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ABSTRACT What determines the genetic contribution that an individual makes to future generations? With biparental reproduction,
each individual leaves a “pedigree” of descendants, determined by the biparental relationships in the population. The pedigree of an
individual constrains the lines of descent of each of its genes. An individual’s reproductive value is the expected number of copies of
each of its genes that is passed on to distant generations conditional on its pedigree. For the simplest model of biparental reproduction
(analogous to the Wright–Fisher model), an individual’s reproductive value is determined within �10 generations, independent of
population size. Partial selfing and subdivision do not greatly slow this convergence. Our central result is that the probability that
a gene will survive is proportional to the reproductive value of the individual that carries it and that, conditional on survival, after a few
tens of generations, the distribution of the number of surviving copies is the same for all individuals, whatever their reproductive value.
These results can be generalized to the joint distribution of surviving blocks of the ancestral genome. Selection on unlinked loci in the
genetic background may greatly increase the variance in reproductive value, but the above results nevertheless still hold. The almost
linear relationship between survival probability and reproductive value also holds for weakly favored alleles. Thus, the influence of the
complex pedigree of descendants on an individual’s genetic contribution to the population can be summarized through a single
number: its reproductive value.

THE most obvious feature of sexual reproduction is that
each individual has two parents. Yet, the pedigrees that

describe biparental relationships have received surprisingly
little attention, compared with the genealogies that describe
the uniparental relationships of genes. (Throughout, we re-
fer to relationships between genes as their “genealogy”, in
contrast to the “pedigree” of biparental relationships; gene-
alogy should be understood as a shorthand for “gene gene-
alogy”.) Following the rediscovery of Mendelian genetics,
attention focused on the random genetic drift of discrete
alleles and on the converse process of inbreeding, by which
genes become identical by descent. There has of course been
substantial work on the fate of genes within a given pedi-
gree (e.g., Smith 1976, Cannings et al. 1978; Thompson
et al. 1978), but relatively little on the pedigrees themselves.

Pedigrees are of interest in their own right: it is natural
to ask who our ancestors were (Chang 1999; Rohde et al.
2004) and, conversely, how many descendants we will
each leave. But, from a genetic point of view, the pedigree
constrains what genes can be passed on: with Mendelian
inheritance, selection acts solely through the different con-
tributions made by individuals to the pedigree. The recent
availability of genomic sequences may focus more attention
on pedigrees: given sufficient sequence, we can infer the
pedigree many generations back; and given this pedigree,
we can ask what contribution is likely to be made to future
generations by each ancestral genome. These questions are
long standing (Thompson et al. 1978; Thompson 1979a, b),
but it has become feasible to answer them only in the past
few years (Huff et al. 2011).

The notion of reproductive value was introduced by
Fisher (1930) to study populations structured by age. The
reproductive value of an individual of a given age is its
expected future contribution to the population (conditional
on having survived to that age). Caswell (1982) generalized
this to populations with an arbitrary structure (for example,
where individuals vary in size or microhabitat). Grafen

Copyright © 2011 by the Genetics Society of America
doi: 10.1534/genetics.111.127555
Manuscript received March 16, 2011; accepted for publication May 23, 2011
Supporting information is available online at http://www.genetics.org/content/
suppl/2011/05/30/genetics.111.127555.DC1.
1Corresponding author: Ashworth Lab, Kings Bldgs., W. Mains Rd., Edinburgh, Sc
EH36 5PA United Kingdom. E-mail: n.barton@ed.ac.uk

Genetics, Vol. 188, 953–973 August 2011 953

http://www.genetics.org/content/suppl/2011/05/30/genetics.111.127555.DC1
http://www.genetics.org/content/suppl/2011/05/30/genetics.111.127555.DC1
mailto:n.barton@ed.ac.uk


(2006) emphasizes that reproductive value can be ascribed
to individuals as well as classes and shows rigorously that
reproductive value is the target of selection. In the long
term, alleles that increase the reproductive value will be
the ones that increase, and traits will evolve that tend to
maximize an individual’s reproductive value. In this setting,
an individual’s reproductive value is defined to be its
expected genetic contribution, that is, the expected number
of copies of one of its alleles that it leaves in distant future
generations, conditional on its pedigree of descendants. Once
a pedigree is specified, one can superpose the passage of
neutral alleles: offspring, independently, sample one allele
from each parent. In this way an individual’s reproductive
value is defined to be a function of its pedigree. Thus, we
structure the population by the pedigree that connects every
individual, rather than with a coarser structure by age or class.

An individual’s reproductive value is determined within
�10 generations, whereas its ultimate genetic contribution
is determined over very long timescales. Here, we examine
the relationship between pedigrees and genealogies over
intermediate timescales of a few tens of generations.

It is crucial to realize that overall genetic contribution to
future generations is much more complex than simply the
reproductive value, which gives the expected contribution at
any one locus. The key result of this article is that the re-
productive value of an individual determines the survival
probability of its genes, but conditional on survival, the dis-
tribution of the number of copies of an allele in future gen-
erations is the same for all individuals, independent of their
reproductive value. This result applies to a single genetic
locus. Most of an individual ancestor’s genome is lost, but
some small blocks survive in large numbers (Baird et al.
2003). By investigating simple summary statistics of the dis-
tribution of surviving blocks, we illustrate that the influence
of the pedigree on the whole complex distribution of genetic
contribution of an individual is also determined by its re-
productive value. Thus, over these intermediate timescales,
from the point of view of allele frequencies, the tangled web
of relationships that forms an individual’s pedigree can be
completely captured in a single number: the reproductive
value.

Previous work modeling the evolution of pedigrees

The spread of single genes is often represented by the
Wright–Fisher model, in which the single parent of a gene is
chosen at random from the gene pool in the previous gen-
eration. The obvious analog for pedigrees is to choose two
parents at random; if this is done with replacement, then
selfing is possible. Surprisingly, this biparental model has
only relatively recently been analyzed; it behaves quite dif-
ferently from the uniparental Wright–Fisher model. Chang
(1999) shows that �log2 N generations back into the past,
an individual will have existed who was ancestral to every
present-day individual; going back �1.77 log2 N genera-
tions, all those individuals who are ancestors will be ances-
tors of every present-day individual. [See Appendix C for an

explanation of the mathematical notations f(N) � g(N),
f(N) = O(g(N)), and f(N) ≍ g(N).] Moreover, for large N,
the time when a common ancestor first appears and the time
when every individual shares the same set of ancestors clus-
ter very closely around their expected values. Rohde et al.
(2004) show that the rapid mixing of the pedigree is not
greatly slowed by the degree of population subdivision
thought likely for humans: a single migrant is enough to
link the ancestry of an isolated deme to that of the whole
species.

This rapid mixing of biparental ancestry contrasts with
the very slow process through which single genetic loci
come to share common ancestry. The time since the most
recent common ancestor of the whole population at a single
genetic locus has mean ≍ 4N generations under the Wright–
Fisher model (Möhle 2004), but the standard deviation is of
the same order (with a contribution of �2N generations
from the approximately exponentially distributed time dur-
ing which there are exactly two lineages ancestral to the
population). Similarly, looking forward in time, an individ-
ual’s contribution to the pedigree is decided within a few
generations, whereas its ultimate genetic contribution is
decided by drift over a much longer timescale, of O(N) gen-
erations. Our work is concerned with intermediate time-
scales. We shall see (both mathematically and through
simulations) that the reproductive value of an individual is
determined within a few tens of generations. Our analytic
results for the number of copies of surviving alleles require
somewhat longer timescales,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NlogeN

p
≪ t ≪N; long enough

that the alleles at a given locus represented in the current
population are inherited from a small fraction of ancestors,
but not so long that the fate of the population has been
determined by genetic drift.

Derrida et al. (1999, 2000) investigate the distribution of
reproductive value (which they term the “weight”) numeri-
cally. They show that it rapidly settles to a stationary distri-
bution, which is close to that obtained by considering, at
large times t (t. 50, say), 22t times the number of offspring
in a Galton–Watson branching process with Poisson off-
spring distribution with mean 2 (which can be investigated
analytically). To understand this result, first observe that the
probability that a particular gene is passed down a particular
line of descent spanning t successive generations is 22t

and so the expected number of copies of that gene after t
generations is just 22t times the number of distinct lines of
descent through the pedigree. In a large population, the
pedigree of descendants of an individual will initially grow
like a branching process in which each individual has a Pois-
son number of offspring with mean 2 and under this branch-
ing process approximation, the number of distinct lines of
descent through a pedigree spanning t generations is just the
number of pedigree descendants after t generations. In other
words, in a population of moderate size (N . 100, say), the
distribution of reproductive value can be calculated simply
by assuming that the descendants of a single individual
never meet.
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Matsen and Evans (2008) study quantitatively the rela-
tionship between the genetic contribution and pedigree. Al-
though for most of their article they relate the number of
pedigree descendants to the number of genetic descendants,
in their section 4 they consider a multigraph that corre-
sponds precisely to the pedigree that we consider here and
show that, for large populations and for t ≪ log2N genera-
tions, one can couple the pedigree to a Galton–Watson
branching process with a Poisson offspring distribution with
mean 2. Combining this with the extremely rapid conver-
gence of the quantity corresponding to Derrida et al.’s
weight for a branching process (see section 3 in Matsen
and Evans 2008) is a mathematically rigorous route to the
results of Derrida et al. (1999).

Following the usual convention, we refer to an individ-
ual’s reproductive value as v, rather than using Derrida
et al.’s w. We shall also talk about the “relative contribution”
of an individual a few generations later. For example, over
one generation, the relative contribution of an individual is
just the number of its offspring divided by the expected
number of offspring for individuals in the population. For
populations like the diploid Wright–Fisher model of Chang
(1999) and Derrida et al. (1999, 2000), in which the
expected number of offspring of each individual is two,
the relative contribution converges as the number of gener-
ations grows to the reproductive value, but even in this case,
for shorter times the relative contribution is not, in general,
the same as the reproductive value.

