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ABSTRACT Inbreeding depression, which refers to reduced fitness among offspring of related parents, has traditionally been studied
using pedigrees. In practice, pedigree information is difficult to obtain, potentially unreliable, and rarely assessed for inbreeding arising
from common ancestors who lived more than a few generations ago. Recently, there has been excitement about using SNP data to
estimate inbreeding (F) arising from distant common ancestors in apparently “outbred” populations. Statistical power to detect
inbreeding depression using SNP data depends on the actual variation in inbreeding in a population, the accuracy of detecting that
with marker data, the effect size, and the sample size. No one has yet investigated what variation in F is expected in SNP data as
a function of population size, and it is unclear which estimate of F is optimal for detecting inbreeding depression. In the present study,
we use theory, simulated genetic data, and real genetic data to find the optimal estimate of F, to quantify the likely variation in F in
populations of various sizes, and to estimate the power to detect inbreeding depression. We find that F estimated from runs of
homozygosity (Froh), which reflects shared ancestry of genetic haplotypes, retains variation in even large populations (e.g., SD = 0.5%
when Ne = 10,000) and is likely to be the most powerful method of detecting inbreeding effects from among several alternative
estimates of F. However, large samples (e.g., 12,000–65,000) will be required to detect inbreeding depression for likely effect sizes,
and so studies using Froh to date have probably been underpowered.

INBREEDING occurs when mates are more closely related
than expected if chosen at random in the population. Most

cultures have taboos against close inbreeding (Brown 1991)
and most nonhuman animals appear to avoid it, ostensibly
as an adaptation to prevent its deleterious effects (Pusey
and Wolf 1996). Inbred offspring tend to have higher rates
of congenital disorders and lower survival rates and fertility.
This phenomenon—called inbreeding depression—has since
been confirmed by hundreds of scientific investigations on
plants and animals (Roff 1997). The magnitude of the effect
appears to be related to the strength of directional selection
on the trait. Fitness traits such as survival, reproduction,

resistance to disease, and predator avoidance are more af-
fected by inbreeding than are traits likely to be under less
intense, directional selection (DeRose and Roff 1999). In-
terestingly, there are numerous reports of inbreeding effects
on human complex traits such as heart disease (Shami et al.
1991), hypertension (Rudan et al. 2003b), osteoporosis (Rudan
et al. 2004), cancer (Lebel and Gallagher 1989), IQ (Morton
1979; Afzal 1988), and psychiatric disorders (Abaskuliev and
Skoblo 1975; Gindilis et al. 1989; Bulayeva et al. 2005), sug-
gesting that these traits or the genetic variants underlying
them have been subject to natural selection ancestrally.

Two major hypotheses have been forwarded to explain
why inbreeding depression occurs (Wright 1977). The partial
dominance hypothesis focuses on the role of homozygosity of
rare, recessive/partially recessive deleterious mutations. Dele-
terious mutations constantly arise in the population and selec-
tion quickly purges the most additive and dominant ones,
leaving the segregating pool of deleterious mutations enriched
with partially recessive ones because selection against
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recessive mutations is inefficient. When such mutations
meet in homozygous form, such as following inbreeding,
their full deleterious effects are exposed. Alternatively, the
overdominance hypothesis posits that inbreeding depres-
sion is caused by a reduction in heterozygosity of common
alleles maintained at equilibrium at loci governed by het-
erozygote advantage. Both mechanisms may play a role in
inbreeding depression effects, but the partial dominance
hypothesis enjoys the strongest empirical support to date
(Charlesworth and Charlesworth 1999; Charlesworth and
Willis 2009).

Estimation of Inbreeding

The inbreeding coefficient of an individual, F, is one of the
central parameters in population genetics theory. It is defined
as the probability that two randomly chosen alleles at a homol-
ogous locus within an individual are identical by descent (IBD)
with respect to a base (reference) population in which all
alleles are independent; that is, the alleles are identical be-
cause they are passed down from a common ancestor (Wright
1922). Homozygosity caused by two IBD genomic segments
is termed autozygosity, as opposed to allozygosity, which is
homozygosity produced by alleles that are identical by state.
F is therefore an estimate of genome-wide autozygosity.

Traditionally, F has been estimated using known pedi-
grees (Fped), typically using a path coefficient method de-
veloped by Wright (1922). In practice, pedigree information
is difficult and costly to obtain, potentially unreliable (e.g.,
due to problems with accurate recording of ancestry), and
rarely assessed for inbreeding arising from common ances-
tors who lived more than three or four generations in the
past. Although autozygosity caused by common ancestors
living more than three generations ago contributes very lit-
tle variation to Fped, it can contribute substantially to varia-
tion in segments of the genome that are autozygous (Stam
1980). Moreover, Fped is an expectation of the proportion of
the genome that is autozygous, but there is much variation
around this expectation due to the stochastic nature of re-
combination. For example, the percentage of the genome
autozygous among progeny of first cousins averages 6.25%,
but the standard deviation of this is 62.4% (Franklin 1977;
Hill and Weir 2011).

