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PURPOSE. To present and evaluate a new methodology for
combining longitudinal information from structural and func-
tional tests to improve detection of glaucoma progression and
estimation of rates of change.

METHODS. This observational cohort study included 434 eyes of
257 participants observed for an average of 4.2 � 1.1 years and
recruited from the Diagnostic Innovations in Glaucoma Study
(DIGS). The subjects were examined annually with standard
automated perimetry, optic disc stereophotographs, and scan-
ning laser polarimetry with enhanced corneal compensation.
Rates of change over time were measured using the visual field
index (VFI) and average retinal nerve fiber layer thickness
(TSNIT average). A Bayesian hierarchical model was built to
integrate information from the longitudinal measures and clas-
sify individual eyes as progressing or not. Estimates of sensitiv-
ity and specificity of the Bayesian method were compared with
those obtained by the conventional approach of ordinary least-
squares (OLS) regression.

RESULTS. The Bayesian method identified a significantly higher
proportion of the 405 glaucomatous and suspect eyes as having
progressed when compared with the OLS method (22.7% vs.
12.8%; P � 0.001), while having the same specificity of 100%
in 29 healthy eyes. In addition, the Bayesian method identified
a significantly higher proportion of eyes with progression by
optic disc stereophotographs compared with the OLS method
(74% vs. 37%; P � 0.001).

CONCLUSIONS. A Bayesian hierarchical modeling approach for
combining functional and structural tests performed signifi-
cantly better than the OLS method for detection of glaucoma
progression. (ClinicalTrials.gov number, NCT00221897.) (In-
vest Ophthalmol Vis Sci. 2011;52:5794–5803) DOI:10.1167/
iovs.10-7111

Detection of progression plays a central role in the diagno-
sis and management of glaucoma and standard automated

perimetry (SAP) remains the method of choice for monitoring

functional changes in the disease. However, there is evidence
that many patients can present structural changes in the optic
nerve or retinal nerve fiber layer (RNFL) before detectable
changes in SAP.1–9 On the other hand, several patients show
evidence of functional deterioration without measurable
changes in currently available structural tests.4,5,10 The dis-
agreement between structural and functional methods for de-
tecting progression could be related to the different algorithms
used to assess change, the variability of measurements over
time, or the different scales used to assess structure and func-
tion.8,10–19 Whatever the reason might be, it is likely that a
combination of structural and functional measurements would
improve detection of clinically significant disease progression
compared with either method used alone.

An ideal method for detection of glaucomatous progression
should give not only an indication of whether the eye or the
patient is showing progression, but also an estimate of the rate
of deterioration. Although most glaucoma patients show some
evidence of progression if followed up long enough, the rate of
deterioration can be highly variable among them.9,20–23 Al-
though most patients progress relatively slowly, others have
aggressive disease with fast deterioration that can eventually
result in blindness or substantial impairment unless appropri-
ate interventions are made. The elucidation of the longitudinal
relationship between structural and functional tests and their
rates of change over time is essential to determine the relative
utility of these tests in monitoring the disease.

In the present study, we propose a new methodology for
combining longitudinal information from structural and func-
tional tests to improve detection of glaucoma progression and
estimation of rates of change. This approach is based on joint
modeling of longitudinal changes using Bayesian hierarchical
models. The joint modeling approach enables a better charac-
terization of the true underlying relationship between struc-
tural and functional tests, as it decreases the impact of mea-
surement error by incorporating it in a simultaneous model of
the two longitudinal outcomes. By joint modeling of the two
outcomes, information derived from one test is allowed to
influence the inferences obtained from the other. For example,
a visual field change that would otherwise be declared non-
statistically significant by analysis of visual field data alone may
be declared significant after taking into consideration the struc-
tural changes occurring in the same eye. We applied our
methodology to an investigation of longitudinal changes in SAP
and RNFL thickness in a cohort of glaucoma patients and
individuals suspected of having the disease followed over time.

METHODS

This was an observational cohort study. Participants from this study
were included in a prospective longitudinal study designed to evaluate
optic nerve structure and visual function in glaucoma (DIGS; Diagnos-
tic Innovations in Glaucoma Study) conducted at the Hamilton Glau-
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coma Center, University of California, San Diego. Participants in the
DIGS were longitudinally evaluated according to a pre-established
protocol that included regular follow-up visits in which patients un-
derwent clinical examination and several other imaging and functional
tests. All the data were entered in a computer database. All participants
from the DIGS study who met the inclusion criteria described below
were enrolled in the present study. The whole period of observation
for the present study was from March 2002 to October 2010, but
patients were enrolled at different times and had different durations of
follow-up. Informed consent was obtained from all participants. The
University of California San Diego Human Subjects Committee ap-
proved all protocols, and the methods described complied with the
tenets of the Declaration of Helsinki.