An individual’s genetic contribution consists of a series of
blocks of genome that are passed down to its descendants
via a tangled web of relationships. Conditional on the
pedigree of an individual in the ancestral population, the
reproductive value, v, of that ancestor is the expected num-
ber of copies, many generations later, of one of its genes.
Our aim is to investigate the relationship between this single
number and the total genetic contribution of the ancestor.

Cannings et al. (1978) consider the probability that a set
of genes carried by one or more individuals will survive to
some later time; Thompson (1979a,b) shows how this sur-
vival probability is correlated between related individuals.
Both deal with contributions of individuals in specific pedi-
grees, but they do not discuss reproductive value specifically.
Derrida et al. (2000) study an extension of reproductive
value in a model that attempts to capture the genetic con-
tribution made by each individual across multiple loci. They
suppose that offspring inherit a fraction f of their genes from
one parent and 1 2 f from the other, with f following some
distribution r(f) on [0, 1], but they ignore the linear struc-
ture of the genome. Chapman and Thompson (2003) ana-
lyze the distribution of blocks that are identical by descent
between contemporary genomes. Baird et al. (2003) con-
sider a linear genetic map and follow the descent of a single
ancestral genome, forward in time; they obtain the gen-
erating function for the complete distribution of sizes and
the location of blocks of genome that are passed on. Like
Derrida et al. (1999, 2000), their analysis is based on a

branching process approximation, which in effect assumes
an infinite population, but in fact is accurate for populations
of moderate size.

Summary

The timescales for evolution of the pedigree [O(log2N) gen-
erations] and of the genes [O(N) generations] are very dif-
ferent. Individual contributions to the pedigree, quantified
through their reproductive values, are decided early on, over
such a short timescale that unless selection on individual
genes is very strong its effect on the pedigree can be ig-
nored. We analyze the relation between an individual’s re-
productive value, v, and its genetic contribution. We find
that even under weak selection, the probability that an an-
cestral allele contributes to future generations is determined
by the reproductive value. Moreover, with neutral evolution,
conditional on survival, the distribution of the number of
copies of an ancestral allele seen in generation t, whereffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Nloge   N
p

≪ t ≪N; is independent of the reproductive value.
We extend the analysis to a linear genome and consider the
distribution of blocks of genetic material passed on to future
generations by an individual. For simple summary statistics
of this distribution we show how the influence of the pedi-
gree is encoded in the reproductive value. These results re-
main true when there is inherited variation in fitness on
unlinked loci, represented by the infinitesimal model (Fisher
1918; Bulmer 1971). Thus the influence of pedigree on ge-
netic contribution is entirely summarized in the reproduc-
tive value. This makes it much simpler to understand the
origins of the genetic material that we see in present-day
populations. All the calculations in this paper are contained
in a Mathematica notebook, available as supporting infor-
mation, File S1.

Model and Methods

Definitions

We assume a population of N diploid individuals. The ped-
igree spanning t generations is represented by a sequence of
N · NmatricesM0,M1, . . . ,Mt. Here we count time back into
the past. The ith row of Mt specifies the parents (alive in
generation t + 1) of the individual labeled i in generation t,
so that the matrix Mt connects generation t before the pres-
ent with generation t+ 1 before the present. If an individual
has two different parents, then the row has two nonzero
elements, each set at 1

2; if it is produced by self-fertilization,
then there is a single nonzero entry, with value 1. We rep-
resent the matrix inMathematica as a sparse array (Wolfram
1991); this allows large populations (N � 1000, say) to be
handled efficiently, since only 2N elements are stored, rather
than N2.

In the simplest neutral model, each parent is chosen at
random, with replacement, so that a fraction averaging 1/N
are produced by selfing and each parent has approximately
a Poisson number of offspring with mean 2. In Appendix D

Pedigrees and Genealogies 955

http://www.genetics.org/content/suppl/2011/05/30/genetics.111.127555.DC1
http://www.genetics.org/content/suppl/2011/05/30/genetics.111.127555.DC1
http://www.genetics.org/content/suppl/2011/05/30/genetics.111.127555.DC1/Fixation_of_the_genome_23.3.09.nb.zip


we see how our results can be extended to more general
offspring distributions. Once the pedigree is determined,
genotypes are then chosen randomly. Genes may be labeled
0 or 1 to indicate their allelic state, or they may be given
a unique integer in the first generation, so that identity by
descent can be followed [“gene dropping” (Edwards 1968;
MacCluer et al. 1986)].

Distribution of reproductive value, v

Rather than simulating genes on the pedigree, we can
calculate quantities of interest directly for any given pedigree
(Cannings et al. 1978; Derrida et al. 1999; Vindenes et al.
2009). First, consider the reproductive values, which are
represented as a vector, v, with N elements. By definition
this is the large time limit of the vector of relative contribu-
tions (scaled to sum to N). Write 1 for the vector in RN

þ all of
whose entries are 1. We set v0 = 1 for the vector of relative
contributions of the current individuals to the present gen-
eration, at time t = 0. We can define the relative contribu-
tions vt by working backward in time. As we add an
additional ancestral generation, each individual ancestor’s
relative contribution is just half the sum of its offspring’s
contributions (Derrida et al. 1999). In matrix notation,

vt ¼ vt21 �Mt21 ¼ 1 �M0M1; :  :  :  ;Mt21; (1)

where taking the product with 1 corresponds to taking
a sum over descendants. The (i, j)th entry in the product
of random matrices M0M1M2, . . . ,Mt21 gives the expected
contribution to descendant i from the ancestor labeled j, t
generations before. This matrix M0M1, . . . ,Mt21 rapidly set-
tles to a constant form in which the contribution from an-
cestor j is the same for each descendant i, corresponding to
the entries in each column being constant (Appendix D).
Each ancestor is thus characterized by a single number,
which is the same for every distant descendant and is in-
dependent of time t. The reproductive value of the jth an-
cestor is the sum of the elements in the jth column of the
matrix. Note that the vector of reproductive values is given
exactly by Equation 1: there is no need to assume that the
population is large. Moreover, it is not necessary that the
matrices Mt correspond to the diploid Wright–Fisher model.
In Appendix D we consider pedigrees corresponding to more
general offspring distributions and in Appendix F we intro-
duce simple forms of structure into our model. The form of
Equation 1 does not change and the rapid convergence of
the relative contributions to the reproductive value is robust
to these extensions.

The probabilities of loss or survival of each allele

Unless the pedigree is small, it is not feasible to find an
analytic expression for the probability that an allele will
survive. In Appendix E we obtain a simple approximation for
the survival probability of an allele carried in single copy in
an ancestor

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nloge   N

p
≪ t ≪N generations in the past, in

terms of the reproductive value of that individual and the

corresponding survival probability for the descendants of
a single individual in a haploid population of size 2N.

The analytic results in Appendix E are asymptotic in pop-
ulation size N. To compute the survival probability nu-
merically, we consider times that are short relative to the
population size (t ≪ N), so that descendants of a single gene
are unlikely to become common. In an unstructured popu-
lation, there are a very large number of paths through the
pedigree and so over this timescale different descendants of
a given gene do not meet each other, so that they will be lost
independently. (That is, the chance that every descendant is
lost is the product of the chance that each one of them is lost
separately.) Thus, the descent of genes through a large un-
structured population can be approximated as a branching
random walk through the pedigree. Given a pedigree gen-
erated by matricesMt we can then write down recursions for
loss probabilities and this enables us to plot the relationship
between reproductive value and survival probability. Two
copies of a gene within a diploid individual are not passed
on independently to the next generation, since they both
depend on the reproduction of the same individual. There-
fore, to find the probability that an allele present in an
ancestor alive t generations in the past will be lost by the
current generation, we must follow two vectors: the chance
Qt,j that an allele present in one copy in ancestor j (alive at
time t before the present) will be lost and the chance Q*

t;j
that an allele present in two copies in ancestor j will be lost.
Under the assumption that genes in different descendants
are lost independently, these follow the recursions

Qt;j ¼
Y

single offspring

�
1þ Qðt21Þ;i

�
2

Y
selfed offspring

�
1þ 2Qðt21Þ;i þ Q*

ðt21Þ;i
�

4

(2)

and

Q*
t;j ¼

Y
single offspring

Qðt21Þ;i
Y

selfed offspring

Q*
ðt21Þ;i; (3)

with initial conditions

Q0;i ¼ 0; Q*
0;i ¼ 0 "i:

In Appendix A we show how these probabilities can be
calculated.

The distribution of the number of copies

Under the assumption t ≪ N, one can use the same approach
to approximate the number of copies of a gene passed down
through a pedigree. The generating function for the number
of copies is given by the same recursion (Equations 2 and 3)
as the loss probabilities, but with different initial conditions
(see Vindenes et al. 2009, Appendix 2). Define the generat-
ing function for the number of copies nt in generation
0 descended from a single copy in ancestor j at time t as
Qt;jðyÞ ¼ Ej½ynt ;� and similarly define Q*

t;jðyÞ ¼ E*
j ½ynt � as the

generating function for the number of copies at time
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0 descended from two copies within the ancestor j alive t
generations in the past. These quantities follow the recur-
sions in Equations 2 and 3, with initial conditions Q0,i(y) = y
and Q*

0;iðyÞ ¼ y2: The probability of loss is the special case
where y = 0.

The variance in the number of copies left by ancestor j
after t generations, Vt,j, can be found by differentiating the
generating function. It is simplest to rewrite y = ew to re-
cover Q = E[ewn], the moment generating function of the
copy number, from Qt,j. Then, the variance of n is

Vt;j ¼ @2

@w2 logeðQt;jðewÞÞj
w¼0

:

The corresponding recursion is presented in Appendix A.
In Appendix E we work directly with the diploid Wright–

Fisher model to find, analytically, an approximation for the
distribution of the number of copies of a neutral allele, con-
ditional on survival, and as a function of reproductive value,
for

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nloge   N

p
≪ t ≪N: In particular, we establish that this is

in agreement with the numerical predictions obtained
through the “branching random walk” approximation de-
scribed above.