For these reasons, there has recently been excitement
about using dense marker data to estimate F arising from
even very ancient inbreeding (Leutenegger et al. 2003;
Carothers et al. 2006; Gibson et al. 2006; Li et al. 2006;
Woods et al. 2006; McQuillan et al. 2008). Such genomic
estimates of F potentially have several advantages over Fped.
First, whereas Fped is an expectation of genome-wide auto-
zygosity, by directly measuring homozygosity, genomic esti-
mates of F can potentially estimate the actual percentage of
the genome that is autozygous more accurately. Second,
genomic estimates of F incorporate autozygosity arising
from very distant common ancestors (e.g., 50+ generations
ago). Third, genomic estimates of F can be estimated in any

sample that has marker data collected on it, including sam-
ples for which pedigree information is difficult or impossible
to collect. Fourth, whereas all estimates of F are genome-
wide estimates of autozygosity, genomic estimates of F can
be altered to allow for the possibility of testing whether an
effect of F is distributed evenly across the genome or whether
the signal comes from specific genomic locations (e.g., by ob-
taining separate F estimates for different chromosomes). Fifth,
in certain species (e.g., humans), individuals who inbreed may
not be a representative sample of the population, and thus
putative inbreeding effects may be due to “third variable”,
nongenetic reasons. Such third variable explanations are less
likely in populations where inbreeding is likely to be distant
and unintended. Finally, given the decreasing price in ge-
nome-wide SNP data, it is likely that genomic estimates of F
are less expensive to collect than is Fped, which requires either
intensive observation in the field or (in humans) extensive
interviews to obtain pedigrees from both parents.

A potential drawback to using genomic estimates of F is
that their behavior in populations with different levels of
inbreeding is not well characterized, and it is therefore un-
clear which estimates should be preferred under which sit-
uations. Furthermore, there may not be enough variation in
genomic estimates of F in unselected (“outbred”) samples to
detect inbreeding effects with statistical significance.

Current Study

The current study has three main goals. First, there are
several potential ways to estimate F: from pedigrees, on
a marker-by-marker basis, and from runs of homozygosity.
Using simulated data sets that have realistic patterns of mo-
lecular variation and linkage disequilibrium, we seek to un-
derstand which of these estimates of F are optimal for
detecting inbreeding depression and whether this answer
depends on the level of inbreeding (assessed using different
population sizes) in the population. Second, we are inter-
ested in comparing the variance, error, and intercorrelations
of the various estimates of F arising from populations of
different sizes and that followed population expansions sim-
ilar to those that occurred in recent human history. Third, on
the basis of the two results above, we estimate the likelihood
of detecting inbreeding depression given the predicted var-
iances in the optimal estimate(s) of F. In this report, we use
the human genome and population history to guide our
simulation because much is known about these parameters
in humans and because there has been much interest in
detecting the effects of autozygosity on human traits. Nev-
ertheless, as discussed below, the findings of this report
readily extend to nonhuman animal populations as well.

Methods

Simulation of sequence and SNP data

We simulated populations of different sizes using the
Fregene forward-time simulation program (Chadeau-Hyam
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et al. 2008). Fregene simulates the evolutionary process of
genetic sequencing data in a population following the
Fisher–Wright model (a monoecious, diploid, randomly mat-
ing population that evolves across nonoverlapping genera-
tions). Mating was random except that selfing was not
allowed. It should be noted that variation of all estimates
of F will be different if mating is not random. Nonrandom
mating typically increases variation in F as does a reduction
in Ne. Therefore smaller effective population sizes could be
used as a proxy for studying variation of estimates of F in the
presence of nonrandom mating.

The effective population size (Ne) of humans has been
estimated at �10,000 on the basis of molecular variation
(Takahata et al. 1995) and to have passed through a bottle-
neck, reducing the population sizes to �3000 for Caucasians
and �8000 for Africans, on the basis of linkage disequilib-
rium patterns (Tenesa et al. 2007). In the present study, we
simulated effective population sizes of Ne ¼ 100, 1000, and
10,000. Simulating larger population sizes was not compu-
tationally feasible. Each individual’s genome was composed
of two homologous chromosomes of length 100 Mb. We
chose 100-Mb–length genomes for reasons of computational
feasibility and because 100 Mb is roughly the size of a typical
mammalian chromosome. Fregene’s recombination model
allows for crossover rates that vary along the chromosome
at both broad scales (regions of several megabases in length
that differ in background recombination rates) and fine
scales (corresponding to recombination hotspots of �2 kb
in length). Recombination rates for the present set of simu-
lations averaged n ¼ 1:1 · 1028 per site per generation, 80%
of recombination events occurred in hotspot regions, and
the average distance between hotspots was 8500 bp. Muta-
tions arose at rate m ¼ 2:3 · 1028 per site per generation,
and all mutations were neutral with respect to fitness. New
mutations occurred uniformly and at random across the ge-
nome; thus mutations could arise at an already polymorphic
site, allowing both “double hit” mutations (if occurring at an
ancestral allele) and “back”mutations (if occurring at a derived
allele), although these types of mutations were extremely rare.
These parameters, the defaults in Fregene, were based on
estimated per site recombination and mutation rates in human
populations (Chadeau-Hyam et al. 2008).

To reduce the computational time taken by our simula-
tions, we used Fregene’s scale_exp option with the scaling
parameter l ¼ 20. This reduced the population size and num-
ber of generations 20-fold but increased n and m 20-fold,
which kept the population mutation parameter, u ¼ 4Nem

and the population linkage parameter, r ¼ 4Nen, constant,
thereby mimicking the degree of variation and linkage dis-
equilibrium in nonscaled populations but decreasing the
computational time by over an order of magnitude. Popula-
tions evolved for 100,000 generations (i.e., across 5000 loops
once scaled), ensuring that they reached drift–mutation–
recombination equilibrium (Chadeau-Hyam et al. 2008).