At each visit during follow-up, subjects underwent a comprehen-
sive ophthalmic examination, including review of medical history, best
corrected visual acuity, slit lamp biomicroscopy, intraocular pressure
(IOP) measurement, gonioscopy, dilated funduscopic examination,
stereoscopic optic disc photography, and automated perimetry (SITA
Standard 24-2). Only subjects with open angles on gonioscopy were
included. The subjects were excluded if they presented best corrected
visual acuity less than 20/40, spherical refraction outside � 5.0 D.
and/or cylinder correction outside 3.0 D or any other ocular or sys-
temic disease that could affect the optic nerve or the visual field.

The study included patients with diagnosed glaucoma as well as
those with suspected disease, as determined on the baseline visit. Eyes
were classified as glaucomatous if they had repeatable (two consecu-
tive) abnormal visual field test results on the baseline visits, defined as
a pattern standard deviation (PSD) outside the 95% normal confidence
limits, or a Glaucoma Hemifield Test result outside normal limits. Eyes
were classified as having suspected glaucoma if they had a history of
elevated intraocular pressure (�21 mm Hg) and/or glaucomatous or
suspicious appearance of the optic nerve but normal and reliable visual
field results on the baseline visits.

The study also included a cohort of healthy subjects recruited from
the general population and from hospital staff. These subjects had
normal-appearing optic discs and no evidence of progressive optic disc
damage over time, by masked optic disc stereophotograph assessment.
They also had normal visual fields at the baseline visit and no history of
elevated IOP. This cohort was used to assess the specificity of our
proposed methodology.

Standard Automated Perimetry

Only reliable tests (�33% fixation losses and false negatives and �15%
false positives) were included. Evaluation of rates of visual field change
during follow-up was performed using the visual field index (VFI;
Humphrey perimeter; Carl-Zeiss Meditec, Inc., Dublin, CA). Details of
the calculation of the VFI have been described elsewhere.24 In brief,
the VFI represents the percent of normal age-corrected visual function,
and it is intended for use in calculating rates of progression and staging
glaucomatous functional damage. Evaluation of rates of functional loss
in glaucomatous eyes with the VFI has been proposed to be less
susceptible than the mean deviation (MD) to the effects of cataract or
diffuse media opacities.24–26 The VFI can range from 100% (normal
visual field) to 0% (perimetrically blind field). The current Humphrey
software analyzes the rate of VFI change over time using ordinary
least-squares (OLS) linear regression, and the printout shows a message
indicating whether the slope of the regression line is statistically
significant.

Stereophotograph Grading

Simultaneous stereoscopic optic disc photographs (TRC-SS; Topcon
Instrument Corp. of America, Paramus, NJ) were reviewed with a
stereoscopic viewer (Asahi Pentax Stereo Viewer II; Asahi Optical Co.,
Tokyo, Japan). For progression assessment, each patient’s most recent
stereophotograph was compared with the baseline one. Definition of
change was based on focal or diffuse thinning of the neuroretinal rim
and increased excavation, appearance, or enlargement of RNFL de-

fects. Evidence of progression was based on masked (patient name,
diagnosis, temporal order of photographs) comparison between the
baseline and most recent photograph, by two observers. If these
observers disagreed, a third observer served as an adjudicator.

Scanning Laser Polarimetry

Patients were imaged using a commercially available scanning laser
polarimeter (SLP) with enhanced corneal compensation (GDx ECC;
Carl-Zeiss Meditec). The general principles of scanning laser polarim-
etry and the algorithms used for enhanced corneal compensation have
been described in detail elsewhere.27–30 Assessment of SLP image
quality was performed by an experienced examiner masked to the
subject’s identity and the results of the other tests. To be classified as
good quality, an image required a focused and evenly illuminated
reflectance image with a centered optic disc. The image quality score
had to be greater than or equal to 7. Image quality was evaluated by
masked trained technicians at a reading center.31

RNFL retardation measurements were obtained on a 3.2-mm diam-
eter calculation circle around the optic nerve head. For this study, we
used the TSNIT average parameter, which represents the global aver-
age RNFL thickness (calculated as the average of the RNFL measure-
ments obtained on the 360° around the optic nerve) and is provided on
the standard GDx printout. The GDx provides measurements of RNFL
retardation, which are converted to estimated RNFL thickness using a
fixed conversion factor.

Average follow-up time was 4.2 � 1.1 years. A minimum of three
SLP examinations and three SAP tests were required during follow-up.
The study included a total of 1651 SLP visits. The number of visits per
eye ranged from three to seven, with 61% of the eyes having at least
four visits during follow-up. A total of 2493 visual field test results were
available during the corresponding follow-up period. The number of
visual field tests per eye ranged from 3 to 12, with 75% of the eyes
having at least five tests during follow-up. During the follow-up, each
patient was treated at the discretion of the attending ophthalmologist.