Inherited variation in fitness at unlinked loci

More generally, parents are chosen independently, with
probability proportional to their individual fitness. We use
the infinitesimal model to describe the aggregate effect of
selection acting on large numbers of unlinked loci (Fisher
1918; Bulmer 1971). The probability that an individual is
chosen as parent is proportional to ez where z, the log fit-
ness, is an additive trait. Offspring have a normally distrib-
uted trait value with mean equal to the mean of their two
parents and variance fixed at half the additive genetic var-
iance, V/2. If we consider discrete unlinked loci, then we can
always superpose the passage of neutral genes onto the
pedigree (no matter how it is generated). Each diploid par-
ent passes on one or the other of its genes with equal prob-
ability, independently across loci. In Appendix B we extend
our branching random walk approximation to find the gen-
erating function for the distribution of reproductive values
under the infinitesimal model.

The probability of fixation of a favored allele

When we follow an allele that itself affects fitness, we can no
longer separate the growth of the pedigree from that of the
allele: we cannot follow the flow of genes through a given
pedigree, when those genes themselves influence the struc-
ture of that pedigree. Therefore, to find the relation between
individual reproductive value and the fate of a selectively
favored allele, we must simulate jointly the genotype and the
pedigree. However, we need simulate only for a few tens of
generations, over which time the relative contribution of an
individual approaches a fixed reproductive value.

After that time, we find the probability of ultimate fix-
ation as a function of the number of copies, n, of the allele

that survive. In moderately large populations, and with
weak selection, this number is small (n ≪ N, s ≪ 1), and so
the ultimate fixation probability is given accurately by the
branching process approximation 1 2 (1 2 P)n, where P is
the probability of survival of the descendants of a single
allele. If there is no selection at other loci, then under our
simple model P � 2s for small s. For a large population, we
can further improve efficiency by starting with several copies
of the favorable allele, each labeled by a distinct integer, on
the assumption that these will be lost independently of each
other.

Surviving blocks of ancestral genome

Baird et al. (2003) consider the fate of a single block of
ancestral genome as it is passed through a pedigree gener-
ated by a branching process. Although most of the block is
lost, typically some small subblocks survive and are repre-
sented in large numbers in the population. Starting from
a single block of length y embedded in an interval of length
1 that experiences one crossover per genome per genera-
tion, they investigate the distribution of the numbers of sur-
viving blocks of different sizes after t generations. Simple
statistics of this distribution are expressed through its “mo-
ment densities”, which can be integrated to establish
moments and mixed moments of numbers of blocks of dif-
ferent sizes.

In Appendix G we show how an arbitrary process of re-
combination can be superposed on a pedigree through our
matrix recursions. We then specialize to the single crossover
model and show that the first two moment densities depend
linearly on reproductive value.

Results

The distribution of reproductive value

Each ancestor leaves a random number of descendants. If
any survive the first few generations, their number will
become so large as to grow almost deterministically. The
relative contribution of each individual to future generations
therefore quickly settles to a constant—its reproductive
value—which is determined by fluctuations in the first few
generations. In Appendix D we prove that under the simple
neutral model, the change in the relative contribution of an
ancestor over a single generation is O(1023) after �10 gen-
erations, independent of population size (Equation D12).
Moreover, we show that replacing the multinomial sampling
of our Wright–Fisher model by a more general offspring
distribution does not significantly change this result except
that the number of generations required scales linearly with
the variance of the number of offspring of each individual.

Until the number of pedigree descendants of an in-
dividual form an appreciable portion of the population, the
pedigree can be approximated by a branching process. In
a finite population, the number of descendants is bounded,
and so there must ultimately be inbreeding: descendants
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will be connected with each ancestor via many overlapping
routes through the pedigree. However, when the population
is large, the reproductive value v is determined before finite
population size has any significant effect and so we may
approximate its distribution by that of the corresponding
quantity for a branching process.

For a branching process with growth rate l, the relative
contribution of an ancestor alive t generations in the past is
just Zt/lt, where Zt is its total number of descendants in the
present population. From the classical theory of branching
processes (see, e.g., Harris 1963, Chap. I, section 8) we
know that this converges extremely quickly to a nonnegative
random variable v. If the number of offspring of an indi-
vidual has probability generating function f(s), then v can
be characterized through its moment generating function,
f(s) = E[exp(2sv)], which satisfies

fðlsÞ ¼ f ðfðsÞÞ; s.0; f9ð0Þ ¼21: (4)

With a Poisson offspring distribution, it is convenient to
consider the probability generating function of the repro-
ductive value. Writing gtðyÞ ¼ E½yyt � for the generating func-
tion of the distribution of the relative contribution of an
ancestor after t generations, we obtain the recursion

g0ðyÞ ¼ y; gtþ1ðyÞ ¼ expð2 lð12 gtð ffiffiffi
y

p ÞÞÞ; (5)

which quickly converges to the fixed point where gt+1(y) =
gt(y); l = 2 for a stable population. When l = 2, Equation 5
corresponds to Equation 7 of Derrida et al. (1999). Their
equation takes a slightly different form since they consider
E½euyt � (recall that they use the notation wt for our vt and we
have substituted u for their l to avoid confusion with the
growth rate above). Moreover, since they compute the re-
productive value by working backward through the pedi-
gree, as opposed to forward from a fixed ancestor, their
initial condition differs from ours.

Equation 5 does not have an explicit solution. However,
simple summary statistics of the limiting random variable v
are readily calculated. For example E[v] = 1 and var(v) = 1.
[For Equation 4 these become E[v] = 1, var(v) = var(Z1)/(l2

2 l).] If we condition a critical branching process on non-
extinction, after normalizing by t, we have convergence to an
exponential distribution. For the supercritical branching pro-
cesses considered here, instead of t, we normalize by lt to
obtain the nontrivial limit, v. The distribution of v, condi-
tional on being nonzero, is “narrower” than exponential.
For the Poisson offspring distribution with l = 2, condi-
tional on there being some descendants [probability P =
1 2 g(0), which is �0.80 for l = 2], the distribution has
mean 1/P � 1.26 and a variance 2/P 2 1/P2 � 0.935. (An
exponential with the same mean would have variance 1/P2

� 1.58.)
The rapid convergence to a constant reproductive value is

illustrated in Figure 1, which shows (for the neutral model)
the numbers of descendants over time, scaled relative to the
expected number, 2t, for four ancestors. The upper set of

points shows the ancestor with highest reproductive value.
In the first generation, it has seven offspring and thus makes
a relative contribution of 7/2. These offspring themselves
have more offspring than average, and so the relative con-
tribution continues to increase, converging to v = 6.056.
With a Poisson number of offspring, with mean 2, the var-
iance in offspring number is 2, and so the variance in rela-
tive contribution to the first generation is 1/2. This is half of
the total variance in reproductive value, var(v) = 1. The
distribution of reproductive value across ancestors is close
to the theoretical expectation, even in a single realization
(Figure 2).

The ancestry of each individual quickly becomes homo-
geneous: every individual receives almost exactly the same
contribution from each ancestor, which is defined by those
ancestors’ reproductive values. To quantify this, for each
ancestor we scale the contribution to each descendant to
have a mean of 1 and measure the variance across descend-
ants of this relative contribution. This variance averages
,N22t (Equation D11) and so quickly becomes small as
t becomes large. This is because each descendant re-
ceives ancestry via very many routes through the pedigree
(O(2t/N)); the total contribution from any ancestor,
summed over these many routes and renormalized by 2t,
therefore clusters close to its mean.

Probability of survival

The chance that a neutral allele, initially present in a single
copy, will survive for t generations becomes completely de-
termined by the reproductive value of its initial bearer, as t
becomes large. This is shown in Figure 3, which plots the
survival probability against reproductive value for t = 10,
30, and 50 generations in a population of N = 1000. After
�30 generations, the survival probability converges to vPN,t,
where PN,t ≪ 1 is the probability of survival until time t of
a neutral allele initially present in single copy in a haploid

Figure 1 The relative contribution of four ancestors from a population of
N = 1000, plotted against time. This is defined as the number of pedigree
descendants, divided by 2t. The top and bottom sets of points show
the ancestors with highest and lowest reproductive value, respectively;
the two intermediate sets are randomly chosen individuals. Note that the
distribution of v has mean and variance equal to one.
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Wright–Fisher population of size 2N: this is shown by the
tight fit of the points around the linear relationship, for t =
50. This is a strong result, which applies to single individu-
als, and not just to the population as a whole. Once we know
an individual’s reproductive value, we know the chance that
any one of its genes will survive for a given time. Indeed,
this survival probability is in principle observable: unlinked
genes are passed down independently through the pedigree,
and so the fraction of an individual’s genes that survive to
time t gives an estimate of the survival probability.

For shorter times, there is more scatter: that is, the genes
carried by individuals that make the same relative contri-
bution to the pedigree, v, may have different chances of

survival. This is not surprising, since the survival probability
depends in a complex way on the structure of the pedigree,
via Equations 2 and 3, and not just on the total number of
descendants. For example, think of an individual that has
two children and four grandchildren. If one child has all the
grandchildren, P ¼ 30

64; if one has one and the other has
three, P ¼ 37

64; and if both children have two grandchildren,
P ¼ 39

64: What is remarkable is that for longer times, the fix-
ation probability does depend only on the magnitude of an
individual’s contribution, as measured by v.

The relation between survival probability, Pt, and relative
contribution, v, cannot be precisely linear, if only because the
probability cannot be .1. We show in Appendix E that, at
least for t ≫

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nloge   N

p
; a more accurate approximation is

Pt ¼ 12e2y~Pt , where ~Pt is an effective value determined by

PN;t ¼ 12E
h
e2y~Pt

i
:

This is shown by the curves in Figure 3. Note that E½e2y~Pt � is
the generating function for the branching process with
growth rate l = 2, which can be calculated directly.

