power of genetic association studies. We show
that genotype imputation of common variants using HapMap haplotypes as a reference is very
accurate using either genome-wide SNP data or smaller amounts of data typical in fine-mapping
studies. Furthermore, we show the approach is applicable in a variety of populations. Finally, we
illustrate how association analyses of unobserved variants will benefit from ongoing advances
such as larger HapMap reference panels and whole genome shotgun sequencing technologies.
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INTRODUCTION
Most ongoing genome-wide association studies (GWAS) rely on a commercial SNP
genotyping panel that directly assays only a small fraction of SNPs in the human genome
[Carlson et al., 2003; The International HapMap Consortium 2005]. In these scans, the
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majority of SNPs in the genome must be evaluated indirectly using one or more of the
genotyped SNPs as proxies [Barrett and Cardon, 2006; Pe’er et al., 2006]. Despite the ability
of individual genome-wide association scans to identify common alleles that make large
contributions to disease risk and a subset of the loci with smaller effect [Hirschhorn and
Daly, 2005], many alleles that contribute to complex disease can only be identified through
the meta-analysis of multiple genome-wide scans [for specific examples, see Lettre et al.,
2008; Sanna et al., 2008; Willer et al., 2008, 2009]. Although it is possible to assign SNPs
genotyped in each study as proxies for SNPs genotyped in the other studies [Carlson et al.,
2004; de Bakker et al., 2005; Lin et al., 2004; Nicolae, 2006; Zaitlen et al., 2007], meta-
analyses of GWAS conducted in this manner would be cumbersome because of the limited
overlap between the different commercial panels and because different choices of proxies
for a particular SNP might lead to somewhat different conclusions.

GENOTYPE IMPUTATION
A much more attractive approach for cross study analyses is to combine genotypes
generated by the International HapMap Consortium, [The International HapMap
Consortium, 2005] with genotypes from individual studies, and then use a haplotyping
algorithm that can handle genome scale data to impute genotypes at untyped markers in each
study [Scheet and Stephens, 2006]. This strategy results in a situation where all studies are
“genotyped” at all the markers examined by the HapMap consortium (albeit some markers
are genotyped using conventional means and others are genotyped in silico [Burdick et al.,
2006]). The approach relies on the intuition that even two apparently “unrelated” individuals
can share short stretches of haplotype inherited from distant common ancestors. Once one of
these stretches is identified using genotypes for a few SNPs, alleles for intervening SNPs
that are measured in one of the individuals, but not the other, can be imputed. Provided
shared haplotype stretches are identified correctly, imputed genotypes will be accurate
unless they have been disrupted by gene conversion or mutation events.

INITIAL EVALUATION OF IMPUTED GENOTYPES AND HAPLOTYPES
Here, we systematically evaluate the genotype imputation approach outlined in the
paragraph above using our Markov Chain Haplotyping algorithm (MaCH 1.0; see Appendix
for implementation details). To estimate haplotypes, our approach starts by randomly
generating a pair of haplotypes that is compatible with observed genotypes for each sampled
individual. These initial haplotype estimates are then refined through a series of iterations. In
each iteration, a new pair of haplotypes is sampled for each individual in turn using a
Hidden Markov Model (HMM) that describes the haplotype pair as an imperfect mosaic of
the other haplotypes. Model parameters that characterize the probability of change in the
mosaic pattern between every pair of consecutive markers and the probability of observing
an imperfection in the mosaic at each specific point are also updated. After many iterations
(typically 20–100), a consensus haplotype can be constructed by merging the haplotypes
sampled in each round.

HAPLOTYPING
Our approach was inspired by the Markov models commonly used for pedigree analysis [for
examples, see Abecasis et al., 2002; Kruglyak et al., 1996; Lander and Green, 1987] and
shares several features with other HMMs used to describe sampled haplotypes as a mosaic
of a set of reference haplotypes [Daly et al., 2001; Li and Stephens, 2003; Mott et al., 2000;
Stephens and Scheet, 2005a]. In order to evaluate its performance, we simulated two sets of
100 1 Mb regions that mimic the degree of linkage disequilibrium (LD) in the HapMap CEU
and YRI samples [Schaffner et al., 2005]. In each region, we simulated genotypes for ~200
markers, ascertained to mimic HapMap I allele frequency patterns [Marchini et al., 2006], in
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90 individuals with 2% of the genotypes missing at random. We then used our method to
reconstruct individual haplotypes and tallied three measures of haplotyping quality
[Marchini et al., 2006]: (1) the number of incorrectly imputed missing genotypes, (2) among
heterozygous sites, the number of consecutive sites that are phased incorrectly with respect
to each other (this is the number of “flips” required to transform estimated haplotypes into
the true haplotypes, after masking incorrectly imputed sites), and (3) the number of perfectly
inferred haplotypes. The three measures were averaged over all 100 regions and the results
are summarized in Table I. For comparison, the table also includes results for PHASE
[Stephens and Scheet, 2005b; Stephens et al., 2001] and fastPHASE [Scheet and Stephens,
2006], two state of the art haplotyping algorithms [Marchini et al., 2006], and for BEAGLE
[Browning, 2006] and PL-EM [Qin et al., 2002], two alternative haplotyping algorithms that
are very computationally efficient. Table I clearly shows that our method is competitive in
all three measures: our method results in slightly fewer incorrectly imputed genotypes,
requires slightly fewer flips to transform imputed haplotypes into the true haplotypes, and
produces slightly more correctly inferred haplotypes over the entire 1 Mb stretch than
PHASE, which was the second best method. Furthermore, note that estimates of haplotypes
and missing genotypes obtained in 5–20 min using our method are comparable in quality to
those produced by PHASE runs averaging ~1 day.

GENOTYPE IMPUTATION FOR UNTYPED MARKERS
Encouraged by these initial results, we proceeded to apply our method to impute genotypes
for untyped markers in the Finland United States Investigation of NIDDM genetics
(FUSION) GWAS [Scott et al., 2007]. Since a previous analysis suggested LD patterns in
the HapMap CEU and in FUSION are similar [Willer et al., 2006], we used genotypes for
290,690 autosomal markers with allele frequency >5% in the Illumina 317K SNP chip and
haplotypes for 2.5M polymorphic markers in the phased HapMap CEU chromosomes as
input. After running the haplotyping procedure described above, we estimated the most
likely genotype at each position (taking a majority vote across all iterations) and the
expected number of copies of the minor allele at each position (a fractional value between 0
and 2) for each individual. We obtained similar results running the haplotyping procedure
for 50–100 iterations or using only a smaller number of iterations (10–20) to estimate model
parameters and then calculating maximum likelihood estimates for the missing genotypes
and allele counts. Different chromosomes were analyzed in parallel and, overall, imputing
genotypes for 2,335 unrelated individuals took <2 days for each of the largest chromosomes
on a 2006 vintage 2.40GHz Pentium Xeon processor. In total, we imputed genotypes for
2,266,562 SNPs per individual. On average, our method used stretches of ~150 kb from the
HapMap CEU panel to reconstruct haplotypes for individuals in the FUSION sample.

