
INVESTIGATION

Genetic Draft and Quasi-Neutrality in Large
Facultatively Sexual Populations

R. A. Neher*,† and B. I. Shraiman*,‡,1

*Kavli Institute for Theoretical Physics, ‡Department of Physics, University of California, Santa Barbara, California 91306, and
†Max-Planck Institute for Developmental Biology, 72070 Tübingen, Germany

ABSTRACT Large populations may contain numerous simultaneously segregating polymorphisms subject to natural selection. Since
selection acts on individuals whose fitness depends on many loci, different loci affect each other’s dynamics. This leads to stochastic
fluctuations of allele frequencies above and beyond genetic drift—an effect known as genetic draft. Since recombination disrupts
associations between alleles, draft is strong when recombination is rare. Here, we study a facultatively outcrossing population in
a regime where the frequency of outcrossing and recombination, r, is small compared to the characteristic scale of fitness differences s.
In this regime, fit genotypes expand clonally, leading to large fluctuations in the number of recombinant offspring genotypes. The
power law tail in the distribution of the latter makes it impossible to capture the dynamics of draft by an effective neutral model.
Instead, we find that the fixation time of a neutral allele increases only slowly with the population size but depends sensitively on the
ratio r/s. The efficacy of selection is reduced dramatically and alleles behave “quasi-neutrally” even for Ns?1, provided that |s| , sc,
where sc depends strongly on r/s, but only weakly on population size N. In addition, the anomalous fluctuations due to draft change
the spectrum of (quasi)-neutral alleles from f(n) � n21, corresponding to drift, to � n22. Finally, draft accelerates the rate of two-step
adaptations through deleterious intermediates.

THE genetic diversity of a population is determined by
mutation, selection, recombination, and genetic drift,

i.e., the stochasticity inherent in reproduction. Understand-
ing how genetic diversity depends on these elements of evo-
lutionary dynamics is central to population genetics, since it
allows us to make inferences about the past history and to
predict how rapidly populations can adapt.

Population genetic inference focuses on the diversity at
putatively neutral sites and assumes that the history of these
sites is described by the neutral “coalescent” (Kingman
1982). Coalescent theory models the genealogy of asexual
organisms or nonrecombining segments of a genome by pos-
iting that lineages merge at random, backward in time, due
to common ancestry. Under this assumption, the mean time
to the most recent common ancestor, TC, of the extant N
individuals, is 2N generations. The coalescence timescale is

very important, since the genetic diversity of the population
is given by the number of mutations that occur in all line-
ages descending from the most recent common ancestor of
the population. Genetic diversity is therefore controlled by
TC and hence, under the assumption of neutral evolution,
proportional to N. [Coalescent theory has been extended to
weak selection (Krone and Neuhauser 1997) and recombi-
nation (Hudson 1983; Griffiths and Marjoram 1996).]

However, the prediction that neutral genetic diversity is
proportional to N is at odds with observations: Population
sizes of different organisms differ by many orders of magni-
tude, while genetic variation among organisms is fairly
constant (Lewontin 1974). To resolve this “paradox of var-
iation”, Maynard Smith and Haigh (1974) suggested that
selection acting on linked loci might reduce diversity at
a neutral locus. Rapid fixation of a novel mutation at a linked
locus will perturb the allele frequencies. These perturbations
can bring alleles to fixation and, more generally, reduce the
coalescence time and hence the average genetic diversity
(Kaplan et al. 1989; Barton 1998; Gillespie 2001). Such
“hitchhiking” of neutral alleles on linked selected loci will
dominate over genetic drift in large populations. Since hitch-
hiking leads to larger perturbations for more closely linked
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loci, one expects genetic variation to correlate with the re-
combination rate, as is indeed observed in Drosophila (Begun
and Aquadro 1992; Stephan and Mitchell 1992; Andolfatto
and Przeworski 2001; Sella et al. 2009).

A related effect was described earlier by Hill and Robertson
(1966), who studied the reduction in the fixation probability
of a novel beneficial mutation because of selection acting
at a linked locus. This effect is commonly known as Hill–
Robertson interference (Felsenstein 1974). Hitchhiking and
Hill–Robertson interference are different aspects of the same
phenomenon, one focusing on the effects of linked selection
on genetic diversity and the other on the efficacy of selec-
tion. While hitchhiking and Hill–Robertson effects are pri-
marily associated with positive selection for novel alleles,
purifying selection against deleterious mutations also affects
genetic diversity. The elimination of (neutral) alleles linked
deleterious mutations is known as background selection.
The lower the recombination rates are, the larger is the
target for linked deleterious mutations, resulting in stronger
background selection (Charlesworth et al. 1993; Hudson
and Kaplan 1995; Nordborg et al. 1996).

Most models used to study Hill–Robertson and hitchhik-
ing effects between positively selected mutations consider
only two loci. Deleterious mutations, however, are expected
to be much more frequent, and background selection models
typically consider many mutations with small deleterious ef-
fects. A systematic study of the effect of interference between
many weakly selected sites in a mutation/selection/drift
equilibrium was presented by McVean and Charlesworth
(2000), who used computer simulations of a model of codon
bias evolution. They showed that linkage-dependent inter-
ference between a large number of weakly selected sites has
substantial effects on genetic diversity, fixation probability of
mutations, and the degree of adaptation measured as the
frequency of preferred codons. This and subsequent compu-
tational studies reinforced the understanding that the Hill–
Roberson effect reduces the effectiveness of selection and
made clear that a quantitative understanding of Hill–Robertson
effects in multilocus systems requires an analysis that goes
beyond two-locus models (Comeron and Kreitman 2002;
Seger et al. 2010); see Comeron et al. (2008) for a recent
review.

It is common to interpret the effect of linked selection in
terms of increased variance in offspring number. In this
interpretation, linked selection can be thought of as a
stochastic force analogous to genetic drift and is often
referred to as genetic draft—a term coined by Gillespie
(2000). Following Hill and Robertson (1966) and Felsen-
stein (1974), the increased variance in offspring number is
often captured by a reduction in the “effective population”
size, Ne, in a neutral model (which means enhanced drift
and accelerated coalescence). It has, however, been noted
that a rescaled neutral model does not consistently explain
all observables (Charlesworth et al. 1993; Braverman et al.
1995; Fay and Wu 2000; McVean and Charlesworth 2000;
Barton and Etheridge 2004; Seger et al. 2010) and that

different effective population sizes need to be defined
depending on the question and timescale of interest (Ewens
2004; Karasov et al. 2010). Furthermore, the dependence of
Ne on the actual population size and other relevant param-
eters is not understood (Wiehe and Stephan 1993; Gillespie
2000; Lynch 2007).

Here, we provide analytic results on the effect of draft
in a stochastic multilocus evolution model. Instead of a
mutation/selection equilibrium considered in McVean and
Charlesworth (2000), our focus here is a continuously adapt-
ing and facultatively sexual population, like human immu-
nodeficiency virus (HIV) in coevolution with the host’s
immune system. Our model and its relation to the biology
of HIV are described in more detail below. The scope of the
model, however, extends beyond HIV and is equally applica-
ble to scenarios where background selection is dominant.
Many important and well-studied organisms such as influ-
enza, yeast, and plants are facultatively sexual. Rice, for ex-
ample, is a partly selfing species and strong selection has
acted during its domestication (Caicedo et al. 2007). While
dominance effects can render the selfing of diploid organisms
more complicated than facultatively sexual propagation of
haploid organisms (Charlesworth et al. 1991; Kelly and
Williamson 2000), our analysis still provides a null model on
top of which dominance effects can be investigated.

Using computer simulations of an adapting population,
we first demonstrate how quantities such as the coalescence
time, the fixation probability of beneficial or deleterious
mutations, and the allele frequency spectra depend on the
rate of outcrossing relative to selection. We also show that
our in silico observations cannot be described by a neutral
model with a reduced effective population size. This is be-
cause single genotypes can, through clonal expansion, give
rise to a wildly fluctuating number of recombinant geno-
types. The distribution is so broad that its variance diverges,
which in turn makes an effectively neutral diffusion limit
impossible. To provide an analytic understanding of the sim-
ulation results, we use a branching process model that
allows us to study the stochastic dynamics of novel muta-
tions (neutral, beneficial, and deleterious) as they spread
through the population. We calculate fixation probabilities
and the typical time to fixation, Tfix (and more generally, the
probability of attaining n copies after time T), for a new
mutant allele, making explicit the dependence on the rate
of recombination, fitness variance, and the population size.
An important consequence of genetic draft is a qualitatively
different frequency spectrum of rare alleles, which we also
calculate analytically. Finally, we show that empirical HIV
allele frequency spectra are in agreement with our theoret-
ical prediction, confirming the relevance of our model to the
dynamics of HIV adaptation.

Model

Our model is inspired by the intrapatient evolution of HIV.
We first outline briefly the biology of HIV and then describe
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our computational model and the branching process ap-
proximation used to study the phenomena analytically.

Intrapatient evolution of HIV

After successful infection, the virus proliferates quickly to
levels of .106 viral genomes per milliliter plasma. This
acute phase lasts for several weeks, after which the immune
system of the host reduces the number of viral genomes per
milliliter plasma to �1002104. The following chronic infec-
tion can last for many years and is largely asymptomatic
up to the onset of AIDS. However, even in the chronic phase
of infection the total number of viruses produced per day is
estimated to be �1010, while the generation time is �2 days
(Perelson et al. 1996; Markowitz et al. 2003). The viral
population is subject to clearance by cytotoxic T-lymphocyte
(CTL)–mediated cell death and antibody-mediated destruc-
tion of virus (Paul 2008), which puts the virus under con-
stant selection to change its proteins. CTL epitopes are
found throughout the HIV genome (Korber et al. 2007)
and escape mutations are often selected for with coefficients
of a few percent per generation (Asquith et al. 2006). Anti-
bodies bind primarily to the products of the envelope gene.
In response to antibody recognition, numerous escape
mutants arise in the envelope gene and spread through
the population driven by selection coefficients of 1% to
a few percent (Williamson 2003; Neher and Leitner
2010). Additional, even stronger, selection pressure is put
on the viral population by drug treatment, resulting in rapid
emergence of resistance during suboptimal therapy (Larder
et al. 1989; Hedskog et al. 2010). Several hundred muta-
tions are implicated in drug resistance (Rhee et al. 2003).

HIV carries two copies of its RNA genome (104 bp), from
which one cDNA is produced and integrated into the host
cell genome. Recombination in HIV occurs through frequent
template switching of the reverse transcriptase in the pro-
cess of cDNA (Levy et al. 2004) production. In other words,
the two genomes of the “diploid” virion are combined to
produce a “haploid” cDNA, from which all the viral proteins
and the next generations genomes are produced. The rate of
recombination is limited by co-infection of host cells with
several viruses, which is necessary to produce a heterozygous
virus (see Figure 1A). Estimates suggest an effective recom-
bination rate of �1.5 · 1025 per base per generation (Neher
and Leitner 2010), corresponding to a co-infection rate
#10%. Viruses therefore undergo clonal amplification most
of the time, while different parts of the genome are only
weakly linked in the event of “outcrossing” (heterozygote
formation, followed by template switching).

Computational model

On the basis of the discussion above our model must include
the following elements: a large population, selection at
many polymorphic loci, a constant supply of beneficial
mutations, and facultative mating with substantial reassort-
ment in the case of outcrossing. Models combining all of
these elements have already been established (Rouzine and

Coffin 2005, 2010; Neher et al. 2010) and a similar model is
used here. In our simulation a (nearly) constant variance of
fitness in the population, s2, is maintained by a constant
supply of beneficial mutations. This results in a continuously
adapting population, with a rate of adaptation given approx-
imately by the variance in fitness. Of course, one does not ex-
pect constant selection to persist indefinitely (see Mustonen
and Lässig 2010 for a discussion of evolution in changing
environments): steady conditions on the timescale of fixation
of a single allele would suffice for the validity of our analysis.