Distribution of numbers of copies

The generating function for the number of copies that
survive to time t is given by the same recursion (Equation
5) as the probability of loss. Therefore, we expect that this
distribution will also be determined entirely by the repro-
ductive value and, moreover, can be approximated by as-
suming that each individual contributes an “effective
number” v. Figure 4A shows the distribution of number of
copies, after 50 generations, with individuals grouped by
reproductive value; the spike at zero, representing the usual
loss of the allele, is not shown. The distribution retains the
same form, but its mass is proportional to the reproductive
value. Thus, the distribution of copy number conditional on
survival is independent of reproductive value (Figure 4B)
and is the same for all individuals as t / N.

In Appendix E, we show that, for sufficiently large popu-
lations, this conditional distribution should be approxi-
mately exponential. It would take a long time to calculate

Figure 2 The bars show the distribution of reproductive values for
a single population of N = 1000, compared with the theoretical expec-
tation (curve). The latter is calculated by expanding the generating func-
tion for the distribution of numbers, E[yn] as a Taylor series in y and then
rescaling using n = v2t. This calculation was done at t = 10 generations;
however, the correlation with the ultimate reproductive value is extremely
close (0.99957).

Figure 3 The relation between probability of survival, P, and reproductive
value, v, at times t = 10 (top), t = 30 (middle), and t = 50 (bottom). For
each time, there are 1000 dots, each representing a single ancestor. Each
dot gives the probability that a single copy of a gene in the ancestor will
survive to time t, plotted against the ancestor’s relative contribution to the
pedigree up to time t. The straight lines show the linear relation vPN,t
where PN,t is the probability of survival of a neutral allele in a branching
process with growth rate l = 1. The curves show the approximation is
Pt ¼ 12e2y~Pt , where ~Pt is an effective value determined by
PN;t ¼ 12E½e2y~Pt �. This calculation is simplified by using the fact that
E½e2y~P� is the generating function for v (Equation 5) evaluated at e2~P:

Figure 4 (A) The distribution of numbers of copies left by a single copy in
an ancestor, after 50 generations in a population of 1000. The usual
outcome—loss of the allele—is not shown. Ancestors are classified by
their reproductive value (,0.5, 0.521, 121.5, 1.522, .2, bottom to
top). (B) The distribution, conditional on survival, is almost independent
of reproductive value. These distributions are for a single pedigree; they
are estimated by simulating the flow of genes through that pedigree,
using 1000 replicates. At the start of each replicate, every allele is labeled
by a unique integer that denotes the individual that carries it. Thus, 1000
allele frequencies are estimated in each of the 1000 replicates.
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the full distribution for long times, but moments can easily
be calculated. We know already, from results on survival
probability, that the mean number, conditioned on survival,
converges in this way. Figure 5 shows the coefficient of var-
iation of the distribution, conditional on survival (i.e., the
standard deviation divided by the mean), for t= 10, 30, and
50 generations. As expected, this converges to a constant
value, for all individuals, by t = 50. This value is slightly
,1, the coefficient of variation expected for an exponential
distribution. Similar calculations for the generating function
E[yn] over a range of values of y show similar convergence.
This confirms that the distribution of copy number, condi-
tional on survival, becomes close to an exponential, with
mean 1/PN,t for all individuals.

The probability of fixation of a favored allele

Figure 6 shows how the probability of fixation of an allele
with advantage s = 0.05 depends on the reproductive value
of the individual that carries it. It is not possible to calculate
fixation probability on a given pedigree, because the se-
lected allele itself influences the pedigree. Therefore, Figure
6 shows the average fixation probability for alleles that start
in individuals within a range of reproductive values, aver-
aged over many replicate simulations. Because the variance
in reproductive value is much larger than the selection act-
ing on the allele, we expect the distribution of numbers of
copies left after the first few generations to be approximately
independent of selection. This suggests that the probability
that the allele will fix, given that it starts in an individual
with reproductive value v, is 1 2 (1 2 P)v (where, as usual,
P is the survival probability of a single copy of the allele).
This fits closely with the simulations (Figure 6).

Population structure

So far we have considered the simplest Wright–Fisher model
of diploid reproduction. However, the rate of convergence
of the reproductive value is not greatly slowed under simple
forms of structure. In Appendix F we consider two examples.

First we take a population with partial selfing. We suppose that
a proportion a of offspring are produced by self-fertilization
and the remaining 1 2 a by random mating. The change in
relative contribution from generation to generation now
decays at rate ðð1þ aÞ=2Þt instead of the 22t of the diploid
Wright–Fisher model. This can be regarded as the simplest
form of structure. We then extend to an island model. Re-
production is through random mating within demes, but
a proportion of offspring are exchanged between demes be-
fore the next round of mating. Rohde et al. (2004) showed
by simulation that mixing is rapid even with substructure
and this is confirmed by our mathematical results. The var-
iance in contribution from a particular ancestor to individu-
als within a given deme is rapidly whittled away through the
same process as in a panmictic population, while migration
works to eliminate variability between demes. This is quan-
tified in Appendix F, The island model.

The effects of genome-wide selection; inherited
variation in fitness at unlinked loci

We now use the infinitesimal model to describe the ag-
gregate effects of selection on large numbers of unlinked
loci. In Appendix B, we extend Equation 5 to find the gener-
ating function for the distribution of reproductive values
under the infinitesimal model. If the mean log fitness is �z;
the mean reproductive value of individuals with log fitness z
is e2ðz2�zÞ22V; which increases with the square of the fitness,
ez. This can be understood from an argument first made by
Robertson (1961): an individual with excess log fitness
ðz2�zÞ will have offspring that deviate by ðz2�zÞ=2 on aver-
age, grand-offspring that deviate by ðz2�zÞ=4, and so on; the
cumulative deviation in log fitness, summed over genera-
tions, is therefore 2ðz2�zÞ; and the net reproductive value
is proportional to e2ðz2�zÞ; which is the square of the im-
mediate relative log fitness. (The normalizing factor e22V

arises because, by definition, E[v] = 1.) The variance in

Figure 5 The coefficient of variation of the distribution of numbers of
copies, conditional on survival, plotted against relative contribution, v.
This is calculated for a single pedigree, with N = 1000, at t = 10, 30,
and 50 generations (bottom to top). Each dot represents one individual.

Figure 6 The probability of fixation of an allele with advantage s = 0.05
plotted against reproductive value, v. The curve gives the expected re-
lationship, 12ð12~PÞy; where ~P is chosen such that the average fixation
probability equals the standard value ðE½12ð12~PÞy ¼ 0:0937Þ:� The fixa-
tion probability is estimated from 400 replicates, each starting with 10
favorable alleles in a population of N = 1000 and iterated for 30 gener-
ations. Each of the 4000 alleles is classified by the reproductive value of
the individual that first carried it; the points show the mean reproductive
value and the mean fixation probability for each class (61 SE).
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reproductive value can be found explicitly (Equation B4); it
is proportional to ebðz2�zÞ; where b decreases from 2.65 for
small V to 2.15 for V = 3. Averaging over z, the variance in
reproductive value is just e4V, as can be seen by integrating
Equation B3 over the distribution of z.

We give an example, in which the genetic variance in log
fitness is V = 1. The heritable variance in fitness itself is
varA(ez) = e2V 2 eV = 4.67. Since we assume a Poisson
number of offspring, with mean averaging 2, the nongenetic
variance in fitness is varE(ez) = 2, and so the heritability of
fitness is h2 = varA(ez)/(varA(ez) + varE(ez)) = 70%. Now,
there can be a very wide range of reproductive values: the
variance in reproductive value has increased from 1 to 54.6
� e4V, but fluctuates considerably from generation to gener-
ation, even with N = 1000. An individual’s reproductive
value is correlated with its log fitness, z, but because the
reproductive value is determined over several generations,
not just one, the relationship is weak (r = 0.27; Figure 7).

Just as is the case in the absence of selection, after a few
tens of generations, the probability that an allele survives
depends solely on an individual’s reproductive value (Fig-
ures 8 and 9), and not on the log fitness, z, or any other
feature of the pedigree. Individuals with high values of z are
expected to make a greater genetic contribution to distant
generations, but this is mediated entirely by their increased

reproductive value. Equations 2 and 3 still apply even when
var(v) is greatly increased by selection.

Surviving blocks of ancestral genome

If we follow the descent of a single block of ancestral
genome through a pedigree, large chunks will rapidly be
lost. However, some small subblocks can be expected to
persist for a long time. Baird et al. (2003) establish the full
distribution of surviving block lengths by solving recursions,
in much the same way as in Equations 2 and 3, but with the
pedigree generated by a branching process. In Appendix G
we show that for intermediate timescales, the first and sec-
ond moment densities of the distribution of the numbers of
surviving blocks of ancestral genome of given lengths both
depend almost linearly on the reproductive value of the
ancestor.

Discussion

The nature of the genetic contribution

Our central result is that the complex distribution of the
genome that is passed down the pedigree differs between
ancestors only through a single quantity: the reproductive

Figure 7 The joint distribution of log relative fitness, z2�z; and reproduc-
tive value, v, under the infinitesimal model. This distribution is taken from
generations 602100 of a simulated population of N = 1000 individuals,
with genetic variance var(z) = 1. The variance in reproductive value is
73.45. Seventy-six percent of individuals have zero reproductive value;
these are shown by the distribution at the right.

Figure 8 The mean reproductive value, as a function of log fitness, z2�z:
The line is the theoretical prediction expð2ðz2�zÞ22VÞ: Note that for very
low z, the average reproductive value falls below the prediction. This is
because almost all such individuals have zero reproductive value, so that
the mean is determined by very rare individuals with high value and is
correspondingly poorly estimated. These data are taken from the same
simulation as in Figure 7 with var(z) = 1.

Figure 9 The probability of survival of a neutral allele, plotted against
reproductive value, v, under the infinitesimal model (V = 1, N = 1000), for
times t = 10, 20, 30, 40, and 50 (top to bottom).
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value of the ancestral individual. Moreover, an individual’s
reproductive value affects only the chance that it passes on
some genes at a locus: given that it does, then at any time
the distribution of the number of copies and the distribution
of sizes of each small chunk of genome are the same for all
ancestors, and conversely the contribution is (on average)
the same to all descendants.