One drawback with scaling in Fregene is that the mixture
of rare to common variants is slightly inaccurate. For ex-

ample, with l  ¼   20 and Ne ¼ 1000, no variant can have
a minor allele frequency ,0.01 (rather than 0.0005, which
it would be if unscaled). To minimize this effect, at the end
of the 100,000 generations (5000 loops), we ran Fregene
with no scaling for an additional 1000 generations (1000
loops) for each population. The additional unscaled gener-
ations allowed polymorphism levels (as judged by heterozy-
gosity) to build up to expected levels. The observed levels of
heterozygosity in the three populations at the end of the
simulation (9:3 · 1024, 9:3 · 1025, 9 · 1026) conformed
closely to 4Nem=ð4Nemþ 1Þ, as predicted by theory
(9:2 · 1024, 9:2 · 1025, 9 · 1026).

To investigate the effects of population size on various
estimates of F, we needed to (a) obtain information on ped-
igrees going back several generations, (b) derive SNP data
from the sequences in the samples, and (c) create samples of
equal numbers of individuals, despite the varying population
sizes. To accomplish the first of these goals, we modified the
Fregene program to track and write out pedigree informa-
tion for each individual going back five generations (as we
show, going back farther than this was unnecessary). To
accomplish the second goal of creating SNP data, we se-
lected all variants with minor allele frequency (MAF) .
0.05 from the sequence data that Fregene outputs at the
final generation. This resulted in �2700 SNPs (1 SNP per
36 kb) in samples from the Ne ¼ 100 population, �27,000
SNPs (1 SNP per 3.7 kb) in samples from the Ne ¼ 1000
population, and �274,000 SNPs (1 SNP per 360 bp) in sam-
ples from the Ne ¼ 10,000 population. These differences in
SNP densities reflect the larger numbers of variants that nat-
urally occur in larger populations (Crow and Kimura 1970).

The third goal, to create equal experimental sample sizes
for each population size, was motivated by the fact that we
did not want our results across different population sizes to
be confounded by differing sample sizes. To accomplish the
goal of analyzing adequately large samples of equal sizes
across the three different population sizes, for the Ne ¼ 100
population, 100 subpopulations (each of Ne ¼ 100) split off
from the original Ne ¼ 100 population and evolved indepen-
dently for 50 generations. Groups of 10 of these subpopula-
tions were randomly placed together (without replacement)
to create 10 samples of size n = 1000 each. Because all 100
subpopulations evolved from the same progenitor popula-
tion, the common variants were generally the same between
subpopulations, allowing SNP sets to be created from the
n = 1000 samples. Thus, despite having the same levels of
inbreeding as in a population of size Ne ¼ 100, each of 10
replicate samples consisted of 1000 individuals. Similarly,
for the Ne ¼ 1000 population, 10 subpopulations of size
Ne ¼ 1000 split off from the original population (of size
Ne ¼ 1000) and evolved independently for 50 generations;
each of these populations was converted to 10 samples of
size n = 1000 each at the end of the 50 generations. Finally,
the Ne ¼ 10,000 population was split into 10 replication
samples of n = 1000 individuals each and evolved for 50
generations. In this way, 10 samples of size n = 1000 were
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derived from the different population sizes (see Figure 1).
By evolving independently for 50 generations, each subpop-
ulation (and therefore each sample) had independent
breeding (and inbreeding) histories within a 50-generation
time frame.

To study the effects of population expansion on estimates
of F, we allowed a population of size Ne ¼ 100 that had
reached drift–mutation equilibrium to expand instanta-
neously to Ne ¼ 10,000 and then to evolve at this size for
400 generations [�11,400 years for humans (Fenner
2005)]. Computational limitations disallowed investigating
larger and more realistic expansions (e.g., Ne ¼ 10,000–
1,000,000), but conclusions from studying smaller-scale
expansions should apply to larger expansions as well. We
wrote out pedigree, sequencing, and SNP data for 10 sam-
ples of size n = 1000, as described above, at generations
0 (immediately before expansion and therefore identical to
the Ne ¼ 100 data), 50, 100, 200, and 400. Results from
generation 100,000 come from the final generation of the
constant Ne ¼ 10,000 population.

A proxy for the homozygous mutation load

Given the evidence that inbreeding depression is caused by
homozygosity at numerous partially recessive, deleterious
mutations (Charlesworth and Willis 2009), and because del-
eterious mutations rarely reach frequencies .0.05 in the
population (Pritchard 2001), we approximated an individu-
al’s overall load of homozygous recessive/partially recessive
deleterious mutations by defining mutations as the set of all
variants not included in the SNP data (i.e., all variants with
MAF , 0.05 in the original sequence data) and summed all
such mutations that were homozygous for each individual.
We call this measure the “homozygous mutation load”. We
computed the homozygous mutational load using rare neu-
tral alleles for reasons of computational efficiency, but rare
neutral alleles approximated well the behavior of mildly
deleterious, partially recessive alleles. For all population
sizes, the observed distribution of allele frequencies of sim-
ulated neutral alleles with MAF , 0.05 was very similar to
the theoretically expected frequency distributions of either
partially recessive (h = 0.25), very mildly deleterious muta-
tions (s� 1/Ne) or fully recessive mutations (h= 0) of much
larger effect (s� 50/Ne), where h is the dominance coefficient
and s the selective coefficient (see supporting information,
Figure S1) (Crow and Kimura 1970). Thus, the homozygous
mutation load investigated here simulates what would be ob-
served if inbreeding depression is due to the aggregated effect
of homozygosity at a large number of recessive to partially
recessive, mildly deleterious alleles.