To simulate population dynamics with the ingredients
described above, we implemented discrete time (Fisher–
Wright) dynamics of individuals with haploid genomes
and a large number of loci that additively define the (log-)
fitness x of an individual. Each individual contributes a
Poisson-distributed number of gametes to the next genera-
tion with mean expðx 2 �x 2 aÞ; where �x is the current mean
fitness and a is adjusted to keep the population size approx-
imately constant at N. To implement facultative mating,
a fraction r of the gametes are paired at random, the alleles
at all of their loci reassorted, and the two resulting recombi-
nant offspring are placed into the next generation. The
remaining 1 2 r fraction of gametes is placed unchanged
into the next generation. New beneficial mutations with
effect size s0 (Ns0? 1) are introduced into a randomly cho-
sen individual at rate NUb? 1. After equilibration, the fitness
distribution in the population is approximately Gaussian with
a nearly constant variance and steadily increasing mean fit-
ness. Into this adapting population wave, we introduce addi-
tional mutations, neutral, deleterious, or beneficial, and track
their dynamics. In particular, we record after what time these
mutations reach certain frequency thresholds and the fitness
of genotypes on which successful mutations originate. We
also measure the allele frequency spectra and the cumulative
number of individuals that carried a particular mutation be-
fore it goes extinct. A further, and more detailed, description
of the implementation is given in Appendix B.

Our focus here is on rapidly adapting populations with
many concurrent sweeps responsible for the fitness variance
s2. HIV, as any other organism, also suffers from deleterious
mutations that vastly outnumber the beneficial mutations.
Deleterious mutations also contribute to fitness variation
and increase s2. For the present investigation, it does not
matter whether fitness variation is due to sweeping benefi-
cial mutations, deleterious mutations subject to purifying
selection, or a combination of the two. The two extreme
scenarios are illustrated in Figure 1B. We shall see that the
fate of novel mutations depends on how the fitness of clones
changes with respect to the mean fitness of the population. It
is irrelevant whether this fitness difference decreases because
the mean fitness increases or because the fitness of the clone
decreases due to deleterious mutations.

Mathematical model

To understand the results of the computer simulations, we
analyze analytically an idealized model, which describes
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the propagation of a new allele (under selection, drift, and
occasional recombination onto a different genetic back-
ground) within a population with a fitness distribution
approximated by a Gaussian traveling wave. This is
justified if many beneficial mutations are sweeping
through the population at the same time (which requires
NUb? 1 and is true for HIV) and is supported by our nu-
merical simulations. Gaussian fitness distributions are
expected in large asexual populations (Tsimring et al.
1996; Rouzine et al. 2003; Desai and Fisher 2007) and in
the context of background selection [the deterministic
equilibrium distribution in the case of multiplicative selec-
tion is Poisson (Haigh 1978), which is well approximated
by a Gaussian in the limit of interest]. Recombination sta-
bilizes the Gaussian form if outcrossing rates are much
larger than the inverse of the coalescence times (Cohen
et al. 2005; Rouzine and Coffin 2005); see supporting in-
formation, Figure S1. Selection moves this Gaussian distri-
bution toward higher fitness at a rate v equal to the
variance in fitness s2 (Fisher’s “fundamental theorem” of
natural selection).

Branching process approximation: The fate of a novel
allele is decided mainly at early times when the allele is rare
and the finite population size constraint can be neglected. In
this case the dynamics of the novel allele are governed by
a stochastic branching process that in addition to the birth/
death events also accounts for the recombination process
that transfers the novel allele to different genetic back-
grounds with different fitness x9 (Barton 1995a; Neher et al.
2010). Within the branching process approximation the
probability of finding n copies of the allele (with effect s
on fitness) anywhere in the population at time T, given that
there were k copies on genotypes with fitness x at time t,
obeys the equation

2 @tpðn;T j k; t; xÞ
¼ 2 kðBþ Dþ rÞpðn;T j k; t; xÞ
  þ kBpðn;T j kþ 1; t; xÞ þ   kDpðn;T j k2 1; t; xÞ
þ   rk

P
n9

Ð
dx9Kxx9pðn2 n9;T j k2 1; t; xÞpðn9;T j 1; t; x9Þ

(1)

(see File S1), where B ¼ 1þ x2�xðtÞ þ s is the birth rate,
D = 1, the rate at which individuals die (used to set the
unit of time), and r is the outcrossing rate. The first term
describes the probability flux out of state (k, t). The second
term corresponds to a birth, which happens with rate kB and
in which case the final state (n, T) is reached with probabil-
ity p(n, T | k + 1, t, x). Analogously after a death, the prob-
ability of reaching (n, T) is p(n, T | k 2 1, t, x). The last term
describes the process of outcrossing with the offspring fit-
ness distribution parameterized by a recombination function
Kxx9, which depends on the details of the model.

In a model of outcrossing where offspring are produced
by mating two individuals at random and reassorting all of
their genes, the recombination kernel Kxx9, after averaging
over the mating partner, is given by

Kxx9 5

ffiffiffiffiffiffiffiffiffiffiffiffi
2

3ps2

r
exp

"
2

�
x9 2 �xðtÞ2 ðx2 �xðtÞÞ=2�2

3s2=2

#
(2)

In this model, known as the infinitesimal model, the distri-
bution of the offspring fitness is centered around half the
fitness of the parent carrying the focal allele, measured rel-
ative to the instantaneous mean fitness �xðtÞ (Bulmer 1980;
Barton 2009) (the model was referred to as the full recom-
bination model in Neher et al. 2010). (Note that the variance
of offspring fitness relative to parental mean is s2/2. The
variance of 3s2/4 in Equation 2 is the result of averaging
over the mate.) We assume that individuals are polygamous;

Figure 1 (A) The process of recombination in HIV. Di-
versifying recombination occurs only in “heterozygote”
virions, which require multiple infections of the host cell
in the previous generation. This is rare, leading to an ef-
fectively facultative sexual population. (B) The dynamics of
the fitness distribution. Selection and mutation are shown
as separate steps, for simplicity. Selection, acting between
the left and center panels, results in a shift of the fitness
distribution toward higher fitness. In a deleterious muta-
tion/selection balance, this increase in fitness is compen-
sated by deleterious mutations occurring during the step
leading from the center to the right panel. If deleterious
mutations are not the dominant force, but continuous
adaptation to a coevolving host is modeled, the adapta-
tion of the host counterbalances the fitness advance of the
population.
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i.e., each offspring is the result of an independent mating
event.

For most of the analytic calculations, we employ an even
simpler recombination model, where offspring fitness is
simply a random sample from the population, independent
of the parents:

Kxx9 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffi
2ps2

p exp

"
2

�
x9 2 �xðtÞ�2

2s2

#
(3)

In this communal recombination model new offspring are
assembled from the genetic diversity in the entire popula-
tion; i.e., the novel genotype is drawn from a product distri-
bution with the current allele frequencies in the population
(Barton 2009; Neher et al. 2010). Note, however, that this
model does not lead to instantaneous elimination of corre-
lations between loci (linkage disequilibrium), since only
a fraction of the population outcrosses in a single genera-
tion. The infinitesimal and communal models have been
shown to yield very similar results in Neher et al. (2010).
We confirm this again by simulation of both models. Even
though this model is a drastic idealization, it might resemble
rather closely the recombination process in HIV. Since re-
combination in HIV depends on co-infection of T cells with
several viruses, most recombination occurs in centers with
high concentrations of virus (Jung et al. 2002). In these
centers, lineages might undergo several successive outcross-
ing events, effectively producing a cloud of offspring that
contain genetic material from a large number of parents.

Results

Simulation results

Figure 2 shows simulation results for the fixation time of
neutral mutations and the fixation probability of beneficial
and deleterious mutations for populations of different size
and different outcrossing rates. At low r/s, fixation times
(Figure 2A) are reduced by orders of magnitude below
the neutral expectation of 2N and reach the latter only for
r/s?1, an effect already observed in Charlesworth et al.
(1992). The scaling of the data in Figure 2A reveals that
fixation times are not proportional to the population size
at low r/s, in which case the curves would lie on top of
each other. Genetic draft has an equally dramatic effect on
the efficacy of selection, which is shown in Figure 2B. The
fixation probabilities of beneficial and deleterious mutations
are only slightly perturbed from N21 if r/s, 1, even though
|Ns| ranges up to 80. The fact that genetic draft reduces
fixation times and the efficacy of selection is of course well
known and it is customary to describe this effect by a neutral
model with a reduced population size, i.e., treating draft as
if it were just an enhancement of genetic drift. This, how-
ever, is often not appropriate, as draft causes fluctuations of
a very different nature from those of genetic drift. To illus-
trate the problem, we define 2Ne as the fixation time of

neutral mutations Tfix. With this definition, a mutation with
effect size s should fix with probability sTfix  =  Nð12e2sTfixÞ:
However, the observed fixation probability does not follow
this expectation if r # s, as shown in Figure 3A (note the
logarithmic scale).

Another striking feature where a neutral model with
a reduced effective population size fails to capture the
effects of draft is the allele frequency spectrum, shown in
Figure 3B for various ratios of r/s. For small r/s, the fre-
quency spectrum f(n) of neutral alleles falls off much more
rapidly than the prediction of the diffusion theory: it decays
as n22 with frequency instead of n21. This effect is often re-
ferred to as “excess of rare variants” Braverman et al.
(1995), but should, in fact, more aptly be called a “lack of
common variants”. Very similar dependencies of the fixation
time, fixation probabilities, and allele frequency spectra on

Figure 2 Genetic draft dramatically reduces fixation times and the
efficacy of selection. (A) Mean fixation times Tfix of neutral mutations,
normalized by the population size N, as a function of r/s for different N.
For r/s , 1, Tfix increases only slowly (sublinear) with N. (B) The fixation
probability of beneficial and deleterious mutations relative to that of
neutral mutations. Even though jNsj . 50, fixation probabilities are close
to N –1 at low outcrossing rates (N = 16,000).
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r/s are observed if fitness variation is not due to multiple
selective sweeps but due to purifying selection. Simulation
results for such a background selection scenario are shown
in Figure S2 and Figure S3.

To rationalize the observed behavior we solved analyti-
cally a simplified branching process model describing the
dynamics of alleles in an adapting population; see Mathe-
matical model. This branching process solution shows explic-
itly how observables depend on population parameters and
elucidates the difference between draft and drift.

Analytic results for the branching process model

The key to understanding the qualitatively different behav-
ior at low r/s compared to r/s?1 is the fact that genotypes
with fitness x can expand clonally if x2�x2r.0; i.e., if their
growth rate exceeds the rate at which they outcross. In
contrast to the case of r/s? 1, for r/s # 1 the condition
for clonal expansion is fulfilled for a substantial fraction of
the genotypes in a finite population. A genotype establishes
with probability x 2 r [setting �xðt0Þ ¼ 0] and is clonally
amplified so that its copy number subsequently grows as

nðT; xÞ � 1
x2 r

eðx2rÞT2s2T2=2; (4)

where T is the time since establishment (Desai and Fisher
2007). The term s2T2=2 ¼ Ð T

0dt�xðtÞ accounts for the increas-
ing mean fitness, �xðtÞ ¼ s2T; of the rest of the population,
competing with the clone. After establishment, a fit geno-
type therefore gives rise to a clone whose size has a Gaus-
sian profile in time, as illustrated in Figure 4A. During its
lifetime, an individual clone spawns an average of
j ¼ r

ÐN
0 dt  nðtÞ recombinant genotypes. For x 2 r?s one

finds j � sðx2rÞ21eðx2rÞ2=2s2
; which increases rapidly with

increasing x 2 r. In the Discussion, we develop this intuition
into a simplified model of the genealogy of clones. Figure 4B
shows the copy number of the mutant allele on different
genetic backgrounds as a function of time in the continu-
ous-time branching process model. The observed stochastic
trajectory shows the features embodied in the simplified
effective model: an anomalously fit genotype gives rise to
many recombinant offspring genotypes, resulting in large
fluctuations in the copy number of the mutant allele.