These strong results apply over timescales of a few tens
of generations and require that selection be weak enough
to have negligible effect during this time. They are due es-
sentially to a difference in timescales: pedigrees mix rapidly,
whereas genealogies drift over much longer timescales.

Equally, we could have formulated results backward in
time. The genome of an individual alive in the present-day
population can be thought of as a sequence of blocks of
random lengths, each of which can be traced back to a
specific ancestor. The distribution of lengths and positions of
these blocks and of which subcollections of blocks have
common ancestry at time t in the past is determined by the
ancestral recombination graph. Over intermediate time-
scales, the only role of pedigrees in determining this com-
plex distribution will be in assigning, to each collection of
blocks that share an ancestor in this way, an ancestor that is
sampled from the ancestral population with a weight pro-
portional to reproductive value.

Population structure

We have focused on a very simple model, in which parents
are chosen at random, within a single panmictic pool.
Plainly, our results do not hold if the population is strongly
subdivided: individuals are more likely to descend from
ancestors in the same deme. However, we believe that our
results do apply to any well-mixed population and will be
robust to moderate barriers (Figure 10). This is consistent
with the examples checked in Appendix F and with Rohde
et al.’s (2004) simulations, which showed that a population
structure of the kind found in our own species does not
greatly slow the mixing of the pedigree. This can be under-
stood from the rapid growth in the numbers of descendants
of ancestors in the pedigree, which double with every gen-
eration: once a single migrant establishes in a new deme,
its descendants will double in number and quickly fill the
deme.

Reproductive value as a measure of fitness

Of course, the reproductive value does not summarize every
feature of the pedigree. For example, while the probability
that two lineages coalesce in a given ancestor is approximately
proportional to the square of the ancestor’s reproductive
value, there is substantial scatter around this relationship:
individuals with the same reproductive value may be more
or less likely to propagate two independent lines of descent
(Figure 11) and therefore to be the site of a coalescence
event. Indeed, it is not clear what quantities can be com-
pletely determined by the reproductive value. One might
think that the reproductive value—the expected number of

copies of a gene that are passed on to distant generations—
can determine only quantities that involve single lineages.
Indeed, the contribution to inbreeding and coalescence in-
volves a pair of lineages and is not completely determined
by v. However, the variance in numbers of surviving copies is
also a pairwise measure and is completely determined by v.

Whether an individual will be the site of a coalescence
event does not have any observable consequence at the
time. In contrast, the contribution that deleterious recessive
alleles carried by an individual will make to the future
mutation load depends on the mean squared numbers of
copies, E[n2], which in turn depends strictly on the repro-
ductive value. Ballou (1997) defined a measure of ancestral
inbreeding, which measures the chance that the genes car-
ried by an individual have passed through a homozygote at
some time in the past; presumably, the load of recessive
deleterious mutations should be lower in individuals with
higher levels of ancestral inbreeding (Suwanlee et al. 2007).
If this is the case, then the future prospects of individuals
with higher ancestral inbreeding should be higher. However,
it is not clear how close is the relation between Ballou's

Figure 10 With intermediate migration rates, population structure slows
the convergence of survival probability to strict dependence on re-
productive value. The vertical axis shows the correlation between
probability of survival to time t and the expected genetic contribution
at time t; this correlation measures the tightness of the scatter in plots
such as that in Figure 4. The correlation is plotted against time and
against migration rate, m. There are 100 demes of 10 haploid individuals;
parents are chosen from within the deme with probability 1 2 m and
randomly from the whole population with probability m.

Figure 11 The relation between an individual’s contribution to inbreed-
ing, �F; and its immediate fitness (W, left) or its reproductive value (v,
right). �F is the average probability that two randomly chosen lineages
will coalesce in a particular ancestor, 50 generations before; population
size is N = 100 diploid individuals. The curve on the left is the best fit,
�F ¼ 0:00090WðW21Þ: The curves on the right are the best quadratic fits,
for individuals with immediate fitness W = 2, 3, 4: 0.00205v2, 0.00271v2,
and 0.00323v2, respectively.
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measure and the mutation load: since deleterious alleles are
mainly eliminated from outcrossing populations by their het-
erozygous effects (Wright et al. 1942; Charlesworth 1979),
this effect may be small. Nevertheless, Ballou’s ancestral in-
breeding may be a measure of the pedigree that complements
the reproductive value by providing additional information
about the extent of the mutation load carried by an individual.

The relation between selection and reproductive value

Typically, most individuals in a sexually reproducing pop-
ulation leave descendants, and all such individuals will
be ancestors of every descendant; their relative contribution
to the distant future is determined after a few tens of gen-
erations. This contrasts with the action of selection, which
can fix a single gene, carried by a single individual, and acts
over a long time: �(1/s)loge(4Ns) generations.

There is no paradox here: a favorable allele will gradually
increase, through the slightly greater reproduction of indi-
viduals that carry it. Individuals carrying a set of unlinked
alleles that collectively increase fitness by a factorWwill have
reproductive value greater by a factor W2 (Robertson 1961);
the effect of a single allele on the reproductive value may be
barely perceptible against the overall variance in reproductive
value. The reproductive value of an individual that carries
a single mutation that will ultimately fix will be substantially
increased, but this is due primarily to the necessarily rapid
increase of any allele that survives against the odds: the
expected number of copies is est, and so the expected number
conditioned on survival is est/P, where P is the probability of
survival. For times less than �1/s this is dominated by the
survival probability, P, which in turn depends on the individ-
ual’s reproductive value.

Does selection act on individuals or on genes? On the one
hand, traits will evolve to maximize individual reproductive
value; and natural selection must act through the reproduc-
tion of individuals. Moreover, we have shown here that
the complete statistical distribution of the neutral alleles
passed on by an individual is entirely determined by its
reproductive value. On the other hand, an individual’s re-
productive value tells us very little about the fates of the
selected genes that it carries: even if an allele has an imper-
ceptible effect on any one individual’s reproductive value,
selection will ultimately determine its fate in the population
as a whole.
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Appendix A

Matrix Representation of Recursions

We write Qt,j for the chance that an allele present in one copy in ancestor j alive t generations before the present will be lost
by the current generation and Q*

t;j for the chance that an allele present in two copies in individual j will be lost. Under the
assumption that genes in different descendants are lost independently, these follow the recursions of Equations 2 and 3. To
see this, first note that if an individual carrying a single gene mates with a different individual and has an offspring, then
there is probability 1/2 of the gene not being passed on and Q(t21),i/2 of it being passed on, but then lost, giving a factor of
(1 + Q(t21),i)/2 for each offspring produced by outcrossing (first term on right-hand side of Equation 2). If the offspring
is produced by selfing, then 0, 1, or 2 copies of the gene present in the parent may be passed on, with probabilities in the
ratio 1:2:1; the corresponding probabilities of loss are 1 : Qðt21Þ;j : Q*

ðt21Þ;j; respectively. This gives the factor ð1þ 2Qðt21Þ;iþ
Q*

ðt21Þ;iÞ=4 in Equation 2. If two copies are present in the parent, then an outcrossed progeny is certain to get one copy, and
a selfed progeny is certain to get two, leading to the expression on the right-hand side of Equation 3. There is clearly some
correlation between the fates of the two genes in a single individual, so that Q* . Q2; it is easy to see that Q* = Q2 does not
satisfy the recursion. However, this correlation is surprisingly weak: numerical calculations show that Q* is close to Q2.

The variance in the number of copies left by ancestor j after t generations, Vt,j, is found by differentiating the generating
function. Writing Q = E[ewn], the variance of n is

Vt;j ¼ @2

@w2logeðQt;jðewÞÞj
w¼0

:

We know that for a neutral allele, the expected number of copies descended from a single ancestral copy is
ð@=  @wÞlogeðQt;jðewÞÞjw¼0¼ 1 for all t; similarly, the expected number of copies produced by two copies in a homozygote is
ð@=@wÞlogeðQ*

t;jðewÞÞjw¼0¼ 2 for all t. This leads to the recursion

Vt;j ¼
X

single offspring

�
Vðt21Þ;i

2
þ 1
4

�
þ

X
selfed offspring

 
Vðt21Þ;i

2
þ
V*
ðt21Þ;i
4

þ 1
8

!
; V0;i ¼ 0 for all i; (A1)

and

V*
t;j ¼

X
single offspring

Vðt21Þ;i þ
X

selfed offspring

V*
ðt21Þ;i; V*

0;i ¼ 0 for all i: (A2)

The pedigree is represented by a series of matrices, Mt, that give the relationship between successive generations.
Quantities such as the probability of survival, the distribution of numbers of gene copies, and the identity by descent can
be calculated most efficiently in Mathematica by representing the recursions in matrix form.

Since 2M has entries with only value 0, 1, or 2, we can see that 4(1 2 Mij)Mij is 1 iff 2Mij = 1 and Mij(2Mij 2 1) is 1 iff
Mij = 1. So to get efficient solutions, we rewrite the recursion as
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Qt ¼ exp
�
loge

h
1þQðt21Þ

2

i
� ð4Mtð12MtÞÞ þ loge

�
1þ2Qðt21ÞþQ*

ðt21Þ
4

�
:ðMtð2Mt 2 1ÞÞ

�

¼ exp
�
loge

h
1þQðt21Þ

2

i
� 2Mt þ loge

�
1þ2Qðt21ÞþQ*

ðt21Þ
1þ2Qðt21ÞþQ2

ðt21Þ

�
� ðMtð2Mt 21ÞÞ

�
;

Q*
t ¼ exp

�
loge

h
Qðt21Þ

i
� ð4Mtð12MtÞÞ þ loge

h
Q*
ðt21Þ

i
� ðMtð2Mt 2 1ÞÞ

�
:

(A3)

Here, logeV and exp(V) are threaded over each element of the vector V; V1V2 indicates element-by-element multiplication of
two vectors and V1.V2 indicates a dot product of two vectors.