IMPUTATION IN THE FUSION GENOMEWIDE ASSOCIATION STUDY
To evaluate the quality of imputed genotypes, we contrasted our estimates of the most likely
genotypes and the expected number of copies of the minor allele with actual genotype data
for three sets of markers: 521 SNP markers in a region of chromosome 14 previously
examined to fine-map a candidate linkage region [Willer et al., 2006], 1,234 SNP markers
selected to augment coverage of the Illumina 317K panel in regions surrounding 222
candidate genes [Gaulton et al., 2008] and 12,702 markers with MAF <5% not included in
the set of 290,690 markers used for imputation. We expected the last two panels of markers
to be harder to impute, because they represent SNPs that are not well tagged by the Illumina
317K SNP chip or that have lower MAF. We observed that 98.60% of imputed alleles
matched actual genotyped alleles in the fine-mapping panel, 96.24% in the candidate gene
panel, and 98.73% in the low MAF SNP panel. Furthermore, the average r2 between
imputed genotypes and actual genotypes was 90.4, 79.1, and 74.0% in the three SNP panels,
respectively. This represents an improvement of 14–39% compared to the best available
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single marker tags, which provided an average r2 of 76.5, 52.8, and 35.5% in the three SNP
panels, respectively.

MEASURES OF IMPUTATION QUALITY
Our Markov Chain produces three estimates of imputation quality and these can be used to
focus analyses on subsets of high-quality genotypes. First, it produces a quality score that
estimates the accuracy of each imputed genotype and is simply the proportion of iterations
where the final imputed genotype (by taking a majority vote across all iterations) was
selected. Second, it produces an overall measure of the accuracy of imputation for each
marker, which is the genotype quality score averaged across all individuals. Finally, by
comparing the distribution of sampled genotypes in each iteration with the estimated allele
counts that result from averaging over all iterations, it produces an estimate of the r2

between imputed and true genotypes (see Methods for more details). Quality measures for
individual genotypes were good predictors of imputation accuracy (Supplementary Figure 1,
Right Panel) and show that most imputed genotypes are called with a high degree of
confidence (Supplementary Figure 1, Left Panel). For example, as measured by their quality
scores, the top 95% of genotypes had average quality scores of 98.9% and actually matched
experimental genotypes 98.6% of the time. Most of the errors affect a single allele so that,
when measured on a per allele basis, concordance increases to 99.3%.

To avoid preferential removal of rare genotypes or alleles at each marker, we recommend
using the per marker quality scores to select a subset of imputed SNPs for analysis, instead
of the per genotype quality scores. Overall, we saw a correlation of 0.77 between the
estimated and actual accuracy of imputed genotypes for each marker. We also saw a
correlation of 0.84 between the r2 estimated by our method and the actual r2 that resulted
from comparing experimentally derived allele counts with their imputed estimates. Figure 1
shows the ROC curve [Pepe, 2003] for the two quality measures, showing that the estimated
r2 measure is a more effective way to identify poorly imputed markers. In the FUSION
GWAS scan [Scott et al., 2007], we used an r2 threshold of 0.30 to decide which markers
were well imputed and should be included in further analyses, and which were not. At this
threshold, we expect to remove 70% of poorly imputed markers (those where r2 with
experimental genotypes is <20%) but only 0.50% of better imputed markers (those where r2

with experimental genotypes is >50%).

IMPUTATION OF STRONGLY ASSOCIATED SNPS
The results summarized so far compare a variety of imputed genotypes with experimentally
derived counterparts. However, a more interesting comparison focuses on imputed
genotypes that appear to show strong evidence for association, as those might motivate
further downstream experiments. To evaluate the accuracy of imputed genotypes for these
“strongly associated SNPs,” we compared imputed and experimental genotypes in regions
that were only selected for follow-up genotyping after imputation (for example, because
imputed genotypes resulted in strong evidence for association but nearby genotyped markers
did not). Table II summarizes the comparison of allele frequencies, association test statistics,
and individual genotype calls between imputed genotypes and actual genotypes later
determined by genotyping. Overall, it is clear that even among these strongly associated
SNPs imputation provided accurate estimates of the true P-values. The largest observed
discrepancies were for rs17384005, rs11646114, and rs4812831, which were also the three
markers for which our imputation approach estimated lower r2 with actual genotypes.
Imputation is particularly useful because it allows evidence for association at SNPs with no
reliable proxies to be evaluated more accurately. For instance, after imputation, average r2

increased from 0.22 to 0.66 in the set of SNPs whose best genotyped proxy had r2<0.30 and
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from 0.33 to 0.75 in the set of SNPs whose best genotyped proxy had r2<0.5 [for specific
examples of disease susceptibility loci that would be missed without imputation, see Li et
al., 2009b].

USING IMPUTATION TO ESTIMATE PAIRWISE DISEQUILIBRIUM
Remarkably, we observed that imputed genotypes could also be used to obtain very accurate
estimates of LD between pairs of untyped markers, or of LD between a genotyped marker
and an untyped marker. As shown in Figure 2, estimates of LD between two SNPs obtained
using imputed data are much closer to the results obtained by actually genotyping the two
SNPs than estimates obtained by looking up the two markers in the HapMap CEU database
(Supplementary Figure 2 shows a similar comparison for D’ estimates). Even with some
imprecision in estimates of individual genotypes, the increased sample size compensates to
reduce variation in the estimated LD measures.

COMPARISON OF DIFFERENT GENOTYPING PLATFORMS
Our experience with the FUSION GWAS, summarized above, shows that imputation can be
an effective way to estimate unobserved genotypes and/or allele counts. These genotypes
can then be used in a variety of downstream analyses, including logistic regression analyses
for discrete traits and linear regression analyses for quantitative traits, and to facilitate meta-
analysis of studies based on different platforms. A key issue when considering imputation-
based approaches is whether similarly accurate estimates of unobserved data points can be
obtained with different genotyping panels or in different populations [Clark and Li, 2007],
and to evaluate this we conducted two additional experiments.