The dynamics of the distribution p(n, T | x) of a mutant
allele, given that it arose on a genotype with fitness x (k= 1,
t = 0), can be described by the branching process defined in
Equation 1. We proceed by analyzing the fixation probabil-
ity, the typical time to fixation, and the allele frequency
spectra for neutral, beneficial, and deleterious mutations
for the case r/s # 1. In the opposite limit of rapid outcross-
ing, the effect of selection during the lifetime of a genotype
is small and Equation 1 can be analyzed perturbatively in
s/r. This perturbation analysis was performed in Neher et al.
(2010). It was shown that the fixation probabilities of ben-
eficial mutations are reduced by a factor 1 2 as2/r2, where
a is a numerical factor of order one and depends on the
details of the recombination model. This is consistent with
the classical argument of Robertson (1961) showing that the
cumulative effect of draft is proportional to the square of the
degree of linkage (Santiago and Caballero 1998; Barton
2009). The analysis and derivation of the results are mainly
relegated to Appendix A; here we present and discuss the
results.

Extinction and survival of neutral mutations

The fundamental quantity describing the stochastic dynam-
ics of an allele is the distribution, p(n, T), of the number of

Figure 3 Fixation probabilities and allele frequency spectra are inconsis-
tent with a neutral model with reduced effective population size. (A) The
rescaled fixation probability Npfix of mutations with effect size s as a func-
tion of Tfixs, where Tfix is the fixation time of neutral mutations. In a neu-
tral model, Tfix = 2N, and hence it seems sensible to define an effective
populations size Ne = Tfix /2. The fixation probability of a mutation in
a neutral model is indicated as a black solid line. While the effective
neutral model describes pfix well for r/s = 6.4, it fails for r/s = 0.6 (note
the log scale). (B) The distribution of derived allele frequencies f (n) in
a population of N = 32,000 individuals for different r/s. For r/s, 1, allele
frequency spectra fall off much more steeply than the prediction f (n) �
n–1 of the neutral model. In fact, the distribution falls off more like f (n) �
n–2, which is the leading behavior predicted by Equation 8. All curves are
normalized to unit area and the two power laws are indicated by straight
lines.
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copies that exist T generations after the founding mutation.
Note that the mutation could have arisen on genotypes with
different background fitness x, and p(n, T) is the average
over all possible x at time T = 0. Of particular importance is
the survival probability PS(T) = 1 2 p(0, T). Figure 5 shows
PS(T) for a neutral mutation for different outcrossing rates
in the communal recombination model, obtained by a nu-
merical solution of Equation A1. Initially, PS(T) decays as
(1 + T)21, regardless of the outcrossing rate. This is the
same behavior seen in homogenous or completely neutral
populations. Selection on the heterogenous backgrounds
starts influencing the fate of the allele at times T . s21,
i.e., the reciprocal of the typical selection differentials in the
population. After this initial transient, the survival probabil-
ity depends strongly on the relative magnitude of the out-
crossing rate and the fitness variance in the population,
decaying faster for smaller r/s. We show in Appendix A
(Equation A8 and Short-time solution section), that the time
dependence of the survival probability is given by

PSðTÞ �
(
se2ðs2=2r2Þlog2ðr3s22TÞ s=

ffiffiffiffiffiffiffiffiffiffiffi
logN

p
, r,s

ð1þ TÞ21 r?s:
(5)

Consistent with our previous argument, we find that for
r?s neutral mutations are unaffected by selection on the
background, reproducing the familiar result PS(T)� T21.
However, a strong deviation from this neutral behavior
occurs as soon as r/s approaches 1. In the regime with
r , s, the ratio r/s enters the dynamics of PS(T) as a pre-
factor of log2 T in the exponent, resulting in faster extinction
at lower r. (Yet another regime appears at even smaller r for
r=s, 1=

ffiffiffiffiffiffiffiffiffiffiffi
logN

p
and is discussed in File S1). Equation 5 was

derived using the communal recombination model. In Fig-
ure A1 we show, via simulation of the branching process,
that the infinitesimal model exhibits the same asymptotic
dependence on parameters.

Dynamics of surviving alleles and fixation times

Given that a new allele is not lost after T generations, what is
the mean number of its copies? The answer to this question is
surprisingly simple and will inform us about the scaling of
fixation times of neutral alleles. The unconditional expected
number of copies after time T is obtained by multiplying
Equation 1 by n, summing over n, and averaging over the
distribution of x at T = 0. One finds the simple expression

hnðTÞi ¼ esT ; (6)

which reduces to hnðTÞi ¼ 1 in the neutral case. Here, h:::i
denotes the average over p(n, T), while the overbar denotes
the average over the fitness of the founding genotype.
Hence, the expected number of copies depends neither on
recombination nor on the speed of adaptation. It depends
only on the intrinsic fitness effect of the novel allele. How-
ever, hnðTÞi is a product of the survival probability, times the
average n conditioned on survival. For neutral mutations,

Figure 4 Clonal expansion results in large fluctuations. (A) A clone with
high initial fitness can grow to large numbers before going extinct. Large
clones give rise to many recombinant daughter clones. (B) A correspond-
ing trajectory obtained by simulation of the branching process equation;
see Model. The mutant allele originated on a background with fitness
x2 �xðtÞ ¼ 2s at time t = 0. Each subclone of the population appears as
a vertical line whose horizontal position indicates its fitness x. The size of
a clone (color coded) rises as long as x2 �xðtÞ2 r.0 and shrinks after the
population wave has passed. The larger a subclone is, the more daughter
clones it produces. The mean fitness �xðtÞ as well as �xðtÞ 6  3s indicated as
white lines.
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the mean n conditioned on survival is therefore the recipro-
cal of the survival probability, and when PS(T) is of order
N21, a nonextinct allele has reached copy numbers of �N
and has essentially fixed. The first passage time, Tfp, to allele
frequency n, i.e., to nN copies, is given asymptotically by

Tfp �
(
s2r23ers

21
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2logsnN

p
s=

ffiffiffiffiffiffiffiffiffiffiffi
logN

p
, r,s

nN r?s:
(7)

We see that the time to reach allele frequency n scales very
differently with N in the two regimes. Instead of diffusive

dynamics with diffusion constant �N21, the rapid turnover
of individuals by selection at r , s results in large fluctua-
tions, which can rapidly propel a mutation to large numbers.
Simulation results confirming the validity of the argument
that inverse survival probability can be used as a proxy for
typical copy numbers, as well as the adequacy of modeling
allele frequency dynamics by a branching process, are
shown in Figure A1.

A different approach to calculate fixation times in a model
of continuous adaptation with facultative outcrossing has
been developed in Rouzine and Coffin (2007, 2010). Rou-
zine and Coffin use a coalescence approach based on the
clonal structure of the population to calculate fixation
times and obtain the same exponential dependence on
rs21

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2logNr

p
:

Allele frequency spectra

In addition to changing the dependence of the fixation time
on the population parameters, draft also results in a quali-
tatively different allele frequency spectrum. This has been
noted previously (Braverman et al. 1995; Fay and Wu 2000;
Gillespie 2000; McVean and Charlesworth 2000) but to our
knowledge never calculated explicitly. Figure 3B shows the
distribution of derived neutral allele frequencies n = n/N at
different outcrossing rates measured in individual-based
computer simulations. At high outcrossing rates, we observe
f(n) � n21 as expected for mutations subject to random drift
alone. However, when draft is dominant, f(n) decays more
steeply as

f ðnÞ � ers
21

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2logN ns

p

n2logNns
: (8)

This steep decay persists up to a crossover frequency that
depends on r/s and the population size. Beyond this cross-
over frequency, the finite population size constraint becomes
important. The calculation of the allele frequency spectra is
detailed in Appendix A, Distribution of the allele copy number
and the result for the copy number distribution is given in
Equation A22.

The f(n) � n22 behavior can be understood heuristically
by considering the sizes of clones containing the allele. Let
us consider the asexual case with r = 0. To calculate the copy
number distribution of a novel allele, T generations after it
originated, we have to average over the initial fitness x of
the genotype that it could have arisen on. Given that the allele
arose on a genetic background with fitness x, its average num-
ber after T generations is given by Equation 4. Since we know
that the distribution of x is Pðx; 0Þ ¼ ð2ps2Þ21=2e2x2=2s2

; we
can calculate the expected distribution of n after time T within
the deterministic approximation of Equation 4. One finds that
pðn;TÞ � n23=2expð2s2T2=82log2   ðnÞ=2s2T2Þ: The allele
frequency spectrum is an average over alleles of different
age, T, and the above expression therefore has to be integrated
over T, which yields f(n) � n22. In a facultatively sexual pop-
ulation with r , s, allele frequency spectra are also driven by

Figure 5 Survival of novel mutations in the branching process model. (A)
The survival probabilities of neutral mutations in the communal re-
combination model for different outcrossing rates as a function of time
(obtained through numerical solution for the generating function of the
branching process). For large r/s, the survival probability closely follows
the result for a single neutral locus PS = (1 + T)–1 (note the log–log scale).
For r/s # 1, PS(T) decays much more rapidly as soon as T?s21. (B)
Illustration of how an intrinsic fitness effect s affects the survival proba-
bility for r/s = 0.4 (note the log-linear scale). At short times, beneficial and
deleterious mutations behave like neutral mutations. After a crossover
time, which depends on s, the survival probability of deleterious muta-
tions continues to decay exponentially with rate s, while the survival
probability of beneficial mutations becomes time independent.
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the clonal expansion of individual genotypes. However, in con-
trast to the asexual case, additional clones are constantly
seeded through outcrossing so that the novel allele resides in
many different clones of different ages, similar to the average
over asexual clones of different ages. For this reason, both the
copy number spectrum of individual alleles and the frequency
spectrum averaged over alleles of different ages have
a leading behavior p(n, T) � n22 and f(n) � n22. This
reasoning is confirmed by the branching process calcula-
tion given in Appendix A.

In addition to a much steeper spectrum at low frequen-
cies, the spectra of neutral and deleterious mutations are
nonmonotonic and increase again at frequencies near one
(Fay and Wu 2000). On a linear chromosome with isolated
sweeps that affect tightly linked neutral variants, this effect
is easy to understand: A tightly linked variant is brought
close to fixation, resulting in a pile-up of derived variants
at frequencies close to one. In our case with many unlinked
sweeps in a facultatively mating population the effect is less
intuitive, but ultimately of similar origin.

Selection efficiency and quasi-neutrality

The rapid and erratic dynamics of alleles incurred by
selection on other loci affect not only the time to fixation,
but also the ability of selection to prune deleterious
mutations and fix beneficial mutations. Mutations behave
essentially neutrally, as long as selection on the intrinsic
effect of the allele is outweighed by fluctuations. A beneficial
mutation has established when it has risen to sufficient
numbers that future extinction is improbable and the allele
goes to fixation deterministically. Without draft, a beneficial
mutation is established when it has reached copy numbers
of �s21. With additional fluctuations through draft, how-
ever, the allele is more likely to go extinct and has to rise
to much higher numbers to establish. Similarly, draft can
propel deleterious mutations to copy numbers they would
never reach under drift alone. This reduction of the efficacy
of selection is a hallmark of Hill–Robertson interference
(Hill and Robertson 1966) and was mainly studied in obli-
gate sexuals (Barton 1994; McVean and Charlesworth
2000). Here, we explore these effects in facultative outcrossers.