Appendix B

The Distribution of Reproductive Value With Selection

We consider the infinitesimal model in which the log fitness of each individual is assumed to be an additive trait, z, which is
normally distributed with variance fixed at V. In the reproductive step, parents are chosen at random from the parental
population. The probability that an individual with log fitness z is chosen as parent is proportional to ez. An offspring has
normally distributed log fitness, with mean the average of the log fitness of its parents and variance V/2. Since by Fisher’s
fundamental theorem the mean log fitness will advance by V in each generation, the mean log fitness t generations in the
past is �zt ¼ 2Vt: If population size is fixed, then the number of offspring of an individual of log fitness z alive t generations
back will be approximately Poisson with parameter lt ¼ 2expðz2�zt2V  =  2Þ: The generating function for the distribution of
reproductive value is a function of the log fitness, gt[y, z] ≜ E[yv]. Extending Equation 5, we have

g0½y; z�¼ y
gt½y; z� ¼ exp

	
2lt



12~gt½y; z�

��
~gt½y; z� ≜

Ð ​
f
	
z*


z�gt21

	 ffiffiffi
y

p
; z*
�
dz*:

(B1)

Here ~gt½y; z� is the generating function for the reproductive value of a single offspring of a parent with log fitness z in
generation t. To identify the kernel f, first note that the mean log fitness of the individuals chosen as parents from the tth
generation back is �zt21: Thus, the mean log fitness of an offspring of a parent with log fitness z in generation t is ðzþ �zt21Þ=2:
The variance of the log fitness of the offspring is the sum of contributions from within-family segregation (V/2) and from the
random value of the mate (V/4). Thus the kernel f is normal, with mean ðzþ �zt21Þ=2 and variance 3V/4. The full recursion
is of a complicated two-dimensional function. However, we can find recursions for the moments by differentiating gt[y, z].
The mean reproductive value, Mt(z), of an ancestor of log fitness z alive t generations in the past is given by

M0½z� ¼ @yg0½y; z�jy¼1¼ 1
Mt½z� ¼ lt

2

Ð ​
f
	
z*


 z�Mt21

	
z*
�
dz*;

(B2)

which has the solution Mt ¼ expð2ðz2�ztÞ22VÞ: Similarly, the variance in reproductive value, V*
t ; is given by

@y;ygt½y j z�jy¼12MtðMt21Þ:

Applying this to Equation B1 gives the recursion:

V*
0 ¼ 0

V*
t ¼ lt

4

�Ð ​
f
	
z*


 z��V*

ðt21Þ þM2
ðt21Þ

�
dz*
�
:

(B3)

This tends rapidly toward the steady-state value:

V*
N ¼ e2Vþ2ðz2�zÞXN

j¼0

22ðjþ1Þexp
�
212 j

�ðz2�zÞ
2

2


1þ 22j22�V��: (B4)

The overall variance in reproductive value (obtained by averaging over z) is just e4V, as can be seen by integrating Equation
B3 over the distribution of z.
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Appendix C

Mathematical Notation for Asymptotic Behavior

For ease of reference, we record here the standard notation:

f ðNÞ � gðNÞ means f ðNÞ
gðNÞ/1 as N/N;

f ðNÞ ¼ OðgðNÞÞ means f ðNÞ
gðNÞ is bounded;

f ðNÞ ≍ gðNÞ means f ðNÞ ¼ OðgðNÞÞ and gðNÞ ¼ Oðf ðNÞÞ:
Appendix D

Rate of Convergence of Reproductive Value

Recall that the pedigree is determined by the sequence of (random) N · N matrices {Mt}t$0 in which the ith row of Mt

specifies the parents of individual i in generation t before the present. If the parents are distinct, then there is a 1
2 in the

corresponding positions in the vector (Mi1, Mi2, . . . ,MiN). If the individual was produced by selfing, there is a single 1 in the
corresponding position. All other entries in the matrix are zero. To see that the reproductive value of an ancestor settles
down very quickly, we consider, for s , t,

Mst ¼ MsMsþ1   . . .  Mt21:

Decreasing s corresponds to adding more generations of descendants. The sum of the entries in the jth column of Mst is just
the relative contribution of the jth ancestor after t 2 s generations. The (ij)th entry is the contribution made by ancestor j to
the descendant labeled i in generation s.

In the simplest Wright–Fisher model, each individual chooses its parents independently at random from the previous
generation. Writing mj(t) for the sum of the entries in the jth column of Mt, the vector (2m1(t), 2m2(t), . . . , 2mN(t)) is
determined by class sizes formed by multinomial sampling with 2N trials and equal weights on classes labeled 1, 2, . . . ,N.
For more general offspring distributions, the vector (2m1(t), 2m2(t), . . . , 2mN (t)) is an exchangeable random vector with
E[mj(t)] = 1. Our first claim is that as t 2 s increases, the matrix Mst rapidly settles down into a fixed form in which the
entries in each column are constant. This is made more precise by the following Lemma.
Lemma D.1. Suppose that the jth column of the matrix Mst is given by the vector (v1j(s), v2j(s), . . . , vNj(s))T (where T means
transpose) and write vj(s) for the sum of the entries. Conditioned on this vector,

E
h

yjðs2 1Þ2 yjðsÞ

�2i ¼ N
N2 1

var


mjðs2 1Þ�XN

i¼1

�
yijðsÞ2 1

N
yjðsÞ

�2

: (D1)

E
"XN

i¼1

�
yijðs2 1Þ2 1

N
yjðs2 1Þ

�2
#

¼ N
2N2 1

�
12

1
N

E
h
mjðs21Þ2

i�XN
i¼1

�
yijðsÞ2 1

N
yjðsÞ

�2

: (D2)

Remark D.2. The first assertion tells us how quickly the reproductive value settles down. The second controls the variance in the
contribution that the jth ancestor at time t makes to each descendant alive in generation s before the present.

In the special case of a diploid Wright–Fisher model,

E½2mi� ¼ 2; E
h
ð2miÞ2

i
¼ 2

�
12

1
N

�
þ 4

and

E
	
2mi



2mj

�� ¼ 2
2
N
þ 4; i 6¼ j;

which yields

E
h

yjðs2 1Þ2 yjðsÞ

�2i ¼ 1
2

XN
i¼1

�
yijðsÞ2 1

N
yjðsÞ

�2

(D3)

and

966 N. H. Barton and A. M. Etheridge



E
"XN

i¼1

�
yijðs2 1Þ2 1

N
yjðs2 1Þ

�2
#

¼ 1
2

�
12

1
N

�XN
i¼1

�
yijðsÞ2 1

N
yjðsÞ

�2

: (D4)

Proof of Lemma D.1. For the first statement, note that

E
h

yjðs2 1Þ2 yjðsÞ

�2i ¼ E
"�PN

i¼1
yijðs2 1Þ2

XN
i¼1

yijðsÞ
!2
3
5

¼ E

2
4 XN

i¼1

XN
k¼1

�
Mðs21Þ

�
ik
ykjðsÞ2

XN
i¼1

yijðsÞ
!2
3
5

¼ E

2
4 XN

k¼1

½mkðs2 1Þ21�ykjðsÞ
!2
3
5

¼
XN
k¼1

varðmkðs2 1ÞÞy2kjðsÞ þ 2
X
k,l

covðmkðs2 1Þ;mlðs2 1ÞÞykjðsÞyljðsÞ; (D5)

where to get from the second to the third line we have interchanged the order of summation in the double sum and relabeled
the indexes in the single sum. Now observe that, using exchangeability of the columns of the matrix M(s21),

covðmkðs2 1Þ;  mlðs2 1ÞÞ ¼ E½mkðs2 1Þmlðs2 1Þ�21

¼ 1
N21 E

"PN
l¼1

mkðs2 1Þmlðs2 1Þ2m2
kðs2 1Þ

#
21

¼ 1
N2 1

E
	
Nmkðs2 1Þ2m2

kðs2 1Þ�2 1

¼ 1
N2 1



12E

	
m2

kðs2 1Þ�� ¼ 2 1
N2 1

varðmkðs2 1ÞÞ:

By exchangeability, var(mk(s 2 1)) = var(mj(s 2 1)) for all k = 1, . . . ,N. Substituting into (D5) and using that

XN
i¼1

�
yijðsÞ2 1

N
yjðsÞ

�2

¼ N2 1
N

XN
i¼1

y2ijðsÞ2
2
N

X
k,l

ykjðsÞyljðsÞ (D6)

completes the proof of (D1).
To prove (D2), we again exploit exchangeability of the columns of M(s21). First note that

E
� PN
i¼1

�
yijðs2 1Þ2 1

N
yjðs2 1Þ

�2
#

¼ E
"XN

i¼1

y2ijðs2 1Þ2 1
N
y2j ðs21Þ

#

¼ E
"XN

i¼1

y2ijðs2 1Þ
#
2

1
N
E

2
4 XN

i¼1

miðs2 1ÞyijðsÞ
!2
3
5

¼ E

2
4XN

i¼1

 XN
k¼1

�
Mðs21Þ

�
ik
ykjðsÞ

!2
3
52 1

N
E

2
4 XN

i¼1

miðs2 1ÞyijðsÞ
!2
3
5

¼ E
"XN

k¼1

y2kjðsÞ
 XN

i¼1

ðMðs21Þ2ik 2
1
N
m2

kðs2 1Þ
!#

2  
2
N

E
"X

k,l

ykjðsÞyljðsÞ
"
mkðs2 1Þmlðs21Þ

(D7)

2N
XN
i¼1

ðMðs21ÞÞikðMðs21ÞÞil
##

: (D8)
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Now we use the same technique as before to rewrite

E
�
mkðs21Þmlðs21Þ2N

PN
i¼1

�
Mðs21Þ

�
ik

�
Mðs21Þ

�
il

#

¼ 1
N2 1

E
"XN

k¼1

mkðs21Þmlðs21Þ2N
XN
i¼1

XN
k¼1

�
Mðs21Þ

�
ik

�
Mðs21Þ

�
il
2m2

l ðs21Þ þ N
XN
i¼1

�
Mðs21Þ

�2
il

#

¼ N
N2 1

E
"XN

i¼1

�
Mðs21Þ

�2
il
2

1
N
m2

l ðs21Þ
#
: (D9)