In the first experiment, we used genotype data generated by the International HapMap
Consortium. We considered each of the HapMap samples in turn and masked available
genotypes so as to mimic an experiment using one of several commercially available chips.
For example, to evaluate the Affymetrix 500K SNP chip, we marked genotypes for all
markers that are not on the chip as missing for the individual being considered. We then
used haplotypes for the remaining individuals on the same HapMap analysis panel (either
YRI, CEU, or JPT+CHB) to impute the missing genotypes. The results are summarized in
Table III and clearly show that a large number of SNPs can be imputed very accurately
using any of the commercially available panels (e.g. with r2>0.80 to experimental
genotypes) and that, compared to relying on single marker tagging, imputation results in
improved coverage of the genome.

Depending on the commercial panel and population being investigated, coverage of
HapMap SNPs (proportion of SNPs with r2>0.80) increased by 10–30% for low MAF
alleles (MAF<5%) and by 10–20% for more common alleles (MAF>5%). In agreement with
this result, the average r2 between each untyped SNP and imputed genotypes was up to 40%
higher on average when using imputed genotypes than when using the best available single
marker proxy. Imputation remained valuable even for panels with ~1 million directly
genotyped SNPs. In practice, the results shown in Table III are likely to represent an upper
bound on the performance of our method in real settings, because additional errors will
result from discrepancies in genotyping protocols between individual laboratories and the
HapMap and from differences in LD patterns between the HapMap and the samples being
studied. Nevertheless, they suggest our method is likely to be helpful for a variety of
currently available commercial SNP panels.
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IMPUTATION IN DIVERSE POPULATIONS
In a second experiment, we evaluated the performance of our method in 927 samples from
52 populations in the Human Genome Diversity Project (HGDP). In a previous evaluation of
tag SNP portability, these 927 samples were genotyped for 1,864 SNPs in 32 autosomal
regions (average minor allele frequency 0.15–0.24, depending on population) [Conrad et al.,
2006]. The regions were selected to represent regions of high and low LD across the
genome. Each region spanned ~330 kb, including a central “core” region of ~90 kb, where
~60 SNPs were attempted, and two ~120 kb flanking regions on either side, where ~12
SNPs were attempted. To evaluate the performance of genotype imputation across these
diverse populations, we selected a thinned marker set including 872 SNPs spaced ~10 kb
apart across all 32 regions. We then used these SNPs to impute genotypes for the remaining
992 SNPs and evaluated our approach.

Figure 3 shows the proportion of incorrectly imputed alleles in each of the populations.
Results are presented using a single HapMap analysis panel as a reference (either the CEU,
YRI, or CHB+JPT) or using all HapMap samples as a larger reference panel. For each of the
populations, the reference panel that resulted in the smallest overall error rate is highlighted.
Overall, African samples were the most difficult to impute, with error rates ranging between
5.13% for the Yoruba and 11.86% for the San when the HapMap YRI panel was used as a
reference. In other parts of the world, we generally observed that the HapMap CEU
provided a good reference panel for European populations and that the HapMap CHB+JPT
provided a good reference panel for East Asian populations, resulting in error rates of <3.34
and <2.89%, respectively. Outside Europe and East Asia, when imputation was applied to
populations from the Middle East, Central and South Asia, the Americas or Oceania, it was
generally better to use the combined HapMap sample as a reference than to use any single
HapMap analysis panel as a reference. It is interesting to note that, in all cases, combining
the three HapMap panels into a single reference set was either the best option or the second
best option. Furthermore, in situations where this combined reference panel reduced
imputation accuracy, it resulted in an average increase of only 0.15% in error rates. Our
results are consistent with those of Huang et al. [Huang et al., 2009] who showed, in a
smaller subset of HGDP populations and a different set of genotyped SNPs, that combined
reference panels could outperform panels that included only one population. The figure also
illustrates that, when a large number of individuals are genotyped in study samples, it may
be possible to bypass the HapMap reference panel altogether. In the last panel, rather than
using the HapMap genotypes to impute missing data, we used a combined dataset including
all other HGDP populations.

Figure 4 focuses on the estimated r2 between imputed and observed allele counts. In each
stripe, accuracy of imputation is assessed using a different reference panel. Superimposed in
pink is the coverage that would be provided by single marker tagging approaches. Broadly,
it is clear that imputation using an appropriate reference panel will improve coverage. Using
an inappropriate reference panel (for example using the HapMap CEU to impute genotypes
for one of the African populations), can result in imputed genotypes and allele counts that
are not as strongly correlated with the true genotypes as the best available single marker tag
but, even then, the loss appears to be small. Importantly—in all cases—combining the three
HapMap panels resulted in substantial improvements in coverage over single marker tagging
—suggesting that this might be a cautious approach when the choice of reference panel is
unclear. Combining the three HapMap panels is also a good choice for genotype imputation
in admixed populations [Mathias et al., 2010] where, depending on the ancestry of each
stretch of the genome, the best matching haplotype will likely originate from a different
HapMap reference panel. Our conclusion that the combined panel is a sensible reference for
all populations facilitates practical decision making on the choice of reference panel. The
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conclusion is also supported by Huang et al. [Huang et al., 2009]. Although their aim was to
find an optimal population-specific reference panel for each HGDP sample, their Figure 6
shows that a combined panel, including all HapMap haplotypes is the best compromise
choice, in the sense that it performs almost optimally in each of the 39 HGDP populations
examined. In the future, we expect that imputation methods that weigh the different
reference panels could further improve imputation quality.

IMPACT OF IMPUTATION ON POWER OF ASSOCIATION STUDIES
Our evaluation of imputed genotypes in the FUSION, HapMap, and HGDP samples clearly
shows that imputation can be very accurate in a variety of populations. In this way, we
believe it will be an important tool for combining results across studies that rely on different
marker panels. To investigate whether using imputed genotypes might also improve power
in individual studies, we carried out a simulation experiment. As previously described
[Schaffner et al., 2005], we simulated 10,000 chromosomes for a series of 1 Mb regions.
Within each region, simulated LD patterns mimicked the HapMap CEU or YRI [Schaffner
et al., 2005]. We then used a subset of 120 simulated chromosomes to generate a region
specific “HapMap.” As described in the methods, we then picked the minor allele for a
randomly selected polymorphic site in each region as the “disease susceptibility allele” and
simulated a set of 500 case and 500 control individuals using the remaining chromosomes.
The susceptibility allele varied in frequency between 2.5 and 50%, with larger simulated
effect sizes assigned to rarer alleles to ensure comparable power in a hypothetical fully
genotyped sample. We also simulated 2,000 datasets where the disease allele had no effect
to calibrate region-wide type I error rates for each approach.