Bayesian Hierarchical Modeling Approach

A joint multivariate mixed-effects model was implemented within a
Bayesian hierarchical modeling framework to evaluate the relationship
between the two longitudinal measures obtained over time (i.e., the
GDx RNFL measurements and SAP VFI).32–35 Linear mixed models
were used to evaluate the evolution of each response over time. In
these models, the average evolution of a specific response is described
using some function of time, and subject-specific deviations from this
average evolution are introduced by random intercepts and random
slopes, allowing for different baseline values and different rates of
change for each patient. Linear mixed models are a natural extension
of Bayesian hierarchical models, where the first level of hierarchy
corresponds to within-patient variation and the second level to be-
tween-patient variation. The Bayesian framework, however, allows
more flexible specification of the model assumptions and easier imple-
mentation of the joint modeling approach, as described below.36–42

In a joint modeling approach using mixed models, random-effects
are assumed for each response process and the different processes are
associated by imposing a joint multivariate distribution on the random
effects. This approach has great flexibility and allows the joining of
models for responses of different types and also with a different
number of observations, as in our application.32

Each response process is described using the following linear
mixed-effects model

Y1i�t� � m1�t� � a1i � b1it � �1i�t�

Y2i�t� � m2�t� � a2i � b2it � �2i�t�

where Y1 and Y2 represent the longitudinal measurements of SLP and
SAP, respectively, for a subject i taken at time t, and m1(t) and m2(t)
represent the average linear evolution of each response over time, that
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is, the average rate of change of SLP measurements and the average
rate of change in SAP sensitivity. Both response trajectories are tied
together through a multivariate distribution of the random effects,
where a1 and b1 correspond to random intercepts and random slopes,
respectively, for process 1 (SLP), and a2 and b2 correspond to random
intercepts and random slopes for process 2 (SAP). By adding an addi-
tional level for eye nested within patient, it is also possible to use
information from both eyes of the same patient taking into account the
correlation between them.

Conventional linear mixed models assume a normal distribution of
random effects. However, previous studies have shown that the gen-
eral assumption of normally distributed random effects may lead to
biased estimates of individual change parameters when there is heter-
ogeneity in the population.43,44 In the present application, heteroge-
neity is to be expected, as only a proportion of eyes will show
progression over time. Further, in the progressing group, only a small
proportion is expected to have relatively fast progression. This situa-
tion can induce considerable nonnormality, or skewness, in the ran-
dom effects distribution. To address the problem, we used a multivar-
iate skew t distribution to model random effects. Both the t and skew
t distributions allow greater flexibility in the distribution of random
effects compared with the normal distribution and have been success-
fully applied to model nonnormal random effects.41,45 The probability
density function for a random effect bj that is t distributed t(�, v, k) is

p�bj�, v, k� �
���k � 1�/2	

��k/2���k
�1 �

�bj � ��2

kv � 
 �k � 1�/2

where � is the mean, v the scale parameter, and k the degrees of
freedom determining the weight of the tails, giving variance �2 �
[k/(k 
 2)]v. The t distribution can be extended to accommodate the
multivariate case.46 To allow for skewing, Fernandez and Steel47 pro-
posed the introduction of skewness to any unimodal distribution sym-
metric �0, using a scale factor 	 on each side of 0. For a random
variable 
 � x � , this method gives:

p�xy� �
2

	 � 1/	� f�x

y� I�0,	 � f�	x�I� 
 ,0	�x��
where I[c,d] is the indicator function for x, being between c and d, and
	 controls the mass on each side of 0, representing the skewness.

Therefore, in our Bayesian model, the intercepts and slopes were
assumed to follow a multivariate skew t distribution. This multivariate
distribution acted as a “prior” for the estimation of the intercepts and
slopes for each eye and the parameters of the multivariate distribution
were themselves estimated from the data. However, to perform Bayes-
ian inference, we also need to specify priors for the parameters of the
multivariate distribution (i.e., the hyperparameters). Unless there are
strong prior beliefs in the hyperparameter values, it is usually desirable
to use noninformative priors. Therefore, we used normal (0,1000) for
� and uniform (0,100) for �.48 An exponential (0.1) prior was used for
k in the t distribution,47 but restricted to k � 2.5 to prevent problems
with undefined variance when k � 2. For the skew parameter 	, we
used a 	(0.5, 0.318) prior for 
 � 	2. These are general priors used in
previous applications of Bayesian hierarchical models using t and skew
t distributions.45

Estimates of the posterior distributions of the parameters of interest
(i.e., the random effects, were obtained by Markov chain Monte Carlo
(MCMC) procedures. The MCMC sampler was implemented in Win-
BUGS software.49 We used 10,000 iterations after discarding the initial
5,000 iterations for burn-in. Convergence of the generated samples
was assessed by standard tools in WinBUGS (trace plots and autocor-
relation function [ACF] plots) as well as Gelman-Rubin convergence
diagnostics. After the posterior distributions were estimated, summary
measures were calculated, such as mean and credible intervals. For a
specific test, we considered that progression had occurred if the upper
limit of the 95% credible interval for the slope was less than 0.