Moreover,

E
h�

Mðs21Þ
�2
il

i
¼ 1

4
E
�
2
2mlðs2 1Þ

2N
2N2 2mlðs2 1Þ

2N21

�
þ 1 � E

�
2mlðs2 1Þ

2N
2mlðs2 1Þ2 1

2N2 1

�
: (D10)

To see this, the first term corresponds to ðMðs21ÞÞil ¼ 1
2; which requires that exactly one of the 2ml(s2 1) times that the lth

individual in generation s was chosen as a parent, it was by the ith individual in generation s 2 1. The second term
corresponds to ðMðs21ÞÞil ¼ 1; which requires that offspring i picked the lth individual as parent twice. Equation D9 now
allows us to unify the terms in (D7) into a single sum. First use (D6) and then (D10), substitute, and simplify to arrive at
(D2). n

The right-hand side of Equation D2 converges to zero exponentially fast as we decrease s. Equation D1 then guarantees
convergence of vj(s). The limiting value vj is the reproductive value of ancestor j. To quantify the variability in the contri-
bution of ancestor j to different descendants, we renormalize so that the expected contribution to each descendant is one and
calculate the variance in this quantity across descendants. Using Equation D2 we see that

E
"
N
XN
i¼1

�
yijðs2 1Þ2 1

N
yjðs21Þ

�2
#
#

N
2t2s (D11)

and so the variance in contributions to the current population of ancestors alive t generations in the past decays like N22t.
Substituting in (D1) tells us that

E
h

yjðs2 1Þ2 yjðsÞ

�2i
,

1
2t2s varðm1Þ (D12)

and hence the extremely rapid convergence to a constant reproductive value, independent of population size.

Appendix E

Probability of Survival and Distribution of Copy Numbers

In this section, for concreteness, we concentrate on the diploid Wright–Fisher model, but it should be clear that our argu-
ments carry over to more general offspring distributions. If we take an allele from individual i in the population at time s,
then the chance that it is inherited from individual j in generation t before the present is the (i, j) entry in the matrix Mst. To
see this, one can think of the ancestral lineage of the allele as following a random walk through the pedigree. At each step it
is equally likely to be derived from either parent. Conditional on the pedigree, the transition matrix of the walk between
generation s and s + 1 (backward in time) is then precisely Ms.

Lemma E.1. If N ≫ t ≫
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nloge   N

p
; then the probability that an individual in generation t before the present contributes any

genetic material to the present population is approximately vPN,t, where v is its reproductive value and PN,t is the probability of
a survival until time t of a single neutral allele in a haploid population of size 2N.

Proof. To estimate the probability that a particular ancestor contributes at least one copy of one of its alleles to the current
population, we trace the ancestral lineages of all current alleles simultaneously. In the diploid Wright–Fisher model, these
are described by a system of coalescing random walks that can be described as follows. We start a walk off from each of the
2N alleles in the population in the present. The two alleles in a given individual can be traced one to each of two parents
chosen (independently and uniformly) at random from the previous generation. Given the parent, an allele is equally likely
to be descended from each of the two alleles carried by that parent. If two walks choose the same allele in the same parent,
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then they coalesce. Our aim then is to estimate the probability that one of the walks alive at time t is in the jth individual.
Note that the system of coalescing walks is precisely that describing the genealogy of a (haploid) Wright–Fisher model of size
2N.

Write U(s) for the number of walks alive at time s before the present. Since we are starting at time zero from the whole
population, this number cannot be simply deduced from Kingman’s coalescent. However, using Möhle (2004) and Fu (2006),
we see that U(s) is dominated, at least in expectation, by the corresponding number for the Kingman coalescent. Moreover,
since once UðsÞ, ffiffiffiffi

N
p

the exact coalescent for the Wright–Fisher model will only rarely experience multiple coalescences, the
Kingman coalescent becomes an increasingly good approximation for U(s) as s increases.

Now note that the expected time for the Kingman coalescent (with coalescence rate 1/2N per pair of lineages) to decrease
from 2N to n lineages has mean

2N
X2N
j¼nþ1

2
jðj21Þ ¼ 4N

�
1
n
2

1
2N

�
� 4N

n

and variance

4N2
X2N
j¼nþ1

4

j2ðj2 1Þ2 � CN2

n3

for some constant C. Thus, for s≫
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nloge   N

p
; with high probability we have that UðsÞ≪ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N=loge   N
p

and then the total
coalescence rate after time s is ≪ 1/logeN. In particular, if t 2 s is O(logeN) generations, then between times s and t, there
will be no coalescence between the ancestral lineages that make up U(s). Since the only dependence between ancestral
lineages arises when they coalesce, this implies that the error that we make by assuming that they evolve as independent
random walks through the pedigree between times s and t will be negligible.

Without loss of generality we may suppose that the individuals in the population at time s before the present that carry the
U(s) lineages ancestral to the present-day population are labeled 1, 2, . . . , U(s) and in our previous notation we write v1j(s),
v2j(s), . . . , vU(s)j(s) for the first U(s) entries in the jth column of Mst. Then the probability that at least one lineage traces back
to the jth individual is approximately that for independent random walks,

12
YUðsÞ
i¼1



12 yijðsÞ

� �XUðsÞ
i¼1

yijðsÞ;

and using Lemma D.1 we see that if t2 s = O(logeN), then up to an error of order U(s)/N this is just vjU(s)/N, where vj is the
reproductive value of the jth individual. Now observe that E[U(s)] = NPN,t2s, which, since t 2 s = O(logeN) (whereas
s≫

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nloge   N

p Þ; is �NPN,t. Finally then, averaging over the distribution of U(s), we obtain the desired result. n

Remark E.2. An improved approximation follows by observing that

YUðsÞ
i¼1



12 yijðsÞ

� � �12 yj

N

�UðsÞ
� exp

�
2 yj

UðsÞ
N

�
:

We know that if we average over the distribution of vj, we should recover the survival probability of a single neutral allele and so
we choose ~Pt in such a way that

PN;t ¼ 12E
h
e2y~Pt

i
and approximate the survival probability of an allele in an individual with reproductive value v by 12expð2y~PtÞ:
Lemma E.3. For N ≫ t ≫

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nloge   N

p
; the distribution of the number of alleles in the current population that are descended from

an allele in individual j in generation t before the present, conditional on being nonzero is independent of the reproductive value
vj. Moreover, it is approximately exponentially distributed with parameter P21

N;t ¼ 4N=t:
Proof. The first statement follows easily from our argument above. In our previous notation, conditional on at least one of

the U(s) ancestral lineages being descended from ancestor j, the probability that at least two are descended from j is
approximately
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12


12 yj= N

�UðsÞ
2UðsÞðyj=  NÞ



12 yj= N

�UðsÞ21

12


12 yj= N

�UðsÞ � yj

N
ðUðsÞ2 1Þ

since vjU(s)/N is small. Thus, conditional on there being any genetic material derived from ancestor j in the current
population, with high probability it is all descended from a single ancestral lineage from U(s). Since the population is
neutral, the distribution of this number is independent of reproductive value.

For the second claim, since the population is neutral, until it becomes common in the population, the number of copies of
a neutral allele conditioned on survival is close to that of a critical branching process conditioned on survival. Since as we
argued above, conditional on survival all copies of the allele are with high probability descended from a single lineage from U
(s) and we are considering times t � s ≪ N, we are in precisely this regime: the growth of the neutral allele conditioned on
being nonzero is approximately that of a critical Galton–Watson branching process with Poisson offspring distribution
conditioned on nonextinction. The result then follows from Fisher (1930). n

Remark E.4. For more general offspring distributions, the appropriate modification of Lemma E.3 follows from Theorem
10.1, Chap. 1 of Harris (1963). We then have that, conditional on survival, the expected proportion of the population
descended from the allele is approximately

tvarðZ1Þ
4N

;

where Z1 is the number of copies of the allele in the first generation (before conditioning).

Appendix F

Structure

In this section we show that the rapid convergence of an individual’s reproductive value proved in Appendix D for a panmictic
population is not greatly slowed by two simple forms of structure: partial selfing and subdivision.

Partial selfing: Consider a population in which a fraction a of offspring in the population is produced by self-fertilization and
the remaining 1 2 a by random mating.
Lemma F.1. In the notation of Appendix D, under partial selfing

E
h

yjðs2 1Þ2 yjðsÞ

�2i¼ 1þ a

2

XN
i¼1

�
yijðsÞ2 1

N
yjðsÞ

�2

(F1)

and

E
"XN

i¼1

�
yijðs2 1Þ2 1

N
yjðs2 1Þ

�2
#
¼ 1þ a

2

�
12

1
N

�XN
i¼1

�
yijðsÞ2 1

N
yjðsÞ

�2

: (F2)

In particular,

E
h

yjðs2 1Þ2 yjðsÞ

�2i
,

�
1þ a

2

�t2s

:

Proof. Still using the notation of Appendix D, (2m1, . . . , 2mN) will once again be an exchangeable random vector. It is tedious
but not difficult to check that

varðm1Þ ¼ 1þ a

N

�
12

1
N

�
; E½m1m2�2 1 ¼ 2

1þ a

2N
:

Substituting in our previous proof yields the result. n

Apart from the initial behavior, Nordborg and Donnelly (1997) and Möhle (1996) show that for a population with partial
selfing, under the Wright–Fisher model, the Kingman coalescent remains a valid model for the genealogy of a “small”
sample, but the rate of coalescence is increased by a factor 2/(2 2 a). For the exact coalescent for the Wright–Fisher model
too, the effect of selfing will be to increase the rate of coalescence and so, using the notation of the proof of Lemma E.1, for
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s≫ðð22aÞ=2Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N loge   N

p
with high probability UðsÞ≪ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N= loge   N
p

and we can approximate the coalescent after that time by
the (time-changed) Kingman coalescent. The proof of Lemma E.1 will then carry over to this setting.

The island model: In this subsection we consider an island model in which the population is subdivided into D demes, each
with N0 occupants. Mathematically, it is convenient to separate the steps of reproduction and migration. Thus in a repro-
ductive step, each deme (separately) undergoes the diploid Wright–Fisher reproduction that we have seen above. Between
reproductive steps a number of migration steps take place in which two demes are chosen at random and an individual from
deme i is exchanged with one in deme j.