Real SNP data

To compare results from simulated SNP data with results
from real human SNP data, we used 1000 randomly selected
control individuals of Caucasian descent from the publicly
available Molecular Genetics of Schizophrenia–GAIN (Ge-
netic Association Information Network) sample (O’Donovan
et al. 2008) genotyped on the Affy 6.0 platform. All SNPs
passed rigorous quality control metrics (MAF . 0.05, miss-
ingness ,0.02, Hardy–Weinberg equilibrium P-values
,0.0001) and individuals who had a missingness rate
.0.02 or who were outliers on the first two principal com-
ponent dimensions derived from an identical-by-state matrix
were dropped. Genome-wide, 546,882 SNPs (�1 SNP per
5.1 kb) of 906,600 passed these quality control thresholds.
We then selected the first 100 Mb of SNP data from chromo-
somes 1–10 (after removing the centromere and surrounding
heterochromatin if applicable) to create 10 different SNP
samples. We derived 10 replicates of the three genomic esti-
mates of F (defined below) from these samples.

Estimates of F

In some contexts, F can be conceptualized as a parameter
rather than as an estimate. For example, Fped is a known
property given a pedigree and a base population and can
be called a parameter of an individual in this context. In
the present context, however, Fped and all other F statistics

Figure 1 Procedure for deriving 10 samples from each of three effective
population sizes. Circles represent populations, arrows represent evolu-
tion and splitting/combining of each population, and squares represent
samples of size 1000 derived from each population. The sizes of the
shapes correspond to population (circles and arrows) or to sample
(squares) sizes. See text for details.

240 M. C. Keller, P. M. Visscher, and M. E. Goddard

http://www.genetics.org /cgi/data/genetics.111.130922/DC1/1


investigated here are conceptualized as imperfect estimates
of the actual level of autozygosity in an individual’s genome.
The average F estimate in a population depends on the base
population (defined as the ancestral population when F= 0)
and increases as one considers older base populations. How-
ever, the average F is not very important in the context
considered here. Variation in F among the individuals in
the population is required to detect an inbreeding effect,
so it is variation in F that we focus on. We use a recent base
population—five generations ago—for pedigree inbreeding
and the current population for genomic estimates of F as
presented in Powell et al. (2010).

In each simulated sample, we calculated four alternative
estimates of F, as well as two additional estimates of Froh
based on shorter and longer megabase thresholds. In the
real SNP data sample, we calculated the three genomic esti-
mates of F. To compare the spread of the estimates of F, the
variances of F were derived across the 1000 individuals in
a sample, and the log (base 10) of these variances was taken
to aid interpretability. As there were 10 replicate samples
derived from each population size (see above), we then took
the mean of the 10 log (base 10) variances and found the
standard error around each of these means. Each estimate of
F is described below.

1. Fped: F from pedigree inbreeding going back fvie gener-
ations as figured from Wright’s path formula,

Fpedj
¼
X
i¼1:c

 
1
2

!ðnijþmijþ1Þ
;

where mii and nii refer to the number of paternal and ma-
ternal paths from the ith common ancestor and c refers to
the number of common ancestors of individual j. For exam-
ple, nij ¼ mij ¼ 2 for cousin–cousin inbreeding, and c ¼ 2
when the cousins share two grandparents (Fped ¼ 0:0625)
and c ¼ 1 when the cousins share one grandparent
(Fped ¼ 0:03125). Virtually all variation in Fped is captured
within the most recent five generations (see Results) and so
paths mij and nij were not extended beyond this.

2. Fh is the canonical estimate of genomic F based on excess
SNP homozygosity,

Fhj
¼ OðHjÞ2 EðHÞ

m2 EðHÞ ;

where OðHjÞ is the observed homozygosity across all SNPs
for person j, EðHÞ ¼Pi 122pið12piÞ is the expected homo-
zygosity for all people in the sample, and pi is the MAF for
SNPs i = 1, . . . ,m. This estimate can be obtained from
PLINK (Purcell et al. 2007), using the –het command.

3. Falt is an alternative estimate of F predicted to have lower
error (Yang et al. 2010a):

Faltj ¼ 12
P

idi
m

:

di ¼ 1=  pi and 1= qi for a homozygote for the minor and the
major allele, respectively, and 0 if heterozygote at SNP i, and
where qi is the frequency of the major allele at the ith SNP
and pi ¼ 12qi.

4. Froh refers to the proportion of the genome (0–1) that is
in runs of homozygosity (ROHs):

Frohj
¼
P

k lengthðROHkÞ
L

:

ROHk is the kth ROH in individual j’s genome, and L = 106

bp, the length of the genome in both the simulated and the
real SNP data sets. ROHs were found using PLINK and de-
fined as stretches of continuously homozygous SNPs span-
ning at least 1.5 Mb (�1.65 cM). The lengths of ROH
segments generated by a single path should follow an expo-
nential distribution with mean 1=2g M, where g is the num-
ber of generations since the last common ancestor (Fisher
1954). Thus, the expected length of an autozygous ROH
segment caused by a common ancestor g = 30 generations
in the past is 1.65 cM (�1.5 Mb).