Importantly, no information on the classification of subjects (i.e.,
whether there was optic disc progression on stereophotographs or
not) was inserted into the model. Also, the likelihood information from
healthy eyes was not allowed to influence calculations of model pa-
rameters. This was done to have a model that would reflect a popula-
tion that is commonly followed under a clinical scenario, that is,
composed of eyes with glaucoma or suspected of having disease. We
calculated sensitivity, specificity, and receiver operating characteristic
(ROC) curves as measures of discrimination. To estimate the effect of
the sample composition on the predictive distribution, we ran 200
bootstrap resamples and re-estimated sensitivity and specificity. To
avoid potential biases in the estimation of sensitivity and specificity, we
also used a leave-one-out approach to calculate the estimates for indi-
vidual eyes. That is, the model was built with information from n 
 1
eyes and applied to obtain the estimates of progression in the nth eye.
We compared our algorithm for detection of progression to standard
approaches reported on the printouts of the instruments and used in
previous studies.8,10,25,50–53 The standard approach is based on OLS
linear regression of measurements over time, so that an eye is consid-
ered to have progressed if a negative OLS regression slope is signifi-
cantly different from 0, with P � 0.05. OLS regressions were per-
formed separately for each eye and for each test (i.e., SAP VFI and SLP
TSNIT average).

RESULTS

The study included 434 eyes of 257 participants with a mean �
SD age of 63 � 12 years at baseline. One hundred fifty-four
(60%) patients were women. Of the 434 eyes included in the
study, 165 (38%) had glaucomatous visual field loss at the
baseline visit, 240 (55%) were classified as suspect, and 29 (7%)
were healthy eyes. Median (first quartile, third quartile) MD
and PSD of the visual field closest to the baseline imaging test
date in glaucomatous eyes were 
2.93 dB (
5.40 to 
1.62)
and 3.00 dB (2.34 –5.25), respectively. Corresponding values
for glaucoma suspect eyes were 
0.60 dB (
1.42 to 0.19)
and 1.51 dB (1.33–1.69), respectively, and for healthy eyes
were 
0.46 dB (
1.14 to 0.26) and 1.48 dB (1.33–1.78),
respectively. There was a large variation in baseline MD in
the eyes included in the study, with values ranging from

21.9 to 1.9 dB.

Bayesian Slopes of Change

Of the 405 glaucomatous and suspect eyes, 92 (22.7%) had
progression according to Bayesian slopes of change for VFI
and/or TSNIT average. Of these 92 eyes, 26 (28%) progressed
by both tests, 5 (5%) progressed by visual fields only, and 61
(66%) progressed by SLP only. Figure 1 shows Venn diagrams
representing the number of eyes progressing by the Bayesian
method in structure, function, or both, according to their
baseline classification. Bayesian slopes of change for VFI in
progressing eyes were significantly faster than those of non-
progressing eyes (
0.81% � 1.17 per year vs. 
0.03% �
0.14% per year). Similarly, Bayesian slopes of change for
TSNIT average for progressing eyes were significantly faster
than those of nonprogressing eyes (
1.15 � 0.72 �m/year
vs. 
0.28 � 0.28 �m/y).

Figure 2 shows the relationship between Bayesian slopes of
change calculated for VFI and TSNIT average. There was a
significant relationship between slopes of change for VFI and
TSNIT average (Spearman’s � � 0.81; P � 0.001). However,
eyes that progressed only by TSNIT average tended to have less
severe baseline disease than did those that progressed by both
methods, as indicated by differences in average baseline values
for VFI (94% � 11% vs. 87% � 12%; P � 0.004), respectively.

Of the 29 healthy eyes, none was identified as progressing
by Bayesian slopes of change for VFI or TSNIT average, result-
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ing in a specificity of 100% (95% CI, 88%–100%) for the com-
bined method. Of the 405 glaucomatous and suspect eyes, 38
eyes had evidence of progressive glaucomatous optic neurop-
athy (PGON) on optic disc stereophotographs. The Bayesian
method detected 28 of these eyes, resulting in a sensitivity
of 74% (95% CI, 57%– 87%) for this group. Table 1 shows
average slopes of change according to the Bayesian method
for healthy and PGON groups. The areas under the ROC
curves to discriminate healthy eyes from those with progres-
sive optic disc damage on stereophotographs were 0.94 �
0.03 and 0.90 � 0.04 for Bayesian slopes of change for VFI
and TSNIT average, respectively (Fig. 3). The bias-corrected
estimates of sensitivity and specificity were 72% and 99%,
respectively.