Again we trace the matrix Mst whose (i, j)th entry records the probability that a gene in individual i at time s is derived
from one in individual j at time t in the past. It is convenient to label individuals so that labels 1, . . . , N0 lie in the first deme,
N0 + 1, . . . , 2N0 lie in the second, and so on. In place of the matrix Mt we now have two sorts of matrix. The first,
corresponding to reproduction, is block diagonal, with each block a copy of the Mt corresponding to the diploid Wright–
Fisher model for a population of size N0. Premultiplication by the second type of matrix corresponds to exchanging two
randomly chosen rows of Mst.

We examine the rate of decay of the variance of the entries in the first column to obtain the analog of Equation D4. We
denote the entries of the first column of Mst by mij, where 1 # i # D refers to the number of the deme and 1 # j # N0 to the
number of the individual within that deme. Write

�mi ¼ 1
N0

XN0

j¼1

mij and �M ¼ 1
D

XD
i¼1

�mi ¼ 1
DN0

X
i;j

mij:

We now write the variance of the entries in the first column of Est as

1
DN0

0
@XD

i¼1

XN0

j¼1

m2
ij 2DN0 �M2

1
A¼ 1

DN0

0
@XD

i¼1

0
@XN0

j¼1

m2
ij 2N0 �m2

i

1
A
1
Aþ 1

D

 XD
i¼1

�m2
i 2D �M2

!
:

Now note that we can rewrite the second term as

1
2D2

XD
i¼1

XD
j¼1



�mi 2 �mj

�2
:

The variance of the entries in the first column of our matrix then becomes

1
DN0

0
@XD

i¼1

0
@XN0

j¼1

m2
ij 2N0 �m2

i

1
A
1
Aþ 1

2D2

XD
i¼1

XD
j¼1



�mi 2 �mj

�2
:

Let us write var1(s) and var2(s) for these two terms in the variance of the first column in Mst. In a reproduction event, by
(D4), the term var1 is reduced by a factor 1

2ð121=  N0Þ: The term var2 on the other hand can increase. Let us write
�miðs21Þ ¼ �miðsÞ þ ei: Then by Equation D3,

E
h
e2i
i
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2N0

XN0

j¼1

�
mijðsÞ2 1

N0
�miðsÞ

�2

(independently for each i) and E[ei] = 0. Thus E[var2(s 2 1) 2 var2(s)] becomes

1
2D2

XD
i¼1

XD
j¼1

E
h
e2i þ e2j

i
¼ 1

D

XD
i¼1

E
h
e2i
i

¼ 1
2DN2

0

XD
i¼1

XN0

j¼1

�
mijðsÞ2 1

N0
�miðsÞ

�2

¼ 1
2N0

var1ðsÞ:
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In a migration step involving the interchange of just two columns, the overall variance cannot change (we are merely
shuffling the entries in the column, not changing them), but the expected value of the change in the second term is easily
checked to be

1
DN0

ðvar1ðsÞ2 var2ðsÞÞ:

Combining these, if a proportion m of offspring migrates immediately after each reproduction step, the change in variance
over a whole cycle of reproduction and migration is

var1ðsÞ↦var91 ¼ 1
2

�
12 1

N0

�
var1ðsÞ;

var2ðsÞ↦var92 ¼ var2ðsÞ þ 1
2N0

var1ðsÞ;
var91↦var1ðs2 1Þ ¼ var91 þ m

DN0



var91 2 var92

�
;

var92↦var2ðs2 1Þ ¼ var92 2 m
DN0



var91 2 var92

�
:

From this we see that

varðs2 1Þ ¼ 1
2
var1ðsÞ þ var2ðsÞ:

The first part of the variance is reduced by a factor of 2 in each cycle and, once this has been repeated often enough that
var2(s) . var1(s), mass from var2(s) is transfered to var1(s 2 1) so that it, in turn, can be reduced.

Appendix G

Introducing Recombination

Suppose now that we are interested in the descent of blocks of genome through our pedigree. For convenience we normalize
so that the genome is represented by the unit interval [0, 1]. Each individual carries two chromosomes and for each
chromosome a random subset U 4 [0, 1] is inherited from one parent with the complement being inherited from the other
parent. As before, each individual chooses its two parents, independently at random from the previous generation. Note that
our original model can be considered as a special case of this in which U is the empty set or the whole of [0, 1] with equal
probability.

Now, conditional on a pedigree, instead of considering the matrices Ms, in which in the ith row there is 1
2 at the position of

each parent of the ith individual from generation s, we put 1U and 1Uc in the two positions. Taking the products of these
matrices as before, we see that each entry in the matrixM0t will be an indicator function (where 0 is the indicator function of
the empty set). Each row of the matrix will sum to 1[0, 1], corresponding to the fact that the entries correspond to indicators
of disjoint sets whose union is [0, 1]. The (i, j) entry of M0t is the indicator function of the portion of a chromosome chosen
from the ith individual that is inherited from the jth individual from generation t before the present.

This, in principle, provides a route to the analysis of the whole distribution of the sizes and positions on the genome of the
blocks of ancestral material inherited from the different ancestors in the population, just by superposing the descent of blocks
of genome on the pedigree.

To prove a concrete result we specialize to the case of a single crossover, which we take to be uniformly distributed on [0,
1], in each individual in each generation. We consider the fate of a block of length y carried by a single ancestor in generation
t before the present. For simplicity we do not specify the location of surviving blocks, but instead restrict our attention to the
numbers of blocks of different sizes. Until blocks become common, with high probability, each diploid individual in the
population carries blocks on at most one chromosome. Thus, if a parent carries a block of length z, then each offspring,
independently, will carry a block of length z with probability (1 2 z)/2, none of the block with probability (1 2 z)/2, and
with probability z a block of random length, uniformly distributed on (0, z).

Baird et al. (2003, Appendix B), establish the block size distribution in an infinite population. The first moments are
obtained by multiplying the probability that a block of size z is passed down a single line of descent through the pedigree by
the expected number of lines of descent. In particular, the total expected number of blocks in the population after t
generations is shown to be 1 + yt. The number of lines of descent through the pedigree depends linearly on reproductive
value and so conditioning on the pedigree, the expected number of blocks will be (1 + yt)v, where v is the reproductive value
of the ancestor. The chance that some blocks survive until time t decays only logarithmically in t, and so even conditioned on
survival, the total number of blocks in the population does not grow too quickly. In particular, since the number of blocks to
survive in an infinite population is an upper bound for the number that survive in a finite population, over the intermediate
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timescales considered here, for moderate populations we may use the approximation that two different blocks never “meet”
in the same diploid individual. Blocks of ancestral material are then simply eroded as they pass down the pedigree.

The block size distribution can be investigated through its moment densities. The first moment density, M1(t, y, dz) is
defined through

E½#fblocks of length # x at time tg� ¼
ðx
0
M1ðt; y; dzÞ:

Evidently M1(t, y, dz) will vanish for z . y. It will have a point mass at z = y, corresponding to the (strictly positive)
probability that the whole ancestral block survives, and it will have a density for z , y. The second-order moment densities
are defined in an analogous way,

E½ fpairs of blocks with lengths z1; z2 2 A  ·   Bg� ¼
ð ​ð

A ·B
M2ðt; y; dz1; dz2Þ;

and we use the notationM2[t, y, z1, z2] for the corresponding density (which has singularities at z1 = y and z2 = y), and so on
for moments of all orders.
Lemma G.1. The first and second moment densities of the distribution of numbers and sizes of blocks of genome descended from
a given ancestor depend (approximately) linearly on the reproductive value of that ancestor.
Proof. For the first moment density this is obvious. The expected number of blocks with lengths in the infinitesimal interval
[z, z+ dz) is the expected number of lines of descent through the pedigree times the probability, P1(t, y, dz) that each of them
carries a block with length in [z, z + dz). Since the erosion of the ancestral block along a given lineage is independent of the
pedigree, and the number of paths through the pedigree is proportional to the reproductive value of the ancestor, the result
follows.

To calculate the second-order moment densities, we also superimpose the erosion of blocks by recombination on the
pedigree. To do this we write Et for the expected number of pairs of genomes in the pedigree that share their most recent
common ancestor at time t 2 t. We now superimpose the erosion of the block of ancestral genome onto the pedigree.
Suppose that a pair of genomes in the pedigree at time t had their most recent common ancestor (MRCA) at time t 2 t.
Conditional on knowing the length of the ancestral block carried by their MRCA, the recombination events down their two
lines of descent between times t 2 t and 0 are independent, and so, summing over all pairs of genomes in the pedigree at
time t, we obtain for z1 6¼ z2

M2½t; y; z1; z2� ¼
Xt21

t¼0

2Et
ðy
max½z1;z2�

P1½t; y; x�P1½t2 t; x; z1�P1½t2 t; x; z2�dx: (G1)

For z1 = z2 we obtain half this quantity. (This formula holds regardless of the process that generates the pedigree.) Note that
the expression under the integral is independent of the pedigree. Our claim will follow if Et is linear in v. This will not be true
for very small values of t 2 t, but once t 2 t is large enough that the reproductive value has converged, the number of
descendants of each individual in the population at time t 2 t is independent of the reproductive value of our ancestor. The
number of pairs of genomes with their MRCA at time t 2 t depends on the reproductive value of the ancestor only through
the number of potential ancestors at time t 2 t and this is linear in reproductive value. Once t is big enough that the
contribution to the sum in (G1) of the terms corresponding to t 2 t less than say 10 is negligible, we see that the second
moment density too is essentially a linear function of the reproductive value. n

We could continue indefinitely in this way, finding expressions for kth-order moment densities in terms of lower-order
ones by first counting the number of k-tuples of genomes in the pedigree at time t with the MRCA at time t, but the
expressions rapidly become very cumbersome and for higher-order moments we expect the convergence to linear depen-
dence on reproductive value to be slower (and so to require a larger population size for our assumptions to be valid).
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