To compare alternative Froh thresholds, we defined Froh,short
as a run of homozygous SNPs .0.5 Mb and Froh,long as a run
of homozygous SNPs .5 Mb. These three threshold values
(0.5 Mb, 1.5 Mb, and 5 Mb) are the same as those used by
McQuillan et al. (2008) in their investigations into Froh in
European populations. Froh,long is likely to lack many auto-
zygous stretches of ancient origin (e.g., from .10 genera-
tions back, which have expected sizes of ,5 Mb), but is also
likely to be composed of very few ROHs that are not truly
autozygous. On the other hand, Froh,short can detect more
ancient autozygous segments (e.g., from �100 generations
back) at the expense of a higher false detection rate—i.e.,
detecting a higher proportion of ROHs that are allozygous
rather than autozygous. Such allozygous haplotypes may be
similar superficially, creating runs of homozygosity at mea-
sured SNPs, but heterozygous at unmeasured, rare muta-
tions. Using the expected exponential distribution of ROH
segments, our thresholds of 0.5 Mb, 1.5 Mb, and 5 Mb should
capture 58%, 20%, and 0.5% (respectively) of all ROHs cre-
ated from common ancestors 50 generations in the past.

Results

Time to most recent common ancestor between spouses

Given that ancient inbreeding is central to the present
investigation and that the relationship between mates de-
termines the inbreeding coefficient of their progeny, it is
useful to have an intuition of how long ago the most recent
common ancestor existed between two mates in a randomly
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mating population. A similar issue has been investigated
with respect to the amount of overlap in pedigrees between
two individuals (Ohno 1996; Derrida et al. 2000), as we
discuss below. Similarly, Chang (1999) assessed the number
of generations one must travel back before reaching the
most recent common ancestor of every human alive today,
and it is surprisingly recent: about 110 generations (�3100
years) ago (see also Rohde et al. 2004; Lachance 2009).
Clearly, the most recent common ancestor between just
two randomly chosen individuals (e.g., spouses) must be
much more recent still. This can be quantified simply in
a Fisher–Wright model.

For a population of constant size, consider two randomly
chosen individuals (spouses), X and Y. Take a single
ancestor of spouse X who lived t generations ago. Given
nonoverlapping generations, the probability that this ances-
tor is the same person as any of spouse Y’s ancestors who
lived t generations ago is At=Nt, where At is the total number
of ancestors of Y at generation t, and Nt is the total number
of all ancestors in the population at generation t. This fol-
lows from the fact that the probabilities that the ancestor of
X is related to each of Y’s ancestors are independent of each
other (i.e., multiple ancestors of Y can be the same person).
The probability that the ancestor of X is unrelated to any
ancestor of Y is therefore 12At=Nt. Assuming that X also has
At distinct ancestors at time t, the probability that no ances-
tor of X is related to any ancestor of Y at time t is
ð12At=NtÞAt . Finally, the probability, cg, that a randomly
chosen spousal pair share no common ancestors (no pedi-

gree inbreeding) up to and including generation g is
cg ¼

Q
t¼1;:::;gð12At=NtÞAt .

The above calculation for cg relies on estimations of At

and Nt that are not straightforward to derive. As an approx-
imation, At ffi 2t and Nt ffi Ne. While the latter assumption is
probably close to the truth on average, the former (At ffi 2t)
must overestimate the number of ancestors at time t because
At # Nt even though At grows exponentially while Nt re-
mains constant. Put another way, as one travels back in
a pedigree, duplicate ancestors grow increasingly common
due to ancient inbreeding. This biases cg to be lower than it
should be, but further investigation (not shown) indicates that
this bias is minimal, not changing how far one must go back to
find a common ancestor by more than a single generation.

Figure 2 shows expected values for cg for four different
population sizes: the three investigated in the present sim-
ulation as well as for Ne ¼ 1 M, which is probably a larger
mating pool than most modern humans belong to. We checked
our theoretical predictions against simulation results for the
three population sizes (Ne ¼ 100, 1000, and 10,000) and
the five generations of ancestry we recorded. The expected
probabilities (solid dots) agree nicely with the observed pro-
portions from the simulated data (colored x’s).

Figure 2 shows that mates are likely to share a common
ancestor in their recent ancestral past. For populations of
size Ne ¼ 1000, almost all spousal pairs have at least one
common ancestor in common from #6 generations in the
past. For Ne ¼ 10,000, spousal pairs share a common ances-
tor within 8 generations. Indeed, for every 10-fold increase
in population size, the number of generations one must go
back before a common ancestor becomes certain increases
by ,2 generations. Thus, at Ne ¼ 1,000,000, spouses are
almost certain to share a common ancestor within the last
11 generations. Increasing this population size to 100 mil-
lion pushes this estimate back only to �15 generations.
ROHs caused by inbreeding from common ancestors 15 gen-
erations in the past are �3 Mb in length on average, al-
though, due to the finite number of recombination events
per generation, inbreeding events from 15 generations in
the past often cause no ROHs. These results are consonant
with the results of Derrida et al. (2000), who found that
there is substantial overlap between pedigree trees of two
randomly chosen individuals in a population of size
#10,000 within 10 generations and that this overlap is com-
plete (both individuals share the exact same ancestors)
within �20 generations.

Variance of Fped

Given that the contribution to Fped at generation t is inde-
pendent of the contribution to Fped from previous genera-
tions, the variation of Fped for a given population size can be
apportioned into the amount contributed by each ancestral
generation. Figure 3 shows that the contribution to the var-
iation of Fped decreases log-linearly as a function of the con-
tributing ancestral generation. The bend (nonlinearity) at
generation 1 for the samples drawn from the Ne ¼ 10,000

Figure 2 Shown is the probability that mates share no common
ancestors in the most recent g generations as a function of population
size (see text). The x’s are the same values, derived empirically from
simulations, for up to 5 generations in the past, and show good agree-
ment with the expected probabilities. Even in large, randomly breeding
populations (e.g., 1 million), it is almost certain that at least one ancestor
exists in common between two pedigrees within 11 generations.
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population occurs because several samples had no sib–sib
inbreeding, making the log10(var(Fped due to sib–sib in-
breeding)) = 2N. Such values were set to “missing”, bi-
asing the remaining nonmissing values upward.