OLS Slopes of Change

We also evaluated the ability of OLS linear regression in detect-
ing change. Of the 405 glaucomatous and suspect eyes, 52
(12.8%) were identified as progressing by OLS slopes of change
for VFI and/or TSNIT average. Of these 52 eyes, only 4 (7.7%)
had progression by both tests, whereas 16 (31%) had progres-
sion only by VFI and 32 (61.5%) had progression only by SLP.
Figure 1 also shows Venn diagrams representing the number of
eyes progressing by the OLS method in structure, function, or
both, according to their baseline classification. OLS slopes of
change for VFI in progressing eyes were significantly faster
than those of nonprogressing eyes (
0.75% � 1.26% per year
vs. 
0.11% � 0.96% per year). OLS slopes of change for TSNIT
average for progressing eyes were also significantly faster than

those of nonprogressing eyes (
1.37 � 1.19 �m/year vs.

0.33 � 1.04 �m/year).

Figure 4 shows the relationship between OLS slopes of
change calculated for VFI and TSNIT average. There was only
a very weak, albeit statistically significant, relationship be-
tween OLS slopes of change for VFI and TSNIT average (Spear-
man’s � � 0.10; P � 0.04).

Of the 29 healthy eyes, none was identified as progressing
by OLS slope of change for VFI or TSNIT average, resulting in
a specificity of 100% (95% CI, 88%–100%). Of the 38 glauco-
matous and suspect eyes that had evidence of progressive GON
by optic disc stereophotographs, the OLS method was able to
detect only 14, resulting in a sensitivity of only 37% (95% CI,
22%–54%) for this group. Table 1 also shows average slopes of
change in the healthy and PGON groups, according to the OLS
method. The areas under the ROC curve to discriminate
healthy eyes from those with progressive optic disc damage
on stereophotographs were 0.77 � 0.06 and 0.79 � 0.06 for
OLS slopes of change for VFI and TSNIT average, respec-
tively (Fig. 3).

Comparison between Bayesian and OLS Slopes
of Change

The Bayesian method identified a significantly higher propor-
tion of glaucomatous and suspect eyes as having progressed
compared with the OLS method (22.7% vs. 13%; P � 0.001),
while showing the same specificity in healthy eyes. In addition,
the Bayesian method identified as progressing a significantly
higher proportion of eyes that had progression on optic disc
stereophotographs compared to the OLS method (74% vs. 37%;
P � 0.001). The ROC curve areas to discriminate healthy eyes
from those with PGON on stereophotographs were signifi-
cantly larger for the Bayesian method compared with OLS
regression for VFI slopes (0.94 vs. 0.77; P � 0.001) and for
TSNIT average slopes (0.90 vs. 0.79; P � 0.004), respectively.

We also examined the factors related to the differences
between detection of progression by the Bayesian and OLS
methods. Figure 5 shows Venn diagrams representing the
agreement between the two methods for detection of progres-
sion. Sixty-five eyes were detected as progressing only by the
combined Bayesian method, whereas 25 eyes were detected as
progressing only by the OLS method (VFI and/or TSNIT). Table 2
shows average slopes of change for the Bayesian and OLS
methods, along with average SE of the slopes of change, which
indicate the variability of measurements over time and preci-

FIGURE 2. Relationship between slopes of change in the VFI and
TSNIT average parameter over time obtained by the Bayesian method.
A locally weighted scatterplot smoothing (LOWESS) was fit to the plot.

FIGURE 1. Proportional Venn diagrams illustrating the number of eyes
identified as progressing by the Bayesian and OLS methods, according
to the baseline diagnosis. The areas of the circles are proportional to
the number of subjects in each category.
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sion in the estimation of the slopes. In general, eyes progress-
ing only by the Bayesian method had faster rates of change than
those progressing only by OLS, but the large standard errors of
the slopes precluded their identification by the OLS method.
The presence of concomitant structural change in these eyes
allowed the combined Bayesian method to declare the func-
tional changes as significant and vice versa. Eyes progressing
only by the OLS method had relatively slower and clinically
insignificant rates of visual field loss that were not supported
by concomitant changes in structure (and vice versa) and,
therefore, were declared as nonprogressors by the Bayesian
method.

Figure 6 illustrates a case of detection of glaucoma progres-
sion with the combined Bayesian method.

DISCUSSION

In the present study, we proposed an innovative methodology
for the combination of structural and functional tests for de-
tection of longitudinal change in glaucoma. Our approach
identified a significantly larger proportion of eyes with glau-
coma and suspected disease as having progressed over time
compared with the conventional method of OLS linear regres-
sion that is commonly used by the software of commercially
available instruments. To our knowledge, this is the first study
to report a successful method of combining longitudinal struc-
tural and functional tests in glaucoma using Bayesian method-
ology.