Since an allele that has survived longer is likely to be
present in more copies, the influence of stochastic fluctua-
tions and hence the rate at which the mutant allele goes
extinct decrease over time. This is explicit in the time
derivative of the log survival probability, which in the regime
r , s is given by

@ T log PSðTÞ � s2
s2 log

�
r3s22T

�
r2T

(9)

(see Appendix A, Beneficial and deleterious mutations). The
first term s accounts for the deterministic bias due to the
intrinsic effect of the allele, which causes accelerated extinc-
tion if s , 0 and preferential survival if s . 0 (compare with
Figure 5B). The second term accounts for the stochastic

forces on the allele, whose importance decreases with T.
The time after which the allele’s fate is dominated by selec-
tion on its intrinsic fitness can be roughly determined by
equating the two terms in Equation 9. In the regime of in-
termediate outcrossing rates r , s, we find this crossover
time to be T* � s2log(r/s)/r2s. If fixation of a neutral mu-
tation occurs before that time, selection has little effect and
the fate of the mutation is dominated by fluctuations until
fixation. Hence, we find a window of quasi-neutrality for
mutations with selection coefficient smaller than sc

jsj, sc ¼ s2 logðr=sÞ
r2Tfix

� re2rs21
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2logsN

p
; (10)

within which the fixation probability of a mutation is pfix
� N21. Beneficial mutations with effects larger than sc have
a chance of fixation pfix 5 r21logðr=sÞexp½2s2log2ðr=sÞ=2r2�
as already found in Neher et al. (2010). Propagation of
deleterious mutations with |s| , sc is also dominated by
fluctuations, resulting in allele frequency spectra similar to
neutral mutations. Only for |s| . sc does the allele fre-
quency spectrum f(n) decay exponentially as expected for
deleterious mutations. Fixation of deleterious mutations is
exponentially suppressed with pfix � N21e2jsjTfix : Simulation
results, qualitatively showing this behavior, are presented in
Figures 2B and 3.

A related phenomenon is observed in the context of
a linear chromosome in the limit where only one sweep
affects a polymorphism at any given time. Barton (1994)
showed that a beneficial allele that is subject to many se-
quential, weakly linked interfering sweeps has little chance
of fixation if its selection coefficient is below a critical value.
The critical value reported by Barton is sc � s2/R, where
s2/R is the fitness variance of sweeps per map length. In this
approximation, the frequency of the focal allele is repeatedly
reduced by a factor that depends on the degree of linkage
and the strength of the interfering sweeps: this results in an
effective reduction in the growth rate of the frequency of the
focal allele to s 2 sc. In the case of numerous concurrent
sweeps that we consider, the situation is different because
the focal allele is spread over many different backgrounds
subject to selection. The older the allele is, the more likely it
is to be spread over many backgrounds, attenuating the
effect of interference. Hence we find an additional depen-
dence of sc on the typical fixation timescale and the extent of
recombination that occurs during this time.

Stochastic tunneling and complex adaptations

Consider an adaptation process where two mutations at the
same locus are needed to confer a fitness advantage, but
either mutation in isolation is neutral or deleterious. The
rate of this process is given by the probability per unit time
that the second mutation occurs in an individual already
carrying the first mutation. More generally, the probability
that the double-mutant genotype never existed up to a time
T is
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PðTÞ ¼ e2m
Ð T

0
dtðn1ðtÞþn2ðtÞÞ; (11)

where m is the mutation rate and ni(t) is the number of
individuals carrying mutation i. The deleterious single
mutants form a transient subpopulation in the large back-
ground population, which we refer to as a mutant “bubble”.
The important quantity determining the rate of such second-
ary events is the distribution of the cumulative number of
single mutants wðTÞ ¼ Ð T

0dtnðtÞ; i.e., the integrated bubble
size. For homogeneous background populations, where genetic
drift dominates the dynamics of neutral alleles, this quantity
has been calculated by Iwasa et al. (2004), Weissman et al.
(2009, 2010), and Lynch (2010). In most cases of interest
the rate of secondary events is small, so that the probability
of tunneling in a single bubble is low. Hence tunneling takes
longer than the lifetime of a typical bubble and only the long
time limit of w(T) is important. In analogy to the results
presented above, we calculate the moment-generating
function F(z) = he2zwi of the bubble size w, where h:::i
denotes the average over the bubble size distribution
P(w). The calculation given in Appendix A, The double mu-
tation probability: stochastic tunneling yields for the F(z)

FðzÞ ¼
(
zers

2 1
ffiffiffiffiffiffiffiffiffiffiffi
22logz

p
jsj> re2rs21

ffiffiffiffiffiffiffiffiffiffiffiffi
22log z

p

z
jsj jsj? re2rs21

ffiffiffiffiffiffiffiffiffiffiffiffi
22log z

p
:

(12)

The result for strongly deleterious mutations is the same as
in homogenous populations (Weissman et al. 2009). The
crossover between the two regimes occurs essentially at
the quasi-neutrality threshold, with N replaced by z21. The
generating function F(z), which is also the Laplace trans-
form of P(w), is of immediate practical relevance, since it is
exactly the probability that a secondary event with rate z
does not occur within a single bubble. From the Laplace
transform, we calculate the distribution of P(w), which in
the draft-dominated regime we find to be

PðwÞ� 1

w2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2logw

p : (13)

The latter has to be compared to the result for drift alone:
P(w) � w23/2. Both of these behaviors are clearly seen in the
simulation results shown in Figure 6. Draft causes large
neutral bubbles to become rarer, but also dramatically
enhances the probability of large bubbles for deleterious
(quasi-neutral) alleles.

Discussion

The importance of hitchhiking and draft as a source of
fluctuations was first discussed by Maynard Smith and
Haigh (1974) as a possible explanation for the apparent
insensitivity of genetic variation on the census population
size, dubbed the paradox of variation (Lewontin 1974).
Draft is expected to dominate over genetic drift in very large
populations and hence is the factor determining the level of

genetic diversity and the efficacy of selection (Barton 1995b;
Gillespie 2001). It was shown to have appreciable effects on
genetic diversity in Drosophila (Sella et al. 2009). Draft is
expected to be even more pronounced in facultatively out-
crossing organisms, where alleles stay associated with each
other for longer periods of time. Such organisms include
many plants, fungi, nematodes, and viruses, including the
human pathogens influenza and HIV.

We have studied draft in continuously adapting faculta-
tively outcrossing populations, using direct computer simu-
lation of a model inspired by intrapatient evolution of HIV.
We explain the simulation results by analyzing a simplified
branching process model, which is amenable to analytic
calculations that elucidate how fixation time, the efficiency
of selection, and allele frequency spectra depend on
fundamental parameters of the population dynamics. The
simplification that makes these analytic results possible is
a “large number” limit: due to the large number of concur-
rent sweeps, the distribution of fitness in the population
assumes a Gaussian form and translates toward higher fit-
ness with constant velocity. If the outcrossing rate, r, is com-
parable to or smaller than typical fitness differences, s,
between individuals in the population, clonal expansion of
genotypes results in a heavy-tailed distribution of recombi-
nant offspring with dramatic effects. In particular, we find
that alleles with selection coefficients smaller than
j  scj ¼ s2   logðr=sÞ=ðr2TfixÞ behave quasi-neutrally: their fate
is dominated by fluctuations and is nearly independent of
the intrinsic allele fitness s. Yet because selection acting
on the allele is masked not by random drift, but by draft—
transient associations with chromosomal “backgrounds” with
different fitness—the behavior is quantitatively different

Figure 6 The cumulative distribution of “bubble sizes”, i.e., the inte-
grated copy number w ¼ ÐN

0 dtnðtÞ, of deleterious (s = –0.005) alleles.
The simulated bubble size distributions for r=s>1 agree with the pre-
dicted behavior P(w) � w –2, which corresponds to a cumulative distribu-
tion �v–1. For r?s the size of bubbles of deleterious alleles is cut off
exponentially. While small bubbles are rarer at r>s compared to r?s,
this relation is reversed for large bubbles when the exponential cuts
below the power law (N = 16,000).
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from true neutrality. The conventional dynamics dominated
by genetic drift are realized only in the limit of no linkage or
complete neutrality (including the background). To empha-
size this distinction we refer to the draft-dominated regime
as quasi-neutrality.

In addition to a reduced efficacy of selection, draft
reduces fixation and coalescence times, which instead of
growing linearly with the population size, increase much
more slowly. The probability that a given neutral locus is
polymorphic with an allele at intermediate frequency is
roughly given by the product of the neutral mutation rate, m,
and the coalescence time, TC. Hence we expect the neutral

diversity Q � ms2r23ers
21

ffiffiffiffiffiffiffiffiffiffiffi
2logsN

p
: Details of the expected

heterozygosity, however, depend on the allele frequency
spectrum. The latter is also the most informative quantity
that can be evaluated from a static population snapshot. We
have shown that in our model, allele frequency spectra de-
cay as n22exp ½rs21

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2logNns

p � which is much steeper than
n21 predicted by drift. As a consequence, in contrast to the
classic neutral theory (Ewens 2004), one should expect the
number of polymorphic loci to increase almost linearly
(rather than logarithmically) with the sample size as one
samples the population deeper and deeper.

Why draft is different from drift

Draft and hitchhiking are often accounted for by an effective
neutral model with reduced population size Ne (Hill and
Robertson 1966; Felsenstein 1974). This is possible if draft
does not change the offspring distribution qualitatively but
only increases its variance. The central limit theorem then
guarantees the existence of a meaningful diffusion limit for
the allele frequency dynamics with the diffusion constant
that could, if one were so inclined, be interpreted as the
inverse effective population size. This diffusion limit, how-
ever, is not possible in our case since the number of recombi-
nant genotypes, j, that descend from a single clone has
a very broad distribution with power-law tails and diverging
variance. To see this let us consider a genotype seeded by
recombination at fitness x?s above the mean, which estab-
lishes with probability x 2 r. After establishment, its copy
number n(t) initially grows almost deterministically; see
Equation 4. Over time, the mean fitness increases such that
the growth rate eventually turns negative and the genotype
goes extinct. During its lifetime, the clone produces
jðxÞ � r

ÐN
0 dt nðtÞ � eðx2rÞ2=2s2

recombinant offspring. Since
the initial fitness x of the genotype is drawn from a Gaussian
distribution PðxÞ ¼ e2x2=2s2

=
ffiffiffiffiffiffiffiffiffiffiffi
2ps2

p
; the mean and second

moment of the distribution of the number of recombi-
nant offspring are given by hji ¼ Ð

dxPðxÞjðxÞ ¼ 1 and
hj2i ¼ Ð

dxPðxÞj2ðxÞ; respectively. While the mean exists,
j2ðxÞ � eðx2rÞ2=s2

increases so rapidly with x that the second
moment and hence the variance are divergent. Of course,
the finite population cuts off the offspring distribution and
strictly speaking prevents the divergence of the variance.
However, this cutoff is on the order of the population size

and is irrelevant for the dynamics of rare alleles and the
existence of a diffusion limit. Below this cutoff, one finds
that the distribution of j behaves asymptotically as

PðjÞ � e2rs21
ffiffiffiffiffiffiffiffiffiffiffi
2logjs

p

j2
(14)

The implications of this heavy-tailed distribution of geno-
types that descend from a single clone are best understood
by slight abstraction of the model. Assume for a moment
population dynamics where clones are seeded simulta-
neously and their recombinant offspring start growing only
after the last clone of the previous round has died, as
illustrated in Figure 4A. This corresponds to an effective
discrete generation scheme, only that one generation corre-
sponds to the rise and fall of a genotype, rather than a single
individual. Each clone spawns a Poisson-distributed number
of recombinant genotypes with mean j, where the j are
drawn from the heavy-tailed distribution P(j). The generat-
ing function of the distribution of the number of recombi-
nant offspring is found to be P̂ ðlÞ � e2ð12lÞð12e2rs21

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
22logð12lÞ

p Þ:
Starting from a single genotype, we calculate the distribu-
tion Pn(m) of the number of genotypes carrying the mutant
allele after n effective generations, which has the generating
function

P̂n ðlÞ ¼ 12f�f⋯fðlÞ ¼ 12FnðlÞ; (15)

where fðlÞ ¼ 12P̂ ðlÞ and � denotes functional composi-
tion; i.e., f � g(x) = f(g(x)). From this result, we derive a
difference equation for Fn(l),

Fnþ1ðlÞ2FnðlÞ ¼ 2e2rs21
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
22logðFnðlÞrs21Þ

p
FnðlÞ; (16)

where it is assumed that Fn(l) is small. This difference
equation is the discrete analog of Equation A6, which is de-
rived in Appendix A for the continuous-time model and from
which most of our results follow. Thus the dynamics of
mutations in a rapidly adapting population can be viewed
as population genetics of genotypes, rather than of individ-
uals, with a power-law tailed offspring distribution with di-
verging variance. This feature makes the description by an
effective neutral Fisher–Wright model impossible, since no
diffusion limit exists when increments have such a long-
tailed distribution. A similar effect occurs in Gillespie’s
pseudo-hitchhiking model (Gillespie 2000), where a hitch-
hiking event can bring an allele to instantaneous fixation.