Our results show that very little variation in Fped was
missed by ignoring inbreeding resulting from common
ancestors more than five generations back (see Methods).
This is despite the fact that quite long (e.g., �10 Mb) ROHs
can be created from such inbreeding. Although we had no
way of measuring the proportion of variation in genomic
estimates of F that was due to each ancestral generation,
our results below demonstrate that genomic estimates of F
retain considerable variation in large populations after var-
iation in Fped has diminished to �0.

Variation and error in genomic and pedigree
estimates of F

One important aim of the current project was to investigate
the effects of population size on the variance of the four
estimates of F. Variances were taken across estimates of F for
each individual in samples of size 1000 drawn from the
three population sizes (Ne = 100, 1000, and 10,000). Figure
4 shows the mean (61 SE) of the log10 variances of F as
a function of Ne. The variance decreases for all estimates of F
as Ne increases, caused by the lower levels of ancient and
recent inbreeding in larger populations. As expected (Figure
3), Fped shows the least variation at every population size
because it does not capture the variation in F caused by the
random nature of recombination and segregation. The two
estimates of F based on SNP-by-SNP homozygosity (Fh and
Falt) show the highest variation, while Froh is intermediate.
Figure 4 also shows the variance values for the three geno-

mic estimates of F in 10 replicates of 100 Mb of real SNP
data from an unselected (outbred) Caucasian control sam-
ple. The variances of Fh and Falt are slightly higher and
variance of Froh is slightly lower in the real data than in
the Ne ¼ 10,000 simulation.

The prediction error variance (PEV) of the three genomic
estimates of F is shown in Figure 5. PEV ¼ varðF12F2Þ=2,
where F1 is the estimate of F from a random half of SNPs
and F2 is the estimate of F from the other half of SNPs
(Powell et al. 2010; Yang et al. 2010a). PEV provides insight
into the amount of error in the genomic estimates of F that
exists due to the finite sampling of SNPs; as SNPs become
more dense and linkage disequilibrium increases between
markers (as occurs with larger Ne), the PEV should decrease.
The PEV for all estimates of F is small (,5%) compared to
the variances of F shown in Figure 4. As expected, the PEV of
every estimate of F also decreases with population size, but
the PEV for Froh decreases the most rapidly. Error in Froh
decreases more rapidly as a function of Ne because, with
dense SNP data (such as exist when Ne ¼ 10,000), ROHs
are made up of a large number of homozygous SNPs in
a row (e.g., a ROH of 1.5 Mb contains �2000 SNPs in the
Ne ¼ 10,000 data), and such long sets of markers pick up the
same sets of ROHs with very high precision.

Relationships between genomic estimates of F and Fped

Figure 6 shows the correlation coefficients between the
three genomic estimates of F and Fped. In all cases, Froh
correlates most highly with Fped, reflecting the fact that Froh
tends to capture more recent inbreeding than the other two
genomic estimates of F. The increasingly large standard
errors of the correlations are due to the higher standard
errors and lower variances of Fped at larger population sizes.

Finding the optimal measure for detecting inbreeding
depression: Relationships between estimates of F and
the homozygous mutation load

To understand which estimate of F is likely to be optimal for
detecting inbreeding depression effects, we correlated each
of the four estimates of F with the homozygous mutation
load, which, as explained above, is the leading contender for
why inbreeding depression occurs. Figure 7 shows these
results. Fped is the worst predictor of the homozygous mu-
tation load, and its disadvantage grows as the population
size increases. This result is due to the low variance in Fped
in randomly breeding populations and suggests that Fped is
likely to be a useful estimate only in samples selected on the
basis of recent consanguinity. Falt outperformed Fh because
Falt gives more weight to rare variants and because Falt has
lower error variance (Figure 5). As predicted, Froh was the
most associated estimate with the recessive mutation load at
every population size, and this advantage grows as the pop-
ulation size increases (Figure 7).

The superiority of Froh in detecting the homozygous mu-
tation load is even more stark if one considers the unique
effects of each estimate of F after controlling for their

Figure 3 Contribution to var(Fped) from previous generations. Most of
the variance in Fped at all population sizes is attributable to recent in-
breeding. For example, the variance in Fped due to spouses sharing com-
mon ancestors five generations in the past makes up only �0.2% of the
total variance in Fped at all population sizes.
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correlations with Froh. After controlling for Froh, the mean
partial correlations (across Ne) between the homozygous
mutation load and Fh (�rp = 0.07), Falt (�rp = 0.15), and Fped
(�rp = 0.09) are all low, but the reverse is not true: Partial
correlations between the homozygous mutation load and
Froh remain high after controlling for Fh (�rp = 0.57), Falt
(�rp = 0.50), and Fped (�rp = 0.68). This shows that Froh
contains much additional information on the homozygous
mutation load that is not captured by the other three esti-
mates of F, whereas the other three estimates of F contain
little additional information on the homozygous mutation
load over what already exists in Froh. The superiority of Froh
occurs because a given rare variant is typically homozygous
only when the haplotypic segment on which it exists meets
another IBD segment within an individual—creating a run
of homozygosity. If inbreeding depression is caused by ho-
mozygosity at rare mutations, as recent evidence indicates,
these results suggest that Froh is likely to be the optimal
estimate for detecting it, regardless of the level of inbreed-
ing in the population.