The use of a combined approach for evaluation of structural
and functional change provides several advantages compared
with an analysis of change in structure or function performed
separately. The joint model allows for the correlation between
structural and functional change over time and, therefore,
inferences on the significance of functional change are influ-
enced by the presence of structural change and vice versa. This
is likely to explain the improved detection of glaucoma pro-
gression with the combined Bayesian approach, as shown in
our study. In fact, of the 405 eyes with diagnosed or suspected
glaucoma, the combined Bayesian approach identified 92
(22.7%) eyes as progressing compared with only 52 (12.8%) for
the OLS regression method. In addition, we tested the perfor-
mance of the method in identifying a group of eyes classified as
progressing based on optic disc stereophotographs. The pres-
ence of progression on optic disc stereophotographs has been
shown to be highly predictive of the risk of future visual field
loss1 and, therefore, is a suitable, although still imperfect,
reference method for detection of progression.54 In the sub-
jects with PGON by optic disc photos, the Bayesian method
also largely outperformed the OLS regression approach with
sensitivity of 74% compared to 37%, respectively.

Because there is no perfect independent reference standard
to detect progression, it is difficult to estimate the sensitivity
and specificity of our combined Bayesian method for detection
of change. Although we have compared our method to detec-
tion of optic disc change by stereophotographs, it is known
that many cases of progression can be missed if optic disc

TABLE 1. Slopes of Change over Time and Areas under the ROC Curves to Discriminate Eyes That Had
PGON on Optic Disc Stereophotographs from Healthy Eyes

PGON
(n � 38)

Healthy
(n � 29) P† AUC (SE)

Bayesian VFI slope, %/y 
0.82 � 1.34 0.01 � 0.08 �0.001 0.94 (0.03)
Bayesian TSNIT slope, �m/y 
1.04 � 0.80 
0.24 � 0.20 �0.001 0.90 (0.04)
OLS VFI slope, %/y 
1.11 � 1.67 0.10 � 0.48 �0.001 0.77 (0.06)
OLS TSNIT slope, �m/y 
1.27 � 1.46 0.47 � 1.74 �0.001 0.81 (0.05)

Data are the mean � SD.
* Bayesian slope indicates slopes obtained through the Bayesian hierarchical regression model.
† Mann-Whitney U test.

FIGURE 3. ROC curves to discrimi-
nate eyes that showed progression
on optic disc stereophotographs ver-
sus healthy eyes for the Bayesian and
OLS methods.
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stereophotographs are used as the sole method of detecting
change, especially in more advanced cases of disease.4,5 That
is, optic disc photos have limited sensitivity. Therefore, if we
rely on optic disc stereophotographs as the only reference
standard, many eyes with true progression will not be de-
tected, which is likely to make the test under investigation
appear to have a high number of false positives. If we had
estimated specificity on the basis of the number of the 405
glaucomatous and suspect eyes that had no change on optic
disc stereophotographs, the specificities would be 82.6% and
89.6% for the combined Bayesian and OLS methods, respec-
tively. It is likely that these specificities would be underesti-

mated because of the inability of optic disc stereophotographs
to detect all cases of glaucoma progression. In fact, the very
high specificity of the combined Bayesian method when ap-
plied to healthy eyes suggests that the significant changes
detected in the glaucoma and suspect population were indeed
representative of true disease deterioration. It should be noted,
however, that estimation of specificities in a group of healthy
eyes is not without problems. In clinical practice, visual fields
and imaging instruments are applied to detect and monitor
disease in diseased eyes or those with suspected glaucoma.
Healthy eyes may have different characteristics from the eyes
followed in clinical practice such as visual field variability, for
example, and therefore estimates of specificity obtained from
healthy eyes may be different from those in the clinically
relevant population. For this reason, some authors8 have used
as a surrogate for specificity the proportion of eyes showing
positive slopes on the clinical tests, based on the assumption
that real improvement does not occur in glaucoma. Using this
approach, the Bayesian and OLS methods would have specific-
ities of 100% and 97.7%, respectively, in the 405 eyes of with
diagnosed and suspected glaucoma.

Clinicians frequently try to integrate results from structural
and functional testing to detect disease progression. This is
done routinely, as they attempt to correlate changes in their
examinations of the optic nerve to those occurring in the visual
field, so that if changes over time are seen in both methods,
they are more reassuring to indicate true deterioration. How-
ever, clinicians are frequently uncertain about how to interpret
apparently conflicting results coming from different tests. Also,
the use of many different tests can increase the chance of a
type I error (i.e., declaring as significant a change that actually
has occurred by chance). The approach of joint modeling of
structural and functional testing largely overcomes these limi-
tations. By using joint models, it is possible to keep the chance
of type I error under control.55 In addition, the correlation
between results of both methods is formally taken into account
in the model decision framework, which helps solve poten-
tially conflicting results. Using the combined Bayesian method,

FIGURE 4. Relationship between slopes of change in the VFI and
TSNIT average parameter over time obtained by the OLS linear regres-
sion method. A locally weighted scatterplot smoothing (LOWESS) was
fit to the plot.