Coalescent processes with broad and skewed offspring
distributions are an active field of research; see, for example,
Mohle and Sagitov (2001) and Schweinsberg (2003). It is
known that broad offspring distributions can result in simul-
taneous mergers of multiple lineages and have dramatic
effects on the time to the most recent common ancestor,
which can increase sublinearly with the population size.
Whether and how our interpretation of the adapting popu-
lation in terms of a coarse-grained coalescent corresponds to
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a known universality class of coalescent models remains to
be seen. Coalescent models with broad offspring distribu-
tions have been applied to diversity data of pacific oyster
(Eldon and Wakeley 2006) and our results suggest that they
might apply to a larger class of phenomena.

Adaptation vs. purifying selection

Discussions of Hill–Robertson interference typically focus on
the effect of either linked beneficial or deleterious alleles:
the former is referred to as hitchhiking (Maynard Smith and
Haigh 1974; Kaplan et al. 1989) and the latter as “back-
ground selection” (Charlesworth et al. 1993; Nordborg
et al. 1996). Our approach addresses the effect of variation
in genetic background fitness independent of its origin.
Thus, while our analysis was set up in the context of con-
tinuous adaptation driven by many simultaneous selective
sweeps, it is equally applicable to fitness variation domi-
nated by deleterious mutations. The balance between dele-
terious mutations and selection in large populations gives
rise to a steady Poisson distribution of fitness (Haigh 1978;
Charlesworth et al. 1993). If the deleterious mutation rate
Ud is much larger than the selection coefficient s0 of muta-
tions, the Poisson distribution is very close to Gaussian, as in
the case of the adapting populations considered here. While
the origin of fitness variation is very different in these two
cases, the effect on the fate of mutations is similar. In the
adaptation scenario, a genotype carrying the mutations in
question stays at a certain point along the fitness axis while
the mean fitness is increasing. When deleterious mutations
dominate, the mean fitness is constant and set by a muta-
tion–selection balance, while the fitness of asexual offspring
of a particular genotype decreases due to accumulating
weakly deleterious mutations. Since the dynamics are de-
termined by fitness relative to mean fitness, there is little
difference between these scenarios from the point of view of
the focal mutation. We have simulated scenarios where fit-
ness variation is due to purifying selection and found that
the stochastic dynamics of novel mutations in a purifying
selection scenario are very similar to the case where fitness
variation is due to sweeping mutations. The analogs of Fig-
ures 2 and 3 for background selection are shown in Figure
S2 and Figure S3.

In the asexual case, the most relevant quantity for
background selection is the size of the least-loaded class
given by Ne2Ud=js0j, from which all future individuals descend
and within which the dynamics are essentially neutral
(Haigh 1978; Charlesworth et al. 1993). With recombina-
tion, beneficial and deleterious mutations can decouple from
each other and individuals in the bulk of the distribution
have a chance of contributing to the future population, al-
beit with a smaller and smaller chance as the distance from
the fittest class increases. In the limit of rapid recombina-
tion, this effect can be described by a reduction in the effec-
tive population, which has been studied by Hudson and
Kaplan (1995) and Nordborg et al. (1996). Our results imply
that background selection changes the population genetics

more dramatically when the outcrossing rate is small com-
pared to the standard deviation in fitness.

In any real-world scenario, there will be contributions to
fitness variation from beneficial as well as deleterious
mutations. In fact, in HIV the fitness variation due to
deleterious mutations is expected to be substantial: with
a mutation rate of �0.2 per genome replication (Mansky
and Temin 1995) and an average effect size of a mutation
of s0 = 2 0.01, we have s ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

Ud js0j
p � 0:04. The outcross-

ing rate is of the same order of magnitude (Neher and Leitner
2010), so our results are expected to apply for deleterious
mutations alone.

Sequential vs. multiple sweeps

To illustrate the applicability of isolated vs. multiple-sweep
regimes of selection we compare sweep frequencies in
Drosophila and in HIV. Genetic divergence between different
Drosophila species suggests a rate of amino acid substitution
of about one every 200 generations (see Sella et al. 2009 for
a review). While these estimates come with a rather large
statistical and methodological uncertainty, they nevertheless
indicate that sweeps are frequent, but do not interfere. Each
sweep “occupies” a stretch of �s/r nucleotides (r is the re-
combination rate per nucleotide) on a chromosome for �s21

generations. Since they come in at a rate of 0.005 per gen-
eration spread over the total map length, they should on
average be far apart: expect on average ,1% of genome
length to be subject to draft at any given time. However,
sites under weak selection might still cause substantial
Hill–Robertson interference (McVean and Charlesworth
2000).

On the other hand, the multiple-sweep regime is likely to
be relevant to organisms with a facultative sexual life cycle.
In particular, pathogens like HIV are under constant
selection pressure, resulting in a high rate of selective
sweeps. Selection in HIV evolution is best characterized in
the pol gene, the target of most antiretroviral drugs, and in
the env gene, the target of neutralizing antibodies. On the
order of 100 codons are implicated in drug resistance (Rhee
et al. 2003; Chen et al. 2004) and several such mutations
compete and sweep during the evolution of drug resistance
in a single patient. The env gene frequently builds up a nu-
cleotide diversity of 3–4% (Shankarappa et al. 1999), with
frequent adaptive amino acid substitutions (Williamson
2003; Neher and Leitner 2010). The effective recombination
rate is �1025 per base and generation (Levy et al. 2004;
Neher and Leitner 2010). With typical selection strength
of a few percent per generation, the characteristic length
of the segment affected by the sweep is �1 kb, which is
comparable to the size of the evolving genes: hence the
dynamics are in the multiple-sweep regime. While pol and
env genes constitute only a fraction of the HIV genome, CTL
epitopes are found throughout the HIV genome (Korber
et al. 2007) so that even more sweeps associated with CTL
escapes are expected (Asquith et al. 2006). In a recent study,
Hedskog et al. (2010) characterized the evolution of the pol
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gene of HIV in six longitudinally sampled patients during
antiretroviral treatment. Using their data, we measured the
site frequency spectrum of derived alleles, shown in Figure
7. The allele frequency spectrum is indeed much steeper
than expected for neutral evolution and compatible with
n22, rather than the neutral expectation of n21. Further-
more, there is little difference between the spectra of silent
and nonsynonymous mutations, consistent with our notion
of quasi-neutrality. Note, however, that steep allele fre-
quency spectra proportional to n22 are also expected in
expanding populations. While the sequences used in Figure
7 are from chronically infected patients, changes in drug
therapy resulted in shrinking and expanding population
sizes and the effects of this expansion and draft cannot be
disentangled at present.

In a recent study, Rouzine and Coffin (2010) present an
analysis of adaptation of HIV, using a model similar to the
one used here and in Neher et al. (2010). Rouzine and
Coffin study the problem of selection on standing genetic
variation and in addition to the speed of adaptation, they
compute the rate of coalescence, which in their model is
controlled by the probability that two individuals in the
population are genetically identical, i.e., are part of the same
clone. In agreement with our result in Equation 7, they find
that the coalescence rate is �e2ðrxmax=s

2Þ; where xmax is the
fitness of the fittest individuals in the population (relative to
�x). The quantity xmax corresponds to s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2  log  sN

p
in our

Equation 7. Furthermore, Rouzine and Coffin (2010) study
how benefical alleles at low frequency can be lost due to the
lack of recombination. Our work complements Rouzine and
Coffin (2010), as we study the stochastic dynamics of new
alleles arising from mutations, rather than the evolution of

the fitness distribution, given standing variation. On the
other hand, Rouzine and Coffin (2010) account for correla-
tions between loci by allowing the distribution of recombi-
nants to be broader than the population distribution
(Rouzine and Coffin 2005)—an effect absent in our model.
In the range of recombination rates where our results apply,
the latter deviations are small.

Our analytic results are derived using a branching process
approximation that assumes that the novel allele is a small
fraction of the total population and the finiteness of the
population does not yet affect its dynamics. The influence of
the finite population size is apparent in Figure 3B, causing
deviations from the branching process predictions at large
frequencies. The branching process approach can be com-
plemented by an effective theory for macroscopic frequen-
cies, similar in spirit to diffusion theory for random drift.
This theory, however, has to account for the very broad
distribution of clone sizes. Throughout the article, we have
assumed that the speed of adaptation is identical to the
variance in fitness; i.e., we have assumed that effects on
fitness of different mutations are purely additive. If interac-
tions between mutations contribute to fitness, the variance
in fitness tends to be larger than the speed of adaptation,
since coadapted combinations are destroyed by recombina-
tion. Including genetic interactions within our framework
involves decoupling v and s, as well as changing the recom-
bination functions. Genetic interaction might increase the
importance of draft significantly, as interactions have a ten-
dency to result in clonal population structures and couple
the loci along the genome beyond physical linkage (Neher
and Shraiman 2009). Another simplification we have made
is to assume that all loci segregate independently in an out-
crossing event. Our analysis can be extended to account for
linear chromosomes by considering a hierarchy of recombi-
nation rates for chromosomal segments at different distan-
ces. These and other extensions are interesting projects,
which we leave for future work.