To analyze each region, we thinned SNPs in the simulated HapMap to match the density and
allele frequency spectrum of the Phase II HapMap [The International HapMap Consortium,
2007]. Using the thinned data, we selected a panel of 100 tag SNPs for each region that
included the 90 tag SNPs with the largest number of proxies and 10 additional SNPs
selected at random among the remaining tags. This approach resulted in panels that captured
~78% of the common variants (MAF>5%) in the simulated CEU HapMap, similar to the
real life performance of the Illumina 317K SNP genotyping chip. Finally, we analyzed each
of the simulated datasets using the selected marker panel and one of three analysis
strategies: (a) single marker chi-squared association tests, (b) single and multi-marker
association tests [Pe’er et al., 2006] as suggested by the PLINK [Purcell et al., 2007]
program based on the simulated HapMap, or (c) tests using imputed allele counts for all the
markers in the simulated HapMap. Results are summarized in Table IV. The first row in the
table shows the significance thresholds used for each analysis (since approaches (b) and (c)
both increase the total number of tests, note that the P-value threshold increases slightly
when multi-marker tests are used and increases further when imputation is used).
Subsequent rows summarize power for markers of different allele frequencies. In
populations with strong LD, it is clear that for common susceptibility alleles the single
marker tests provide high power and that imputation or multi-marker analyses provide only
small gains in power. However, for rarer alleles (such as those with frequencies <5%),
imputation can provide dramatic increases in power. For instance, power increased from
24.4 to 56.2% when the disease allele frequency was 2.5% and imputation was used in the
panel with CEU-like LD. As large genome scans and meta-analyses that are well-powered to
evaluate rarer variants with modest effects are completed, we believe that imputation will
become an increasingly important primary analysis and there are now examples of
confirmed disease susceptibility loci that would have been missed without genotype
imputation [Li et al., 2009b].
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PRACTICAL CONSIDERATIONS
A key ingredient for any imputation-based approach is to ensure that alleles are consistently
labeled across studies. In our evaluation of FUSION and HGDP samples, using the HapMap
as a reference, we were fortunate that a subset of the HapMap individuals were genotyped in
each study for quality control. Contrasting the genotypes for these quality control samples
with those generated by the HapMap Consortium made the usually laborious process of
ensuring consistent allele labeling across labs much easier. We strongly recommend that all
labs conducting GWAS genotype a small number of HapMap individuals for this purpose.

Another practical consideration arises when integrating data from studies that use diverse
genotyping platforms. Superficially, it is tempting to first impute missing genotypes in each
sample and to then conduct a pooled analysis of all available data. However, this is almost
never a good idea, as illustrated by a particularly extreme case where a set of cases and
controls have been genotyped on two different platforms and a marker of interest has been
genotyped in cases but must be imputed in controls. If the marker of interest cannot be well
predicted by flanking markers, imputation will default to suggesting that the genotype
distribution at that marker matches the reference panel—but this could be a very poor
assumption if the reference panel and study sample have drifted apart, potentially resulting
in spurious association. Even if the marker can be well predicted by flanking markers, it is
possible that the reference panel and the case sample used different genotyping assays that,
for technical reasons such as the presence of a polymorphism that overlaps assay primers,
give consistently distinct results—again resulting in spurious association. To avoid these
sources of spurious association, we recommend that, when analyzing genotype data
generated using different platforms, different versions of the same platform, or using the
same platform but with experiments carried out at different labs, an initial round of
association analysis should be carried out using data from each platform/version/site
combination. The results from this initial round of analysis can then be meta-analyzed,
minimizing the risk of artifacts. This recommendation does preclude analyses where all
cases are genotyped at one site, and all controls are genotyped at a different site.

In the experiments described so far, we illustrated the accuracy of genotype imputation that
relies on existing resources (such as the Phase II HapMap) and genotyping technologies
(including a variety of commercial genotyping chips). It is likely that both these resources
and technologies will continue to evolve rapidly and it is interesting to consider how these
developments might impact imputation-based approaches. For example, it is clear that
genotyping chips of the future will be able to examine an ever larger number of tag SNPs in
a cost-effective manner. Extrapolating from Table III, it is clear these should provide
improved genomic coverage, eventually allowing investigators to impute nearly all HapMap
SNPs with near perfect accuracy. Nevertheless, it is also clear from Table III that when
coupled with imputation-based analyses even relatively low-density SNP chips can provide
excellent coverage of the genome in populations with LD patterns similar to the CEU, JPT,
and CHB. Thus, we expect the main advantages of new higher-density chips will be in the
study of populations with less extensive LD, such as the YRI, and in the analysis of rarer
variants.

THE FUTURE: LARGER REFERENCE PANELS
Another interesting possibility to consider is the impact of larger HapMap reference panel
on imputation or, similarly, the utility of using extra genotype data on a subset of individuals
in a study to aid imputation in the remaining individuals in the study. To evaluate these
possibilities, we generated a reference panel with varying numbers of Finnish individuals
(between 30 and 500, see Table V) and used these reference panels to impute genotypes for
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521 SNPs in an independent set of 500 individuals from the FUSION study of type II
diabetes. Imputation accuracy and genomic coverage increase noticeably with the larger
reference panels, with overall discrepancy rates between typed and untyped alleles as low as
0.40% when a reference panel of 500 unrelated individuals is available. One of the reasons
for this increase in accuracy is that the length of haplotypes shared between individuals in
the reference panel and those in the study sample increases gradually as the size of the
reference panel increases. For example, mosaic fragments used to reconstitute the FUSION
samples using the individuals in the 500-sample reference panel were slightly >1 Mb long
on average. These long stretches are easier for our Markov model to identify and are also
likely to descend from a more recent common ancestor. This means they will have
undergone fewer rounds of gene conversion and mutation, which gradually erode haplotype
similarities and reduce the quality of our imputed genotypes. Overall, our results suggest
that either genotyping a number of the study samples for markers of interest or increasing
the size of the public reference panels will greatly improve the quality of genotype
imputation.