FIGURE 5. Proportional Venn diagrams illustrating the agreement be-
tween the Bayesian and OLS methods in detecting structural (TSNIT
average) and functional (standard automated perimetry visual field
index [VFI]) change over time. The areas of the circles are proportional
to the number of subjects in each category.

TABLE 2. Differences in Slopes of Change and Standard Errors of the
Slopes between Eyes that Progressed According to the Two Linear
Regression Methods

Progression
Only by the

Bayesian
Method
(n � 65)

Progression
Only by the
OLS Method

(n � 25) P†

VFI

Average Bayesian slope 
0.74 � 1.23 
0.08 � 0.11 �0.001
Average standard error of

the Bayesian slopes
0.46 � 0.26 0.31 � 0.04 �0.001

Average OLS slope 
0.90 � 1.55 
0.11 � 0.39 �0.001
Average standard error of

the OLS slopes
1.06 � 1.20 0.34 � 0.30 �0.001

TSNIT Average

Average Bayesian slope 
1.04 � 0.62 
0.40 � 0.32 �0.001
Average standard error of

the Bayesian slopes
0.58 � 0.24 0.42 � 0.11 �0.001

Average OLS slope 
1.44 � 0.98 
0.99 � 0.84 0.033
Average standard error of

the OLS slopes
0.84 � 0.75 0.28 � 0.38 �0.001

* Progression only by Bayesian indicates eyes that progressed
according to the combined Bayesian method (structure and/or func-
tion). Progression only by OLS indicates eyes that progressed only by
the OLS linear regression method (structure and/or function).

† Mann-Whitney U test.
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a visual field change that would otherwise be declared non-
statistically significant by analysis of visual field data alone was
declared significant after taking into consideration the struc-
tural changes occurring in the same eye and vice versa. In fact,
many eyes with relatively fast rates of visual field loss were
declared as nonprogressing by the OLS method in our study
due to the variability of measurements over time (i.e., large SE
of the OLS regression slope), as shown in Table 2 and Figure 6.
In these cases, one frequently has to obtain more tests to
attempt to more precisely estimate the slope of OLS regression.
However, in clinical practice, there is a cost associated with
obtaining more measurements over time, including the ex-
pense of the test itself, the cost in patient time, and the cost
related to delaying detection of change. The current Humphrey
Field Analyzer printout requires a minimum of five visual field
tests to calculate the OLS slope. Therefore, we reanalyzed our

results on eyes with a minimum of five visual fields. From the
group of eyes with progressive optic disc damage, 27 eyes had
at least five visual fields. The Bayesian approach was able to
detect 22 (81%) of these eyes versus only 11 (41%) of the OLS
approach. Therefore, there was a benefit of the Bayesian ap-
proach, even when only eyes with a greater number of tests
were considered. Although different techniques have been
used in an attempt to decrease the impact of variability in the
detection of visual field progression, to our knowledge, no
previous method has been reported that combines structural
and functional change.

The combined Bayesian approach resulted in much better
agreement between structural and functional changes, with a
Spearman’s rank correlation of 0.81 compared with only 0.10
for the correlation between OLS slopes. Twenty-six eyes had
progression in both structure and function with the Bayesian

FIGURE 6. (A) SAP and SLP results in
an eye that had progressive glauco-
matous optic neuropathy over time
on optic disc stereophotographs.
There was progressive RNFL thin-
ning, as shown by the color-coded
map and a decrease in TSNIT average
values over time. SAP shows progres-
sive visual field defect on the supe-
rior nasal sector. (B) Slopes of
change for VFI and TSNIT average
obtained by OLS regression and the
combined Bayesian method for the
examinations shown in (A). The OLS
regression slope for VFI was not sta-
tistically significant, whereas the
Bayesian VFI slope was significantly
less than 0. The Bayesian slope for
the functional test (VFI) was influ-
enced by the presence of significant
changes in the structural test (TSNIT
average). The graph shows the ker-
nel density estimate for the posterior
distribution of the slope of VFI
change obtained by the Bayesian hi-
erarchical model.
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method, as opposed to only four eyes, using conventional OLS
regression. The better agreement seen with the combined
Bayesian method results from a better characterization of the
true underlying relationship between the two tests, as it de-
creases the impact of measurement error by incorporating it in
a joint model of the two longitudinal outcomes.32–35,56 It is
important to note, however, that even with the combined
Bayes method, some eyes were identified as progressing by
structure or by function only. Such a level of disagreement is
not surprising, and several previous studies have also docu-
mented disagreement on detection of glaucoma progression by
different tests. The disagreement could be related to the ability
of the tests in identifying progression at different stages of the
disease. Previous studies have suggested that SLP may be better
suited for detection of progression at relatively early stages of
disease, whereas the technology may fail to detect change in
cases with advanced damage.9,15,19,23,26,57 On the other hand,
the logarithmic scaling of clinical perimetric data may favor
detection of change in later stages of disease with SAP.2,58 Also,
VFI values only show decrease after a certain threshold of
abnormality on the pattern deviation plot has been ex-
ceeded.24 In fact, the eyes that progressed only by SLP in our
study had significantly less severe baseline disease than did the
eyes that progressed by visual fields. The presence of disagree-
ment actually reinforces the need for a combined approach for
detection of glaucoma progression to allow effective monitor-
ing of the disease at all stages of damage. It is important to
emphasize that, for the combined Bayes approach, the pres-
ence of clear change in function was still declared as signifi-
cant, even when not occurring concomitantly to a change in
structure, and vice versa. By joint modeling random intercepts
and slopes for SLP and SAP, the Bayesian approach can also
take into consideration the influence of different stages of
disease severity on the slopes of change.