Several large-scale resequencing projects are underway
with the goal to characterize genetic diversity in populations
of humans, Drosophila, and Arabidopsis at great depth.
These upcoming data will allow us to measure allele fre-
quency spectra to much greater depth, similar to the exam-
ple from HIV shown in Figure 7, and reveal the mechanisms
shaping genetic diversity in natural populations.
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Figure 7 Derived allele frequency spectrum of silent and nonsynonymous
mutations in the HIV pol gene, amino acids 180–220 (Hedskog et al.
2010). The black lines indicate the expectation f(n) � n–2 with draft
and f(n) � n–1 in absence of draft. The neutral spectrum �n–1 fails to
capture the steep decay at low frequencies and fits the data only in an
intermediate-frequency range. Note, however, that population expan-
sions can give rise to allele frequency spectra similar to those expected
under draft.
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Appendix A

Derivation of the results

To analyze the dynamics of the probability distribution, it is useful to consider the generating function
p̂ ðl;T; t; xÞ ¼ P

n l
npðn;T j 1; t; xÞ. From Equation 1, one obtains (see File S1) the following equation for

fðl;T; t; xÞ ¼ 12p̂ ðl;T; t; xÞ,

2 @tfðl;T; t; xÞ ¼ r
ð
dx9Kxx9fðl;T; t; x9Þ þ ðx2 vt þ s2 rÞfðl;T; t; xÞ2f2ðl;T; t; xÞ (A1)

with boundary condition f(l, T, T, x) = 12 l. The survival probability is given by evaluating f(l, T, t, x) at l= 0, while the
moments and asymptotic behavior of p(n, T, t) are determined by the behavior of f(l, T, t, x) in the vicinity of l = 1. We
have to solve for f(l, T, t, x) in these two limits, which show up repeatedly below. It is convenient to remove the explicit
dependence on the initial condition and the velocity v = s2 by rescaling c(T, t, x) = f(l, T, t, x)/(se) with e = 1 2 l. The
two limits of interest are now e> 1 (l � 1) and e � s21? 1 (l � 0). After rescaling ~r ¼ s21r, ~s ¼ s21s, and x = s21x 2 sT
and t = s(T 2 t), Equation A1 takes the form

@tcðt; xÞ ¼ ~r
ð
dx9Kxx9c

�
t; x9

�þ �
xþ tþ ~s2~r

�
cðt; xÞ2 ec2ðt; xÞ; (A2)

where c(t, x) is the rescaled generating function of the copy number distribution of a mutation that initially occurred on the
genome with rescaled background fitness x. The distribution of rescaled fitness x in the population
Pðx; tÞ ¼ ð1= ffiffiffiffiffiffi

2p
p Þe2ðx2�xðtÞÞ2=2 is Gaussian around the moving mean fitness �xðtÞ. Averaging Equation A2 over P(x, t) yields

an equation for the scaled generating function FðtÞ ¼ Ð
dxPðx; tÞcðt; xÞ:

@tFðtÞ ¼ @t

ð
dxPðx; tÞcðt; xÞ ¼ ~sFðtÞ2 e

ð
dxPðt; xÞc2ðt; xÞ: (A3)

For beneficial mutations, F(t) approaches a steady state where the two terms on the right balance each other. This long time
limit was used as a solvability condition in Neher et al. (2010) to determine the fixation probability of beneficial mutations.
The steady state is independent of the initial condition e and therefore equals the rescaled survival probability. However, if
~s#0, no such steady state exists, since neutral and deleterious mutations have zero chance of fixation in an infinite
population. To calculate the probability that a mutation reaches n copies after time t, we need to find the full time-dependent
solution of Equation A3. For simplicity, we use the communal recombination model throughout and show that the infini-
tesimal model yields similar results by simulations of the latter. For the communal recombination model, the recombination
contribution in Equation A2 reduces to ~rFðtÞ.

In analogy to Neher et al. (2010), we solve Equation A2 in the two asymptotic regimes of large positive and large negative
growth rate u ¼ xþ tþ ~s2~r: For u , 0 the nonlinearity in Equation A2 can be neglected since c(t, x)> e21. Conversely, at
large u the dominant balance in Equation A2 is uc(t, x) = ec2(t, x). The two asymptotic solutions are

cðt; xÞ ¼
n

~reu
2=2Ð t

0dt9Fðt9Þe2u92=2 u,QcðtÞ

u=e u.QcðtÞ:
(A4)

The crossover between the two solutions occurs in a narrow region at u = Qc(t), where Qc(t) is approximately the point
where the two solutions cross. The evolution of F(t) is governed by Equation A3, which has to be self-consisted with
Equation A4. We first solve for F(t) assuming that t is large. In this case the dominant contribution to the integral in
Equation A4 will come from a well-defined t9? 0 that is determined by the maximum of expð2u92=2 þ log Fðt9ÞÞ at t9 =
t 2 u. F(t) will turn out to change slowly and its time derivative can be neglected when determining the maximum of the
exponent. Hence,

cðtÞ �
ffiffiffiffiffiffi
2p

p
~rFðtÞeu2=2: (A5)

This solution is valid below Qc(t), where c(t) crosses over the linear saturated form u/e. Substituting this solution into
Equation A3 yields
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@tFðtÞ ¼ ~sFðtÞ2~rFðtÞe2~rQcðtÞ2~r 2=2: (A6)

We first consider neutral mutations, ~s ¼ 0, in which case FðtÞ21@tFðtÞ ¼ 2~re2~rQcðtÞ2~r2=2, confirming that log F(t) changes
slowly as long as ~rQc ? 1 (the limit of ~rQc > 1 yields qualitatively different answers). Solving Equation A6 for Qc(t) and
differentiating with respect to t yields an equation for @tQc(t), which is readily solved for Qc(t) in the case ~rQc ?1,

QcðtÞ ¼
1þW

�
~r3ðt2 t0Þe21

�
~r

�
log

�
~r3ðt2 t0Þ þ e~rQ0

�
~r

; (A7)

where Q0 is the initial condition at t = t0 and W(x) is Lambert’s W, i.e., the solution of W(x)eW(x) = x. The approximation of
W(x) by a logarithm is accurate only at a very large time since there are significant log log x corrections. The solution for the
rescaled generating function then reads

FðtÞ ¼ QcðtÞ
e~r

e2QcðtÞ2=2 � e2log2ð~r 3ðt2t0Þþe~rQ0 Þ=2~r 2 ; (A8)

where the last terms include only the exponential factors. Apart from the rescaling, this solution is independent of the initial
condition e. The dependence on ɛ will reemerge through the matching to the short-time solution. Note that F(t) satisfies
asymptotically for large t,

@tFðtÞ � 2
log

�
~r3t

�
~r2t

FðtÞ; (A9)

which means that the relaxation rate of F decreases with time, but more slowly than it does in the case of pure drift (in the
absence of draft), in which case @t log F(t) = 21/t.

The long-time solution in Equation A8 has to be matched to the solution at small t where the initial condition cannot be
neglected.

Short-time solution

To analyze the short-time behavior, it is useful to split c(t, x) = cr(t, x) + c0(t, x) into a contribution fed by re-
combination cr(t, x) and the contribution originating from the initial condition c0(t, x), where cr(0, x) is initially zero and
c0(0, x) = 1. In the communal recombination model, the term describing the production of novel recombinants reduces to
~rFðtÞ and the two contributions evolve according to

@tc0ðt; xÞ ¼ uc02 ec2
0

@tcrðt; xÞ ¼ ~rFðtÞ þ ucr 2 e
�
2c0cr þ cr

2
�
:

(A10)

Recombination enters the equation for c0 only through a reduction of the growth rate and the solution for c0(t, x) is simply

c0ðt; xÞ ¼
eu

2=2

e
Ð t
0dt

9eu92=2 þ eðu2 tÞ2=2: (A11)

The integral F0ðtÞ ¼
Ð
dxPðx; tÞc0ðt; xÞ acts as a source for cr(t, x). The initial behavior of F0(t) is quite different for e ≫ 1

and e> 1 and we analyze these cases separately below.

Survival probability of neutral mutations

Here, we present the steps necessary to arrive at the result for the survival probability (Equation 5). The survival
probability is given by the generating function of p(n, t), evaluated at l = 0. In our rescaled variables, the survival
probability therefore corresponds to F(t) with e = s21? 1. The long-time solution for F(t) given in Equation A8 contains
the free parameters t0 and Q0, defined by matching with the short-time solution that depends explicitly on the initial
condition (see above). To establish the matching, we trace the short-time solution for e?1 through several regimes until
the initial condition is forgotten. At small times t? 1, we have

FðtÞ � F0ðtÞ ¼ 1
etþ 1

: (A12)

This rapid initial decay corresponds to the early loss of the allele due to neutral processes. Selection starts to matter only
after t � 1, yielding an accelerated decay of F0(t):
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F0ðtÞ 1

e
ffiffiffiffiffiffi
2p

p exp

"
2
t2

8
2
~rt
2
2
~r2

2

#
(A13)

The Gaussian decay of the survival probability of unrecombined alleles is due to the increasing mean fitness, i.e., the
adapting population wave moving past the genotype the mutation initially arose on. Hence F0(t) does not contribute to
the long-time behavior, which is dominated by the part of the solution driven by recombination. We therefore have to
calculate how much weight is transferred from c0 to cr via the term ~rFðtÞ in Equation A10. In the case e? 1, the dominant
balance for cr(t, x) is ~rF0ðtÞ � 2ecrðt; xÞc0ðt; xÞ, resulting in an initially steady FrðtÞ ¼ ~r=2e. After the initial condition has
decayed and F0(t)>Fr(t), the solution cr(t, x) acquires the form of Equation A4 with the only memory of the initial
condition in Fr(t). The crossover time is obtained by equating F0(t) with Fr(t), which yields t0 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8  logð2=~rÞp
22~r. Using

this t0 and Q0 � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
24  log~r

p
(compare with Equation A4), we can match the short-time solution to the long-time solution in

Equation A8.
To illustrate the validity of the approximations made in the analysis we solved Equation A2 numerically. Fig. A1 shows the

square root of the logarithm of the rescaled survival probability,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
22~r2logFðtÞ;p

plotted as a function of Wð~r3te212~r 2=2Þ. Data
for different outcrossing rates collapse onto the same curve, indicating that the expression in Equation A8 captures the
dependence on ~r.

The above analysis assumed the communal recombination model, i.e., a model where the offspring fitness is independent
of the parental fitness. To demonstrate that the communal recombination model captures the behavior of the infinitesimal
model, we compare results obtained from stochastic simulations of the branching process for the two models in Figure A1.
The infinitesimal model exhibits the same scaling collapse, indicating that the dependence on the parameters is similar. The
two models do, however, show quantitative differences, which can be interpreted as less efficient recombination in the
infinitesimal model. This is expected, as recombination in the infinitesimal model only halves the correlation with either
parent, while this correlation is completely destroyed in the communal recombination model. Note, however, that the
dependence of PS on ~r is strong, so that a rescaling of ~r substantially changes the absolute numbers.

Beneficial and deleterious mutations

To analyze the behavior of F(t) in the case of ~s 6¼ 0, we track back to Equation A6, focusing on the case where ~rQc?1:

@tFðtÞ ¼ ð~s2~re2~rQcÞFðtÞ: (A14)

This equation highlights the fact that as long as ~s>~re2~rQc , the dynamics of F(t) are dominated by fluctuations and are
therefore similar to the neutral case. For a negative ~s, the decay of F(t) is accelerated, while a positive ~s slows down and
eventually halts the decay of F(t); see Figure 5. The crossover to the behavior dominated by the intrinsic fitness effect occurs
when the two terms are equal. Comparing with Equation A9 yields the crossover condition

~s � logð~r 3tÞ
~r 2t or t � logðr~=~sÞ

~r2~s : (A15)

Before this crossover, the effect of selection on ~s is a simple attenuation or amplification of FðtÞ ¼ e~stCðtÞ, where C(t) is
approximately the neutral solution, with the slight difference that the crossover point Qc �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
22  logðe~rCðtÞÞ22~st

p
. The

correction to the crossover point is still small when selection on the intrinsic fitness effect s starts to dominate the dynamics of
F(t).

Distribution of the allele copy number

The probability p(n, T) of finding n copies of the allele after time T can be calculated from the generating function p̂ðl;TÞ
by contour integration in the complex l-plane:

pðn; tÞ ¼ 1
2pi

∮C dl
p̂ðl;TÞ
ln11 : (A16)

The contour C has to encircle the origin and no other singularities of p̂ðl;TÞ. For n . 0, we can evaluate the contour integral by
deforming the contour to run alongside the singularities away from zero, which are tightly controlled by l2n for n?1. To do
so, we have to study the analytic properties of p̂ ðl;TÞ or equivalently of FðtÞ ¼ s21e21ð12p̂ ðl;TÞÞ; where e = 1 2 l. For
negative e = 1 2 l and s $ 0, c(x, t) has a singularity at Qc, the value separating the regime of small u where the linear
equation is valid and the saturated regime where c(t) = u/e; compare Equation A4. F(t) is the integral of c(t, x) over x and
therefore has a branch cut for negative real e. Otherwise, F(t) is an analytic function of e. We can use this branch cut to
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evaluate the contour integral in Equation A16. Substituting F(t) into Equation A16 in changing the integration variable to e,
we have

pðn; tÞ ¼ s

2pi
∮B de

eFðtÞ
ð12 eÞnþ1 � s

2pi
∮B de elogeþneþlogFðtÞ; (A17)

where B is the contour encircling the branch cut. For large n the dominant contributions to the integral come from e> 1 and we
have to find a solution for F(t) for small e.