THE FUTURE: COMBINING IMPUTATION WITH NEW SEQUENCING
TECHNOLOGIES

With the rapid development of very high-throughput re-sequencing technologies [Bentley,
2006], it is oft proposed that genotyping-based approaches will soon become outdated. Re-
sequencing-based approaches capture variants that are absent from public databases
including, potentially, population specific variants. Our haplotyping approach can use whole
genome re-sequencing data as input. In this setting, it uses information from individuals with
similar haplotypes to reconstruct patterns of variation in regions where deep coverage is not
available. In principle, the approach could be useful to help describe regions that, due to
chance, are poorly covered in a particular sequencing experiment or to allow for economical
evaluation of many individuals. To evaluate the possibilities, we simulated data for ten 1 Mb
regions and simulated shotgun sequence data for each region. We simulated reads that were
only 32 base pairs long and with a per base-pair error rate of 0.2%. Very roughly, these
correspond to the performance of early versions of next generation re-sequencing
technologies; newer versions of these technologies can generate longer and more accurate
reads and should thus outperform the simulations presented here. We then re-sequenced
between 100 and 400 individuals at different depths and used our approach to reconstruct
haplotypes and genotypes for each individual. Note that the simulated reads are typically too
short to include useful information on phase (because they will generally include only zero
or one sites that truly differ from the reference sequence). In addition, given the large
number of bases examined, they will also suggest a large number of false polymorphic sites.
To control false-positive variant calls, it is imperative to confirm true polymorphic sites
either by examining overlapping similar reads from the same individual or, potentially, from
other individuals who share a similar haplotype.

For each site, we counted the number of times that the reference base or an alternative base
was sequenced for each individual. For computational convenience, we only considered sites
where both bases were observed several times (see Appendix for detailed methods and
implementation details) in downstream analyses and assigned the most frequently sampled
base to all other sites. On this scale, the shotgun re-sequencing approach typically
characterized ~4,000 polymorphic sites across the sampled individuals - ~4 × the SNP
density of the Phase II HapMap. Even relatively light shotgun re-sequencing provided very
accurate haplotypes for each individual. For example, when 400 individuals were sequenced
at 4 × depth, there were only 18.97 errors per individual on average (over 1,000,000 base-
pairs). Across ~980,000 sites that were monomorphic in the population only 82 false
polymorphisms were called on average. Accuracy was also excellent at sites that were
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polymorphic in the population. For example, 3,558 of the 3,641 simulated polymorphic sites
with MAF>0.5% were identified and, at these sites, alleles were called with an accuracy of
99.93% (see Tables VI and VII). For any given depth, imputed accuracy increased with the
number of sequenced individuals (for example, accuracy at sites with MAF >0.5% was
~98.8% when 100 individuals were sequenced at 2 × coverage but increased to ~99.7%
when 400 individuals were sequenced at the same depth; the number of errors per individual
decreased similarly from 106.3 per individual to 40.3 per individual). In addition, the depth
required to achieve a given accuracy decreased as the number of sequenced individuals
increased: achieving 99.9% accuracy for sites with population MAF >0.5% requires ~8 ×
depth for 100 individuals, ~6 × depth in 200 individuals and only 4 × depth in 400
individuals. In each case, note that error rates are higher at heterozygous sites than at
homozygous sites. Again, performance of the approach with larger numbers of individuals
improves because the mosaic fragments described by our model increase in length and, thus,
become easier to find. This is also reflected in the accuracy of estimated haplotypes, which
—when compared with simulated haplotypes—have ~1 switch per 50 kb when 100
individuals are examined, but ~1 switch per 500 kb when 400 individuals are examined. We
expect that combining shotgun re-sequencing of whole genomes with imputation-based
approaches such as ours will allow economical association studies that evaluate SNP
variation in large numbers of individuals even more exhaustively than is currently possible.
Furthermore, we expect that whatever the characteristics of the re-sequencing technology
used, it will be possible to improve the quality of estimated genotypes and haplotypes at
each site by combining information across individuals, rather than simply increasing the
depth at which each individual is sequenced.

DISCUSSION
In summary, we have described and evaluated a very effective model for haplotyping and
genotype imputation in whole genome studies. The idea of genotype imputation is not new
and was outlined as early as 2006 [Scheet and Stephens, 2006]. Here, we evaluate the
practical performance of imputation based on a variety of genotyping platforms and
populations, using both simulations and real data. We show that our model leads to imputed
genotypes whose quality improves as more data becomes available, either because a larger
reference panel is used or because study samples are genotyped in finer detail. Similarly,
haplotype estimates improve in quality as more individuals are genotyped. Furthermore, we
have introduced novel approaches for the analysis of short read shotgun sequencing data,
which is likely to become extremely important as human geneticists move beyond chip-
based genotyping to resequencing (as in the 1,000 Genomes Project, whose initial design
was partly based on the simulations summarized in our Table VI, see
http://www.1000genomes.org for more details).

Other approaches for genotype imputation have been developed independently [Marchini et
al., 2007; Servin and Stephens, 2007]. We expect that our results demonstrating the utility of
larger reference panels, showing that the three HapMap analysis panels can be combined to
better impute genotypes in populations that are genetically distant from the HapMap
analysis panels, illustrating the ability of imputation-based approaches to estimate LD
between untyped markers, and comparing the relative performance of imputation-based
approaches for different commercial marker panels will apply when these alternative
approaches for genotype imputation are used. The approaches differ in the precise details of
how they search for shared haplotype stretches and also in the efficiency of their
computational implementations. For example, whereas [Marchini et al., 2007] rely on
recombination rates generated by the HapMap Consortium and assume a uniform mutation/
error rate for all markers, we estimate “recombination rates” within each dataset and allow
“mutation rates” to vary. These parameters capture not only intrinsic characteristics of the
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markers and regions being examined, but also—for example—the genetic distance between
the samples being imputed and the reference panel (which can impact apparent
“recombination rates”) and differences in genotyping protocols between the two samples
(which can impact apparent “mutation rates”).

We expect that, in small samples, the use of external recombination rate estimates (as in
IMPUTE) might be beneficial, but that with large sample sizes or in the presence of
genotyping error our approach, which uses available data to model “recombination” and
“mutation” rates should become advantageous. We performed two sets of preliminary
comparisons of MaCH and IMPUTE. In the first experiment, we applied IMPUTE
[Marchini et al., 2007] to the FUSION GWAS data for chromosome 14 and estimated
genotypes for 521 previously genotyped markers [Willer et al., 2006]. Genotypes estimated
by IMPUTE and MaCH were identical in 99.2% of cases. In the cases where the two
estimates differed, IMPUTE matched experimental genotypes 44.6% of the time, MaCH
matched experimental genotypes 52.3% of the time, and both estimates were wrong 3.06%
of the time. For the second experiment, we applied IMPUTE to the HGDP data of Conrad et
al. [2006]. Table VIII tabulates the proportion of markers imputed with r2>0.80 in each
population using either MaCH or IMPUTE (in each case, we selected the HapMap reference
panel that provided the best imputed genotypes). Overall, the two methods perform
similarly. MaCH slightly outperforms IMPUTE in 37 out of 52 populations, slightly
underperforms in 13 populations and the two methods are tied in the remaining two
populations. Our results are consistent with other published comparisons [Biernacka et al.,
2009; Pei et al., 2008], which include detailed comparisons of the performance of MaCH
and IMPUTE with each other and with alternative imputation approaches such as BEAGLE
and fastPHASE.