It is important to emphasize that no information about the
classification of subjects was entered on the Bayesian model.
Therefore, our methodology can be used to classify individual
eyes as progressing or nonprogressing. Also, it provides esti-
mates of rates of change over time. Although we applied our
methodology to VFI and scanning laser polarimetry data, it is
likely that it will also perform well in combining other methods
of evaluation of functional and structural loss, such as other
perimetric indexes combined with measurements from tech-
nologies such as OCT and confocal SLO. When we conducted
similar analyses using the MD index in our study, we obtained
similar results (not shown), which is not surprising, in that the
correlation between VFI and MD values in our dataset was very
high (r � 0.93).

Bayesian estimates of slopes of change, as obtained from
hierarchical models, are considered shrinkage estimates,
which depend not only on the actual data for the eye being
evaluated, but also on data available from the overall popula-
tion of eyes. This actually represents another potential advan-
tage of the method compared to OLS regression, as we have
shown in a previous study.59 Although rates of change in
glaucoma have traditionally been estimated using OLS linear
regression, the true rate of change, however, is actually a latent
or unobservable variable, and the slope of change obtained
from OLS is just an imprecise estimate that is confounded by
noise and influenced by the number and intervals of measure-
ments during follow-up. OLS estimates are obtained taking into
account only the measurements of an individual patient, with-
out considering the influence of the population where the
patient comes from. The Bayesian hierarchical modeling ap-
proach, however, improves the precision of an individual pa-
tient’s estimate of slope of change by using previously longi-
tudinally collected data from other patients. For example, it is
reasonable to assume that the best estimator of the rate of

change in a patient in whom we do not have any measure-
ments collected over time is the average rate of change in the
overall population of which the individual is a part. As mea-
surements are acquired for this patient, however, the rate of
change will most likely deviate from the population average.
For patients with fewer measurements, the precision of the
estimates can be increased by “borrowing strength” from the
population, whereas for patients with large number of mea-
surements, precise estimates can be obtained relying almost
only on the individual data and the need to borrow strength
from the population decreases. It is also worth emphasizing
that the combined structure–function approach, as reported in
this study, is still advantageous compared with Bayesian slopes
of change obtained by applying the Bayesian methodology to
each test separately. For example, 23% of the eyes detected as
progressing by the VFI using the combined approach would
not be detected as progressing if structural information was not
included in the model. Conversely, 18% of the eyes would
not be detected by TSNIT slopes if the Bayesian model did not
include functional information.

It is important to note that our approach requires an ade-
quate and sufficiently large sample of patients similar to the
patients in whom we want to make predictions. In our study,
we used a large group of patients with diagnosed glaucoma and
suspected glaucoma that have been longitudinally studied ac-
cording to prespecified protocols for many years. In addition,
using bootstrap resampling, we showed that the estimates
were robust against variations in the composition of the sam-
ple. Construction of similar built-in databases would be neces-
sary to implement this methodology in currently available
instruments. Another potential advantage of our methodology
is that data from patients tested over time could be continu-
ously incorporated into the Bayesian model, leading to im-
proved estimates that would more likely reflect the progres-
sion rates in a particular clinical setting, generating a
“customized” database for comparison. The generalizability of
our modeling approach will have to be tested under different
clinical scenarios, including patients observed in other geo-
graphic areas, with different degrees of disease severity and
under different clinical protocols.

Our study had limitations. We assumed a linear rate of
structural and functional change over time. Findings in previ-
ous studies using cross-sectional data, however, suggest that
functional changes over the whole course of the disease would
probably not be linear.2,60–66 However, the assumption of
linear change is probably a reasonable one when evaluating
change in periods of short- to medium-term follow-up, as per-
formed in clinical practice. It should be noted, however, that
extensions of our methodology to incorporate nonlinear
change are also possible, but the evaluation is likely to require
populations with longer follow-up times.

In conclusion, a Bayesian hierarchical modeling approach
for combining functional and structural tests performed signif-
icantly better than the conventional OLS method of detection
of glaucoma progression. Combining structural and functional
measurements is likely to improve our ability to effectively
monitor the disease and estimate rates of deterioration.
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