To this end, we backtrack to Equation A11 and integrate the evolution equation for F(t) for e>1. We find

F0ðtÞ ¼

n
e2~rt   t,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
22  loge

p
1ffiffiffiffiffiffi
pet

p exp
�
2

t2

8
2
~rt
2
2
~r2

2

�
t.

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
22  loge

p
:

(A18)

For intermediate ~r, the matching between the short-term solution and the long-time solution occurs at
t0 ¼ Q0 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

22  log e
p

, after which we have

FðtÞ ¼ Qc
e~r e

2QcðtÞ2=2 with QcðtÞ � ~r21log
�
~r3ðt2t0Þ þ erQ0

�
: (A19)

For large Q0, QcðtÞ � Q0 þ ~r2ðt2t0Þe2~rQ0 and the branch-cut integral becomes

pðn; tÞ � s

2p~ri
∮B deQ0ene

2Q2
0
=2
2Q2

0=22Q0~r2ðt2t0Þe2~rQ0
: (A20)

The exponent of the integrant peaks when

nQ0e2Q2
0=2 þQ0 2~r2

�
~rQ0 2 1

�ðt2 t0Þe2~rQ0 ¼ 0: (A21)

For large n, the dominant balance is between the first term of Equation A21 and the remainder, which requires that n � eQ
2
0=2

and hence e � n21. Using Q0 ¼ t0 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2  logn

p
; the asymptotic copy number distribution becomes

pðn; tÞ � 1

n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2  logn

p e2ðQ0þ~r2 1logð1þ~r3ðt2t0Þe2~rQ0ÞÞ2=2 (A22)

The leading dependence of p(n, t) on n is p(n, t) � n22. Note, however, that the cross-term from the exponent yields another

subdominant factor ea
ffiffiffiffiffiffiffi
logn

p
. By contrast, the corresponding expression in the high recombination regime is p(n, T) �

T22e2n/T.
The allele frequency spectrum, f(n), i.e., the probability to find n copies of a derived allele irrespective of its age, is given

by the time average of p(n, t) over mutations that arose at different times t in the past. It depends on how quickly the
survival probability decays, as well as on the shape of p(n, t). For large n one can expand the logarithm in the exponent of
Equation A22 and integrate p(n, t) over t to obtain

f ðnÞ ¼
ðN
0
dtpðn; tÞ �

e~r
ffiffiffiffiffiffi
2logn

p
n2logn ~r> 1

n21             ~r? 1:

(
(A23)

Even though p(n, t) decays much faster for ~r?1 (exponential) than for ~r>1 (algebraically), the allele frequency spectrum is
steeper for ~r>1 than for ~r?1. The long tail of the latter is due to the contribution of very old alleles with very flat
exponential p(n, t). For ~r>1, the clonal amplification and rapid extinction of most alleles give rise to steep allele frequency
spectra.

The double mutation probability: stochastic tunneling

To calculate tunneling probabilities (Iwasa et al. 2004; Weissman et al. 2009), we need to know the distribution of
w ¼ Ð t

0dt9nðt9Þ treated as a stochastic variable, i.e., the size of transient “bubbles” of mutant individuals in a large population.
In analogy to Equation 1, the distribution p(w, T|k, t, x) for a mutation being present on background x in k copies obeys the
following equation:
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2 ð@t 2 k@wÞpðw;T j k; t; xÞ
¼ 2 kðBþ Dþ rÞpðw;T j k; t; xÞ þ kBpðw;Tjkþ 1; t; xÞ þ kDpðw;T j k2 1; t; xÞ

þ rk
Ð
dw9

Ð
dx9Kxx9pðw2w9;T j k2 1; t; xÞpðw9;T j 1; t; x9Þ:

(A24)

Instead of the generating function, we now consider the Laplace transform p̂ ðz;Tjk; t; xÞ ¼ Ð
dze2zwpðw;Tjk; t; xÞ. Because

of the convolution property of Laplace transforms and the fact that the fates of the k alleles present at time t are independent
of each other, we have p̂ ðz;T j k; t; xÞ ¼ p̂ kðz;T j 1; t; xÞ. As before, we scale rates by s21 and times by s. The equation for
fðt; z; xÞ ¼ s21ð12p̂ðz;Tj1; t; xÞÞ then is

@tfðt; z; xÞ ¼ zþ ~rFðt; zÞ þ ufðt; z; xÞ2f2ðt; z; xÞ; (A25)

where u ¼ xþ tþ ~sþ z2~r. At t = s(T 2 t) = 0, w = 0 and therefore f(t, z, x) = 0. If tunneling is rare and happens only on
timescales longer than the lifetime of bubbles, we do not need to know the full time-dependent solution for f(t, z, x) but can
send t to infinity. The above equation can again be solved by matching the asymptotic solutions at large negative and positive
u, which in the steady state read

fðz; xÞ �

	
eu

2=2


zþ ~rFðzÞ� u>Qc

u u?Qc:
(A26)

The crossover point Qc is determined by eQ
2
c =2½zþ ~rFðzÞ ¼ Qc� . The “solvability condition” obtained by integrating Equation

A25 with regard to the Gaussian distribution of x yields

0 ¼ zþ ~sFðzÞ2
ð

dxffiffiffiffiffiffi
2p

p e2x2=2f2ðz; xÞ: (A27)

For small ~r, the integral on the right-hand side is dominated by the vicinity of the crossover point Qc. Combining with the
matching condition, one finds for F(z)

FðzÞ ¼ z
12 e2~rQc

~re2~rQc 2 s
: (A28)

Substituting into the crossover condition we obtain an equation for Qc:

z
~r2~s

~re2~rQc 2~s
¼ Qce2Q2

c=2: (A29)

In the neutral case ðj~sj>~re2~rQcÞ, the location of the crossover is at Qc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
22  logðze~rQc=Qc

p
Þ; which implies for F(z)

FðzÞ ¼ z
e~rQc 21

~r
¼

	
z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 2  log z

p
~rQc>1

ze~rQc=~r ~rQc?1: (A30)

In the case that the intrinsic effect of the mutation dominates the denominator of Equation A29 ðj~sj ? ~re2~rQcÞ; one finds

FðzÞ ¼ z
j~sj

�
12e2~rQc

�
¼

n
z~r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
22  logz

p
j~sj ~rQc> 1

z
j~sj ~rQc? 1:

(A31)

The result for F(z) given by Equation A28 and its different limits is directly relevant to the calculation of the probability of
secondary events, e.g., an additional mutation as discussed in the earlier in Stochastic tunneling and complex adaptations.

For completeness we also calculate the probability distribution of w ¼ ÐN
0 dtnðtÞ that is given by the inverse Laplace

transform of F(z),

PðwÞ ¼ ∮C
dz
2pi

ezw �Fz ; (A32)

where C is the contour encircling the branch cut. For example, in the intermediate asymptotic ~rQc>1 regime when
FðzÞ ¼ z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log z22

p
, we have
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PðwÞ ¼ ∮C
dz
2pi

ezwz
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log z2 2

p
¼

ðN
0

dy
p

e2ywyIm

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2  log y21 þ i2p
p �

: (A33)

�
ðN
0

dyye2ywffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log y22

p � w22ffiffiffiffiffiffiffiffiffiffiffiffiffi
logw2

p ; (A34)

where we used an approximation valid for w? 1. This can be compared to the “draftless” result, obtained also in the ~r?1
limit: in that case FðzÞ ¼ ffiffiffi

z
p

, the inverse Laplace transform of which gives P(w) � w23/2 (Weissman et al. 2009).

Appendix B

Computer simulation methods

Fisher–Wright simulation

To efficiently simulate the dynamics of large populations, we keep track of classes of individuals with identical genomes,
which are encoded by bitstrings. The fitness x of all individuals of a class is simply the sum of the contributions from all loci.
In our discrete generation scheme, a pool of gametes is produced to which each class contributes a Poisson-distributed
number of gametes with mean c expð2ðx2�x þ aÞÞ. Here, c is the size of the class, �x is the mean fitness in the population, and
a ¼ 12N=�N keeps the population size N approximately constant at �N. Fitness defined as growth rate in the continuous-time
model naturally assumes this exponential form in a discrete generation model, simply by integration over one generation.

To implement facultative mating, a fraction r of the gametes are paired up and from each pair two offspring are produced
by assigning at random the genes of the parents to either offspring. The remaining 12 r fraction of gametes is copied into the
next generation without recombination; i.e., they have gone through an asexual reproduction cycle.

The genome of each class has a fixed length L = 1024 and new mutations are introduced at a locus whenever this locus is
monomorphic, i.e., whenever a previous mutation either went extinct or fixed. For each monomorphic locus, an individual is
chosen at random and the mutation is introduced in this single individual. This scheme of keeping a fixed number of loci
polymorphic has the advantage of making optimal use of the computational resources, i.e., keep every locus polymorphic
while maintaining an overall low mutation rate. The mutation rate, however, becomes a dependent quantity that fluctuates
around a value that depends on other parameters of the population: NUb is simply the average number of loci that become
monomorphic in one generation; see Neher et al. (2010). For large L, the number of mutations introduced in each generation
is much greater than one and does not fluctuate greatly.

To establish a steadily adapting population, 80% of the loci are kept polymorphic with beneficial mutations with effect
size s0 which is rescaled each generation such that the overall fitness variance is s2 = 0.0025. This rescaling is done to be
able to specify r/s and s/s explicitly. Since fluctuations of s in large populations with many polymorphic loci are small, this
does not change the properties of the dynamics and the same results are obtained letting s be freely determined by the
population. The remaining 20% of the loci are used to study the fate of mutations with fixed effect size s. Measurements are
performed after an equilibration period of 20,000 generations at intervals of 100 generations. The source code is available
from the authors on request.

Simulation of the branching process

The simulation of the population dynamics is complemented by a simulation of the branching process that can be directly
compared to analytic calculations. We simulate the process described by Equation 1, using an event-driven algorithm
(Gillespie 1977). The simulation keeps track of all individuals that currently carry the allele in question. For each individual,
the time t + Dt of the next event is determined by drawing a Dt from an exponential distribution with parameter B(t) + D +
r, where B and D are the birth and death rates, respectively. At time t + Dt, a birth, death, or recombination event is
performed with probabilities proportional to B(t + Dt), D, and r, respectively. In the case of death, the individual is deleted;
in the case of birth, it is duplicated with the exact same fitness; and in the case of recombination, its fitness is redrawn
according to the recombination kernels in Equations 2 and 3. (Note that the waiting-time distribution for the next event is
not exactly exponential, since the birth rate is time dependent. This, however, amounts only to a correction of order s2> 1.)
For the recombination function of the communal model, we need not simulate Equation 1 but can solve numerically for the
generating function of the p(n, T, t), given in Equation 17. To this end, we discretize the fitness x and solve for the vector c(t,
x), using the ODE solver of SciPy (Oliphant 2007). The results obtained through stochastic simulation of the communal
model agree with the numerical solution for the generating function, as it has to be.
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Figure A1 Asymptotic behavior of the survival probability for the communal
and infinitesimal recombination models. (A) The survival probability
F(t), obtained by numerical solution of Equation A1 for the communal
recombination model, exhibits the predicted asymptotic behaviorffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
22~r2logF

p
� Wð~r3te212~r2=2Þ (Equation 5). (B) The survival probabilities

in the infinitesimal model (IM) and the communal model (CM), determined
by simulating the branching process, exhibit a similar scaling collapse, in-
dicating that the dependence on parameters is similar. (C) The first passage
time, Tfp, to allele copy number nN, is well described by the branching pro-
cess approximation for the dynamics of alleles in a finite population as long
as the frequency n>1. This is confirmed here by plotting

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2~r2logsnN

p
vs.