Our method uses an HMM to describe genetic variation along each haplotype. It is clear that
when HMM models are applied to genetic data, many opportunities for identifying
computational efficiencies exist [Abecasis et al., 2002; Gudbjartsson et al., 2000; Idury and
Elston, 1997; Kruglyak and Lander, 1998; Lander and Green, 1987]. In the methods section
we describe several optimizations that we have already implemented, including a general
strategy for reducing memory requirements for the Baum algorithm [Baum, 1972; Wheeler
and Hughey, 2000]. We expect that further efficiencies will be forthcoming. Our model is
implemented in the MaCH package (freely available with C++ source code from our
website, see http://www.sph.umich.edu/csg/abecasis/mach/). Our implementation can be
used to carry out all the analyses described in this paper. Specifically, it can estimate
haplotypes, impute missing genotypes in a variety of populations, using the HapMap sample
or another set of densely genotyped individuals as a reference, analyze shotgun re-
sequencing data from high-throughput technologies now being developed, and carry out
simple tests of association.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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APPENDIX

DETAILED METHODS DESCRIPTION
HIDDEN MARKOV MODEL

Our model resolves a set of unphased genotypes G into an imperfect mosaic of several
template haplotypes. We assume that H template haplotypes are each genotyped at L loci
and let Tj(i) denote the allele observed at locus j in reference haplotype i. Furthermore we
define a series of indicator variables S1, S2, …, SL that denote an hypothetical (and
unobserved) mosaic state underlying the unphased genotypes. At a specific position j there
are H2 possible states. A specific state, such as Sj = (xj, yj), indicates that the first
chromosome uses haplotype xj as a template, whereas the second chromosome uses
haplotype yj as a template.

We are interested in making inferences about the sequence of mosaic states S that best
describe the observed genotypes. Knowledge of S will implicitly order alleles at
heterozygous sites and suggest an allele for each untyped location. We define the joint
probability of the observed genotypes and an underlying haplotype state as:

In the model above, P(S1) denotes the prior probability of the initial mosaic state and is
usually assumed to be equal for all possible configurations, P(Sj | Sj−1) denotes the transition
probability between two mosaic states and reflects the likelihood of historical recombination
events in the interval between j and j−1, P(Gj|Sj) denotes the probability of observed
genotypes at each position conditional on the underlying mosaic state and reflects the
combined effects of gene conversion, mutation, and genotyping error. Interestingly, note
that, whereas, our model and IMPUTE both use a large number of haplotypes as templates,
fastPHASE [Scheet and Stephens, 2006] uses a smaller set of estimated haplotype
“groupings” as templates in an otherwise similar HMM, resulting in improved
computational efficiency at the cost of some fuzziness in haplotype templates.

MONTE-CARLO HAPLOTYPING PROCEDURE
To estimate haplotypes in a sample of genotyped individuals we first assign a random pair of
haplotypes to each individual, consistent with the observed genotypes. This involves
randomly ordering alleles at each heterozygous site and sampling alleles at untyped sites
according to population frequencies. Then, we update the haplotypes for each individual in
turn by using the current set of haplotype estimates for all individuals as templates and
sampling S proportional to the likelihood L(S|G) ∝ P(G,S). Note that since the Sj define a
Markov Chain this sampling can be done conveniently using Baum’s forward and backward
algorithm [Baum, 1972]. A new set of haplotypes for an individual is then defined according
to sampled mosaic and edited to ensure it matches the observed genotypes. We repeat the
update procedure several times, looping over all individuals (more updates result in gradual
refinement of the estimated haplotypes, but very accurate haplotype estimates can often be
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obtained in ~20 rounds, see Table I). After a pre-specified number of rounds are completed,
we generate a pair of consensus haplotypes for each individual. This consensus haplotype
pair is defined as the pair that minimizes total switch error when compared to the haplotypes
sampled at each round.

PARAMETER ESTIMATION
Key ingredients in the above procedure are the transition probabilities P(Sj | Sj−1) and
emission probabilities P(Gj | Sj). We define the transition probabilities as a function of the
crossover parameter θj:

The possible values of P(Sj | Sj−1) reflect both the overall rate of changes in the mosaic for
the interval, given by θj, and the fact that when a change occurs a new mosaic state is
selected at random among all possible states.

We let T(Sj) = T(xj)+T(yj) denote the genotype implied by state Sj and define the emission
probabilities P(Gj | Sj) as a function of the error parameter εj:

Initially, we let set θj = θ = 0.01 and εj = ε = 0.01 or some other suitable constant. As we
sample a new mosaic state for each individual we keep track of the number and location of
change points in the mosaic and of the number of times that the genotype implied by the
sampled mosaic state matches the observed genotype (or not). These quantities are then used
to update the θj and εj parameters for the next iteration. It is important to avoid setting either
θj = 0 or εj = 0, as that could make it difficult for our Markov sampler to investigate different
mosaic configurations. To avoid this, a combined crossover parameter is estimated for
intervals with a small number of sampled changes in mosaic state and an analogous
procedure is employed for markers with a small number of observed mismatches between
the mosaic and observed genotypes.

Overall, we expect the θj will reflect a combination of population recombination rates and
the relatedness between the haplotypes being resolved and the true underlying haplotypes
(for example, if CEU chromosomes are used as templates to resolve CHB genotypes we
expect, on average, higher θ estimates than when other CHB individuals are used as
templates). We considered using distance between flanking markers to inform estimates of
θj (since θ’s are generally larger in larger intervals), but did not find noticeable
improvements. Overall, we expect that εj will reflect a combination of genotyping error,
gene conversion events, recurrent mutation and, when genotype data from multiple
platforms or laboratories is used, assay inconsistencies between different platforms. We
observed slightly lower data quality measures (completeness, duplicate concordance,
Hardy–Weinberg test statistics) for markers with large estimates of εj in the FUSION
GWAS.
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GENOTYPE IMPUTATION AND ESTIMATES OF IMPUTATION QUALITY
Genotype imputation analyses proceed similarly to the haplotyping analyses described
above, but do not require each sampled haplotype configuration to be stored. Instead, after
each iteration, a series of counters is updated to indicate the number of times each genotype
was sampled at a particular position. Once all iterations are completed, these counters give
an indication of the relative probability of observing each possible genotype and can be used
to impute the most likely genotype and to calculate various measures of the quality of
imputed genotypes.