Figure 8 shows a comparison of the correlation coeffi-
cients between the homozygous mutation load and Froh cal-
culated from short (.0.5 Mb), moderate (.1.5 Mb), and
long (.5 Mb) ROH thresholds, as a function of Ne. Froh,short
correlates poorly with the homozygous mutation load when
Ne is small. In large populations where inbreeding is more
ancient, the situation reverses: Froh defined by short ROHs
outperforms the other two Froh estimates. The improvement
of Froh,short as a function of population size is due to two
factors: (a) denser SNP data in the larger populations allows
even short (0.5 Mb) ROHs to discriminate autozygosity ac-

curately and (b) a higher ratio of short to long ROHs in large
populations. Froh,long performs poorly when Ne ¼ 10,000 due
to low variance. Froh defined by the moderate (1.5 Mb)
threshold performed intermediately at each population size,
providing justification for using this threshold in the current
study as it allowed more meaningful comparisons across the
three population sizes.

Changes in F following population expansion

We wanted to understand how recent population expansion,
such as what occurred in human lineages over the last
�10,000 years (�350 generations), might alter our conclu-
sions. Figure 9 shows the change in the mean log10(vari-
ance) of the four estimates of F as a function of generations
since a 100-fold expansion in population size, from Ne ¼ 100
to N = 10,000. While the variance in Fped decreases imme-
diately (a 97% drop) and remains unchanged thereafter, the
three genomic estimates of F change much more gradually.
The initial declines in the variances of the three genomic
estimates of F are caused by the drop in recent inbreeding
in larger populations. However, the declines in variances
become much slower thereafter, reflecting the slow decay
of linkage disequilibrium and the gradual increase in the
number of new segregating variants following a population
expansion. For example, after expanding from Ne ¼ 100 to
Ne ¼ 10,000, the standard deviation of Froh decreases by
�70%, from �0.115 to �0.035, in the first 100 generations,
but decreases only an additional 10% (to �0.021) over the
next 300 generations and requires several thousands of gen-
erations to reach its equilibrium value of 0.015. Similarly,
starting at �0.142, the standard deviation of Falt decreases
to �0.069 and �0.055 in generations 100 and 400, respec-
tively. Our results should extrapolate to larger starting and

Figure 5 Prediction error variance (PEV) of genomic estimates of F as
a function of Ne. PEV decreases as a function of population size for all
genomic estimates of F, but does so most rapidly for Froh.

Figure 4 Variance of F (61 SE) as a function of Ne. The variance of Fped is
the lowest at all population sizes and the variance of Froh is intermediate.
Comparing the variance of genomic measures of F in simulated data to
the equivalent variances in real SNP data (from an outbred Caucasian
sample) suggests that the effective population size of Caucasians is
�10,000 with respect to these statistics.
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ending population sizes (e.g., Ne ¼ 10,000 to Ne ¼
1,000,000) and indicate that genomic estimates of F require
a considerable time following expansion to reach the low
variance values that would be predicted from the larger
population sizes.

Figure 10 shows the correlations between estimates of F
and the homozygous mutation load following population
expansion. This correlation drops considerably for all esti-
mates of F following population expansion, although it
remains low for Fped, Fh, and Falt in the 400 generations
following the expansion, whereas the correlation with Froh
begins to increase after 50 generations. When Ne is small
(i.e., 100), rare mutant alleles are tagged by long haplotypes
as a result of relatively recent inbreeding. When the popu-
lation size is increased, these long haplotypes are destroyed
by recombination and new ones are not created quickly be-
cause new inbreeding occurs slowly. Consequently, the cor-
relation between F and homozygous mutation load declines
as did the variance of F (Figure 9). However, as the popu-
lation evolves at size Ne ¼ 10,000 for an increasing number
of generations, new mutations arise that exist on only a sin-
gle haplotype, and the pairings of these, creating homozy-
gosity at rare mutations, are increasingly detected by Froh
and eventually by Fh and Falt as a new equilibrium is
reached. These results provide further evidence that Froh is
likely to be the optimal estimate for detecting inbreeding
depression in populations, such as humans, that have ex-
panded rapidly in population size.

Power to detect inbreeding effects

The power of detecting inbreeding depression from marker
data depends in part on the accuracy of predicting auto-

zygosity with markers, and our results suggest that Froh is
optimal for detecting autozygosity arising from both ancient
and recent inbreeding. However, power also depends on the
variation in F, as well as on the effect size and the sample
size. When the level of inbreeding is low, such as in large,
randomly mating populations, the variance of Froh is com-
mensurately low (e.g., the standard deviation of Froh =
0.015 when Ne ¼ 10,000). The standard deviation of Froh
in observed human SNP data is smaller yet, �0.012. Given
such low variance in the predictor, we were interested in
whether inbreeding depression is detectable using Froh in
human samples and, if so, what sample sizes would be re-
quired as a function of different levels of inbreeding
(assayed using different effective population sizes) to
achieve adequate power. To do this, we needed an estimate
of the likely effect size of inbreeding depression on a com-
plex trait in humans and an estimate of the variance of Froh
scaled up to genome-wide levels.

Because the effects of inbreeding on IQ have been
investigated more than on any other complex human trait
to our knowledge, we used a best estimate of the inbreeding
effect on IQ as a guide to the likely inbreeding effect sizes
among other human complex traits. Morton (1979) reviewed
four large studies of cousin–cousin inbreeding and found that
IQ decreased by 0.73 (Schull and Neel 1965) to 0.39 (Kudo
et al. 1972) points for every 0.01 increase in Fped. Given the
standard deviation of IQ (�15 points), this translates to a de-
crease of 0.025–0.05 standard deviations per percentage of
inbreeding.