Wð~r3sTfpe212~r2=2Þ. The collapse of data for different ~r and different n con-
firms the predicted parameter dependence (Equation 7), while the concor-
dance with the branching process results confirms the branching process
model. Deviation from the branching process prediction is apparent for n =
0.5. Recombination rates in C follow the same color code as in A and B,
while black symbols correspond to ~r  ¼   1.
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Derivation of the backward Master equation for p(n, T )

The fundamental quantity of the branching process is the probability distribution, p(n, T ), of observing n copies
of the allele T generations after it originated. A backward equation for p(n, T ) can be derived by considering the
probability p(n, T |k, t, x) of having n copies at time T , given their were k copies on a background with fitness x at
time t. p(n, T |k, t − Δt, x) now can be expressed as a sum over possible intermediate states at time t:

p(n, T |k, t − Δt, x) =p(n, T |k, t, x)(1 − Δtk(2 + x − x̄(t) + s + r))
+ Δt [k(1 + x − x̄(t) + s)p(n, T |k + 1, t, x) + kp(n, T |k − 1, t, x)]

+ Δtrk
∑
n′

∫
x′

Kxx′p(n − n′, T |k − 1, t, x)p(n′, T |1, t, x′) ,

(1)

where x̄(t) is the mean fitness of the population at time t. The different terms have straightforward interpretations:
The first term is the probability that nothing happens in the small time interval Δt, the second accounts for a division
of one of k individuals, which happens with rate k(1 + x − x̄(t) + s), the third term accounts for the death of one of
the k, while the last term accounts for outcrossing of one of the k, producing a new individual with fitness x′ and
removing one with fitness x. The outcrossing term is then summed over all possible ways the k − 1 individuals with
fitness x and the one with fitness x′ can give rise to n individuals at time T . Sending Δt to zero and rearranging
terms results in an ODE for p(n, T |k, t, x)

−∂tp(n, T |k, t, x) = − p(n, T |k, t, x)k(2 + x − x̄(t) + s + r)
+ k(1 + x − x̄(t) + s)p(n, T |k + 1, t, x) + kp(n, T |k − 1, t, x)

+ rk
∑
n′

∫
x′

Kxx′p(n − n′, T |k − 1, t, x)p(n′, T |1, t, x′)
(2)

This is equation 1 from the main text.

Derivation of the equation for the generating function

To remove the convolution over n it is convenient to consider the generating function p̂(λ, T |k, t, x) =∑
n λnp(n, T |k, t, x). Multiplying the above equation by λn and summing over n yields

−∂tp̂(λ, T |k, t, x) = − k(2 + x − x̄(t) + s + r)p̂(λ, T |k, t, x)
+ k(1 + x − x̄(t) + s)p̂(λ, T |k + 1, t, x) + kp̂(λ, T |k − 1, t, x)

+ rk

∫
x′

Kxx′ p̂(λ, T |k − 1, t, x)p̂(λ, T |1, t, x)
(3)

All k initial individuals are independent, hence p̂(λ, T |k, t, x) = p̂k(λ, T |t, x) and the right hand side is
−∂tp̂

k(λ, T |t, x) = −kp̂k−1(λ, T |t, x)∂tp̂(λ, T |t, x). We can therefore divide the equation by p̂k−1
x (λ, T |t, x) to obtain

−∂tp̂(λ, T, t, x) = − (2 + x − x̄(t) + s + r)p̂(λ, T, t, x) + (1 + x − x̄(t) + s)p̂2(λ, T, t, x) + 1 + r

∫
x′

Kxx′ p̂(λ, T, t, x)

(4)

The generating function has the boundary condition p̂(λ, T |T, x) = λ, which follows from p(n, T |k, T, x) = δnk.
Substituting p̂(λ, T |t, x) = 1 − φ(λ, T, t, x) removes the constant term.

∂tφ(λ, T, t, x) = − r

∫
x′

Kxx′φ(λ, T, t, x′) − (x − x̄(t) + s − r)φ(λ, T, t, x) + (1 + x − x̄(t) + s)φ2(λ, T, t, x) (5)



2

which now has boundary condition φ(λ, T, T, x) = 1 − λ. Assuming that selection is weak on the timescale of one
generation (σ � 1), we can approximate 1 + x − x̄(t) + s by 1 and arrive at Eq. 18 of the main text:

−∂tφ(λ, T, t, x) = r

∫
x′

Kxx′φ(λ, T, t, x′) + (x − x̄(t) + s − r)φ(λ, T, t, x) − φ2(λ, T, t, x) (6)

Solution for Φ(τ) at low r̃

In the main text, we presented a solution to the two equations (Eqs. (21) and (23))

ψ(τ, χ) =

{
reθ2/2

∫ τ

0
dτ ′Φ(τ ′)e−θ′2/2 θ < Θc

θ/ε θ > Θc

(7)

and

∂τΦ(τ) = s̃Φ(τ) − ε

∫
dχP (τ, χ)ψ2(τ, χ) (8)

in a regime of intermediate r̃ (1/
√

log N < r̃ < 1). An additional solution with qualitatively different properties exists
at low r̃. While the assumption of a Gaussian fitness distribution is questionable in this range of r̃, we nevertheless
present the solution here for completeness. Proceeding as before, we evaluate the integral in Eq. (7) by expanding
exponent around its maximum. The maximum is located at τ ′ = τ − θ − α(τ ′) where α(τ) = −Φ(τ)−1∂τΦ(τ).
Assuming α(τ) changes slowly with time, we have

ψ(τ) ≈
√

2πr̃Φ(τ)e
(θ+α)2

2 (9)

This solution is valid below Θc, where ψ(τ) crosses over the linear saturated form θ/ε. In addition to the matching
condition at Θc, we use Eq. 8 for s = 0 to determine α:

∂τΦ(τ) = −αΦ(τ) = −r̃Φ(τ)eΘc(α−r̃)+α2/2−r̃2/2 (10)

For r̃Θc � 1 we recover the solution with small α given in the main text. For smaller r̃, however, we find α(τ) ≈ log r̃
Θc

.
Solving the matching condition for Θc and differentiating with respect to τ yields ∂τΘc = − 1

Θc
α(τ). This is readily

solved for this case of Θcr̃ < 1

Θc(τ) = (−3(τ − τ0) log r̃ + Θ3
0)

1/3 . (11)

Substituting this solution for Θc(τ) into the expression for the rescaled generating function yields

Φ(τ) =
Θc

εr̃
e−

(Θc+α)2

2 ∼ e−
[−3(τ−τ0) log r̃+Θ3

0]2/3

2 (12)

Hence in this low r̃ regime, the decay of the survival probability is qualitatively different from the regime of intermediate
r̃.

Effective clone-based model

To rationalize the behavior of the continuous time branching process, we considered the following simplified model
discussed in the main text: Genotypes expand clonally and produce recombinant offspring. The offspring start growing
simultaneously in the next “effective” generation after all clones from the previous generation have disappeared. The
relevant quantity now is the number of clones or distinct genotypes, rather than the number of individuals. To
understand the dynamics of the number of clones, we need to know how many clones a single clone can produce.

Consider a single genotype with background fitness χ which is carrying a mutation of effect size s̃. The expected
number of recombinant offspring from this genotype is ξ = r̃

∫ ∞
0

dtnχ(t), where nχ(t) is the copy number trajectory.
The Laplace transform p̂(ξ) of p(ξ) obeys the equation (φ(z) = 1 − p̂(z))

∂χφ(χ, z) = r̃z + (χ + s̃ − r̃(1 − z))φ(χ, z) − φ(χ, z)2 , (13)



3

which is a simpler version of the Eq. (42) (main text) since only one single clone is considered and recombination to
daugther clone is ignored. This equation can be solved asymptotically in the regimes of large and small χ − r.

φ(χ, z) =

{
r̃ze(χ+s̃−r̃(1−z))2/2

∫ χ+s̃−r̃(1−z)

−∞ dxe−x2/2 χ − r̃ � Θc

(χ − r̃(1 − z)) χ − r̃ � Θc

(14)

where Θc ≈ √−2 log r̃z. The initial fitness of the genotype, χ, is Gaussian distributed and the Laplace transform has
to be averaged over χ.

φ(z) =
∫ ∞

−∞

dχ√
2π

e−χ2/2φ(χ, z) (15)

Let’s look at the mean number 〈ξ〉 of recombinant offspring first, which is given by differentiating with respect to z
and setting z = 0, which in turn sends Θc to infinity. Integration by parts yields

〈ξ〉 = ∂z

∫ ∞

−∞

dχ√
2π

e−χ2/2φ(χ) = r̃

∫ ∞

−∞

dχ√
2π

e−χ(r̃−s̃)+r2/2

∫ χ−r̃+s̃

−∞
dxe−x2/2 =

r̃

r̃ − s̃
(16)

Hence the mean number of recombinant offspring is 1 for a neutral mutation and approximately 1+ s̃/r̃ for mutations
with small effect. To evaluate the integral in Eq. (15) at finite z, we have to account for the cross-over of φ(χ, z) at
χ − r̃ = Θc ≈ √−2 log r̃z. For small z, the cross-over translates into a cut-off of the integral. Again, the integral can
be evaluated by parts:

φ(z) =
∫ Θc+r̃−s̃

−∞

dχ√
2π

r̃ze−χ(r̃(1−z)−s̃)+r̃2(1−z)2/2

∫ χ−r̃(1−z)+s̃

−∞
dxe−x2/2 +

∫ ∞

Θc+r̃−s̃

dχ√
2π

e−χ2/2(χ − r̃(1 − z))

≈ r̃z

r̃ − s̃

[
1 − e−Θc(r̃−s̃)−r̃2/2

] (17)

Hence, the generating function of the average number of recombinant offspring generated by a random genotype is
given by

p̂(z) = 1 − φ(z) ≈ 1 − r̃z

r̃ − s̃

[
1 − e−Θc(r̃−s̃)

]
, (18)

where the last expression is valid for z � 1 and r̃ � 1.
The actual number m of recombinant offspring (novel clones) generated by one clone is Poisson distributed with

mean ξ. The generating function of m is therefore∑
m

λmP (m) =
∑
m

λm

∫ ∞

0

dξ p(ξ)e−ξ ξm

m!
=

∫ ∞

0

dξ p(ξ)e−ξ(1−λ) = p̂(1 − λ) = 1 − φ(1 − λ) (19)

We will now use this result to calculate how the number of clones that descend from a particular genotype evolves
over time.

The stochastic dynamics of the number genotypes

As long as the clones we are tracking constitute a small fraction of the population, different clones are independent.
The probability to go from k to m clones in one effective generation has therefore the generating function P̂ (λ, k) =
P̂ k(λ, 1) = (1 − φ(1 − λ))k. To study the dynamics of the number of clones over many generations, we need to know
how this propagator behaves when iterated.∑

m

λm
∑

m1,...mn

P (m,mn)P (mn,mn−1) . . . P (m1, k) =
∑
mn

P̂mn(1 − λ)
∑

m1,...mn−1

P (mn,mn−1) . . . P (m1, k)

=
[
P̂ (1 − P̂ (1 − P̂ (1 − . . . P̂ (1 − λ))))

]k

= [1 − φ ◦ φ . . . ◦ φ(1 − λ)]k = [1 − Φn(1 − λ)]k
(20)

Using the result for the Laplace transform in Eq. (18), we arrive at the difference equation

Φn+1 − Φn ≈
[
s̃/r̃ − e−r̃

√−2 log r̃Φn

]
Φn (21)

This is exactly the differential equation we have derived using the continuous time mode when the effective generation
time is set to r̃−1. The latter is reasonable since the r̃−1 is the turnover time by recombination.