Without loss of generality, consider a SNP with alleles A and B. Let nA/A, nA/B, and nB/B be
the number of times each possible genotype was sampled after I = nA/A + nA/B+nB/B
iterations. For downstream analysis of imputed alleles, we typically consider either the most
likely genotype or the expected number of copies of allele A. The most likely genotype is
simply the genotype that was sampled most frequently. The expected number of counts of
allele A is the genotype score g = (2nA/A + nA/B)/I. Both of these quantities can be
conveniently incorporated into a variety of analysis, including regression-based association
analysis of discrete or quantitative traits.

To measure the accuracy of imputation for a single imputed genotype IG, we define the
genotype quality score Q = nIG/I. This quantity can be averaged over all genotypes for a
particular marker to quantify the average accuracy of imputation for that marker. We have
found that a better measure of imputation quality for a marker is the estimated r2 between
true allele counts and estimated allele counts (Fig. 1). This quantity can be estimated by
comparing the variance of the estimated genotype scores with what would be expected if
genotype scores were observed without error. For a given SNP, let Var(g) be the variance of
estimated genotype and let p = Mean(g)/2 be the estimated frequency of allele A. The
estimated r2 with true genotypes can then be defined as

An alternative definition is

Empirically, we have found that while both definitions lead to similar conclusions, the first
definition appears to be marginally better.

ASSOCIATION ANALYSIS USING IMPUTED GENOTYPES
When analyzing the FUSION data [Scott et al., 2007], we included imputed genotype scores
as predictors in a logistic regression that also included age, sex, and geographic origin as
covariates. For analyzing simulated case-control data, we simply used a t-test to compare the
average genotype scores in cases and controls. Other approaches to the analysis of imputed
data are possible but, in our experience, the imputed genotype scores provide a good balance
between computationally demanding multiple imputation procedures [Servin and Stephens,
2007] and analyses that simply use the most likely genotype.

HMM FOR SHOTGUN SEQUENCE DATA (SIMULATIONS)
When shotgun re-sequencing, or another single molecule re-sequencing technology, is used
on diploid individuals, genotypes are not directly observed. In this case, we assume the data
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consists of counts Aj and Bj indicating how many times base A (or B) was observed at site j.
We then define our HMM as

Here, we sum over possible genotypes at each site and calculate the probability of the
observed traits for each possible genotype set. In addition, we define the probability of
observing a specific set of traces given the underlying genotype as

The parameter δ denotes the per base sequencing error rate and can be separated from the
effects of mutation and gene conversion captured in ε, unless the re-sequencing depth is very
low.

In principle, the method could be applied to all sites where an alternative base call is
observed at least once. However, since we simulated many short reads and an error rate of
0.2%, the minor allele was observed at least once at nearly every simulated position. For
reasons of computational efficiency, we applied the MaCH 1.0 haplotyper only to positions
were the minor allele was observed multiple times. Specifically, we defined mkj as the
number of traces where the minor allele was observed at position j in individual k. Then, we
defined the score wj = Σk mkj(mkj + 1)/2 and applied our haplotyping algorithm to all sites
where wj exceeded a predefined threshold (other sites were assumed to contain the major
allele). The score gives higher weight to sites where the minor allele is observed multiple
times in the same individual. We used thresholds for wj of 5, 7, 9, 11, 13 depending on
whether the total coverage (defined as depth × individuals) was 200, 400, 800, 1,200, or
1,600 ×. When the number of individuals sequenced was 400, these thresholds were reduced
to 4, 6, 8, 10, and 12, respectively. This means that, for example, when 400 individuals were
re-sequenced at 4 × depth (total depth = 1,600 ×) we considered only sites where the minor
allele was observed in at least 12 traces from different individuals or slightly fewer traces
concentrated in one or more individuals.

HMM FOR SHOTGUN SEQUENCE DATA (SIMULATIONS)
The model described above is convenient for the analysis of simulated data where the per
base error rate is constant. For analyses of real data, where base quality scores are associated
with individual bases, we adapted our implementation to use P(base calls, quality scores |
G) as stored in Genotype Likelihood Files generated by samtools [Li et al., 2008, 2009a].

COMPUTATIONAL EFFICIENCY
A number of optimizations are possible to increase the computational efficiency of our
model. For example, since haplotype states are unordered only H(H+1)/2 distinct states must
be considered at each location, rather than H2 distinct states. Below, we summarize some of
the other efficiencies that we identified and how these are implemented in MaCH.

TRANSITION MATRICES
When sampling a mosaic state S conditional on the observed genotypes G, we rely on the
Baum algorithm. The algorithm requires a series left and right conditioned probability
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vectors which provide an indication of the relative probability of a specific state at a given
location conditional observed genotypes at markers to its left (or right). For example, the
probability of observing state (x,y) at location j conditional on all preceding genotypes is
simply:

The calculation of these probabilities can be sped up by taking advantage of the regular
patterns in the transition matrices. Specifically, we define the quantities:

Then, the previous definition becomes:

When this updated definition is used to calculate left conditional probabilities for each
possible state, computational requirements become O(H2) rather than O(H4) using the
original definition, provided that C(a) and C are pre-computed. An analogous speed up is
available for right-conditioned probabilities.

MEMORY EFFICIENCY
One large computational constraint when applying our algorithm on a genomic scale is the
storage required to track left-conditioned probabilities. Typically, this requires storage of L
vectors each with H2 elements (or, as noted above H(H+1)/2 elements). It is clear that this
requirement becomes cumbersome as the number of polymorphic sites increases. We
devised a solution that requires storage of only 2*sqrt(L) vectors. For notational convenience
let K = sqrt(L). Our algorithm pre-allocates 2K vectors and organizes these into two groups:
a framework set of K vectors, and a working set of another K vectors. When left-conditional
probabilities are first calculated, proceeding left to right, we store every Kth vector in the
framework set and discard other intermediate results. Then, as these vectors are used in the
second pass of the chain (which combines left and right conditional probabilities, proceeding
right to left), we recalculate K of these vectors at a time (starting from the nearest vector in
the framework set) and store them in the working set of vectors. Completing the full chain
requires calculation of all L vectors of left conditional probabilities, recalculation of K of
these vectors L/K times, and calculation of L vectors of right conditional probabilities.
Overall, our solution no more than doubles computing time (since each vector of left
conditional probabilities must be calculated twice), but reduces memory requirements from
O(L) to O(L1/2). The solution is general and can be applied to many other HMMs (see also
[Wheeler and Hughey, 2000]).

REDUCING THE NUMBER OF TEMPLATES
If all available chromosomes are used as templates, the complexity of our algorithm will
increase cubically with sample size (because the cost of each update increases quadratically
and the number of updates increases linearly with sample size). One way to avoid this is to
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restrict the size of the template pool. When there are more than a pre-specified number of
potential templates (say H > 300), we typically select a random subset of these for each
update. With this restriction, the complexity of our algorithm increases only linearly with
sample size (because the cost of each update now remains fixed and only the number of
updates to be performed grows). Furthermore, even though each update is based on only a
random sample of the available haplotypes, the overall quality of solutions still increases
with sample size. When the focus is on genotype imputation, rather than haplotyping, an
alternative is to use as templates individuals who have been genotyped for the markers being
imputed (e.g. the HapMap reference samples). Both of the above solutions are heuristics that
trade-off some accuracy for computational efficiency. An alternative strategy for reducing
the size of the template pool is to consider local similarities and redundancies among the
haplotypes in the pool. These redundancies are already exploited to increase computational
efficiency in the handling of other Markov models [Abecasis et al., 2002; Markianos et al.,
2001], and our preliminary implementations suggest that speed-ups of 5–10 × are possible
for our haplotyping model.
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Fig. 1.
ROC curve comparing two measures of data quality. For imputed SNPs on chromosome 14,
where both imputed and actual genotypes were available, we evaluated the ability of two
different measures of data quality (the estimated concordance between imputed and true
genotypes and the estimated r2 between imputed and true genotypes) to discriminate
between poor and well imputed SNPs. Both estimates of imputation quality are calculated
without using the actual observed genotypes.
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Fig. 2.
Imputation improves quality of LD estimates. For imputed SNPs on chromosome 14, the
figure compares estimates of LD obtained by genotyping both SNPs (“Results from Actual
Genotyping,” X axis) with estimates of LD obtained by imputing genotypes for both SNPs
using markers on the 317K marker chip (“Results from Imputed Data,” Y axis, Top left),
obtained by imputing genotypes for one of the SNPs (“Results from Imputed Data,” Y axis,
Bottom Left) or obtained from the HapMap CEU panel (“Results from HapMap CEU,” Y
axis, Top and Bottom Right).

Li et al. Page 22

Genet Epidemiol. Author manuscript; available in PMC 2011 September 19.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 3.
Evaluation of imputation accuracy across HGDP panels. For each of 52 populations in the
Human Genome Diversity Panel (HGDP) a set of 872 SNPs distributed evenly across 32
regions, each ~330 kb in length, was used to impute 992 other SNPs. The 992 imputed SNPs
were located near the middle of each imputed region. Imputation was done using either the
HapMap YRI, CEU, CHB+JPT, or a combination of three HapMap panels (first four panels,
best panel is shaded in gray) or using the remaining HGDP samples as a reference. In each
case, the proportion of correctly imputed alleles is tabulated. The figure is based on a re-
analysis of data of Conrad et al. [2006].
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Fig. 4.
Evaluation of imputation accuracy across HGDP panels. Genotypes for a set of 992 SNPs
were imputed in the HGDP and then compared with actual genotypes. For each pair of true
and imputed genotypes an r2 coefficient was calculated and averaged for each population.
The best set of HapMap reference individuals for each population is shaded. The coverage
obtained by using the best available tag SNP (rather than imputed genotypes) is overlaid in
pink. See Figure 3 legend for further details.
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TABLE VIII

MaCH vs. IMPUTE in the HGDP populations

Population Continental group
Best

MaCH (%)
Best

IMPUTE (%)

Bantu Africa 42.64 42.64

BiakaPygmy Africa 33.06 33.17

Mandenka Africa 51.31 50.71

MbutiPygmy Africa 29.74 30.44

San Africa 25.81 25.91

Yoruba Africa 52.42 53.93

Colombian Americas 58.06 57.46

Karitiana Americas 49.19 49.09

Maya Americas 67.14 66.43

Pima Americas 54.54 53.73

Surui Americas 45.56 45.36

Balochi Central South Asia 65.42 64.31

Brahui Central South Asia 66.63 65.02

Burusho Central South Asia 69.56 69.46

Hazara Central South Asia 69.05 68.15

Kalash Central South Asia 67.14 64.92

Makrani Central South Asia 69.56 67.44

Pathan Central South Asia 67.04 67.14

Sindhi Central South Asia 67.54 66.23

Uygur Central South Asia 70.77 69.35

Cambodian East Asia 65.83 64.52

Dai East Asia 62.90 62.60

Daur East Asia 64.42 64.92

Han East Asia 69.25 69.46

Han-NChina East Asia 63.21 62.00

Hezhen East Asia 65.42 65.02

Japanese East Asia 67.54 66.73

Lahu East Asia 60.69 61.09

Miao East Asia 62.80 61.69

Mongola East Asia 64.92 65.83

Naxi East Asia 62.30 62.10

Oroqen East Asia 69.76 69.35

She East Asia 62.80 63.10

Tu East Asia 67.24 66.94

Tujia East Asia 63.41 63.21

Xibo East Asia 65.12 64.72

Yakut East Asia 70.67 69.86

Yi East Asia 63.71 62.20

Adygei Europe 69.25 67.04
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Population Continental group
Best

MaCH (%)
Best

IMPUTE (%)

Basque Europe 73.39 72.68

French Europe 71.47 71.27

Italian Europe 70.67 70.26

Orcadian Europe 64.01 64.52

Russian Europe 72.58 71.88

Sardinian Europe 67.94 67.94

Tuscan Europe 64.01 64.92

Bedouin Middle East 63.71 62.40

Druze Middle East 66.73 66.83

Mozabite Middle East 63.71 63.51

Palestinian Middle East 67.94 66.03

Melanesian Oceania 56.75 56.15

Papuan Oceania 52.12 49.50

For each of the 52 HGDP populations, we picked the reference panel (CEU, JPT+CHB, YRI, or three combined) that resulted in the highest

coverage (measured by r2 between experimental genotypes and imputed fractional counts) for MaCH and IMPUTE v0.5.0.
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