To predict the statistical power of using Froh to detect
inbreeding depression in human studies, we also needed

Figure 6 Correlations between Fped and genomic estimates of F as a function
of Ne. All correlations between genomic estimates of F and Fped decrease as
a function of Ne, but Froh is consistently correlated most highly with Fped.

Figure 7 Correlations between F and homozygous mutation load as
a function of Ne. Froh correlates most highly with the homozygous muta-
tion load at all population sizes, and this advantage increases at larger
population sizes (where inbreeding becomes more ancient).
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to estimate what the variance of Froh would be if derived
genome-wide rather than across 100 Mb, as simulated in the
current study. To do this, we compared the average variance
of Froh across 10 replicates of 100 Mb of real SNP data
(1:5 · 1024) to the genome-wide variance of Froh in the real
SNP data (1:79 · 1025), an 8.45-fold drop in variance. We
thus scaled the variances of Froh down 8.45-fold to account
for the decreased variance that would be observed in Froh
genome-wide. This led to predicted genome-wide variances
(standard deviations) of Froh of 1:4 · 1023 (0.037) for Ne ¼
100, 2:5 · 1024 (0.016) for Ne ¼ 1000, 2:63 · 1025 (0.005)
for Ne ¼ 10,000, and 1:79 · 1025 (0.004) for real SNP data.

Figure 11 shows the statistical power as a function of
sample size of a regression of Froh on an outcome variable
assuming a slope of 20.73 (solid lines) and 20.39 (dashed
lines), a standard deviation of the outcome variable of 15,
and standard deviations of Froh depending on the popula-
tion size, as detailed in the preceding paragraph. We
assume that b̂e tðn22Þ with mean 20.73 or 20.39 and
varðb̂Þ ¼ ðvarðIQÞ2b̂2ðvarðFrohÞÞÞ=varðFrohÞðn22Þ. Our results
suggest that sample sizes of ,700 are sufficient for achiev-
ing adequate (80%) statistical power when the rate of in-
breeding is high (similar to that found in a randomly
breeding population of size Ne ¼ 100), such as could occur
in samples selected on the basis of likely recent inbreeding
or in small, isolated populations. Our results also suggest
that inbreeding depression effects can be detected using Froh
in large, ostensibly outbred populations, such as those found
in modern industrialized societies, but that large samples
(on the order of 12,000–65,000, depending on effect size)

are probably necessary to detect them reliably. It is possible
that phenotypes more related to fitness than is IQ would
show a larger inbreeding depression effect and thus would
require smaller sample sizes than those predicted here to
achieve adequate power.

Discussion

Hundreds of scientific investigations have been conducted
on the effects of inbreeding since Darwin (1868, 1876) first
studied the topic. The inbreeding coefficient, F, has tradi-
tionally been defined in terms of pedigree inbreeding (Fped).
However, low variation in Fped seriously hampers the ability
to detect inbreeding effects in samples that are not selected
on the basis of known recent inbreeding. In essence, Fped is
a genome-wide expectation for the percentage of the ge-
nome that is autozygous, but there is a great deal of varia-
tion in autozygosity around this expected percentage caused
by the finite number of recombination events per genera-
tion. The resulting identical haplotypes can persist in the
population for many generations, coming together in off-
spring of distantly related individuals to create increased
levels of homozygosity. The availability of genomic marker
panels has made possible new, genomic alternatives to Fped
that can better detect such identical haplotypes and there-
fore even quite ancient inbreeding.

In the last 10 years, a large number of human (reviewed
in Ku et al. 2010) and animal (reviewed in Chapman et al.
2009) studies have investigated the relationship between
genomic estimates of F and disease- or fitness-related traits.
In general, animal studies have focused on excess homozy-
gosity on a marker-by-marker basis (Fh) whereas human

Figure 9 Variance of F (61 SE) as a function of generations since pop-
ulation expansion. Whereas Fped drops immediately following a popula-
tion expansion, the variance in genomic measures of F requires hundreds
of generations to reach equilibrium levels.

Figure 8 Correlations between alternative thresholds of Froh and the
homozygous mutation load as a function of Ne. Runs of homozygosity
(ROHs) are defined as stretches of 0.5-Mb, 1.5-Mb, or 5-Mb homozygous
SNPs. Long thresholds are optimal for detecting autozygosity in highly
inbred populations, whereas shorter thresholds are optimal for detecting
autozygosity in outbred populations.
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studies, which have the opportunity to use denser SNP plat-
forms, have focused increasingly but not exclusively on runs
of homozygosity (Froh).

In this article, we show that Froh is preferable to Fped and
to marker-by-marker estimates of F (Falt and Fh) for detect-
ing both recent and ancient inbreeding, even in cases where
the level of inbreeding is likely to be high. Froh correlates
most highly with the homozygous mutation load, the puta-
tive causal mechanism underlying inbreeding depression,
and this advantage is especially pronounced following a pop-
ulation expansion, such as has occurred in recent human
history. Moreover, Froh has low prediction error variance,
especially when SNP density is high. Our findings provide
empirical justification to the growing literature using Froh to
study complex traits in humans (Lencz et al. 2007; Nalls
et al. 2009; Spain et al. 2009; Vine et al. 2009; Enciso-Mora
et al. 2010; Hosking et al. 2010; Yang et al. 2010b).

Nevertheless, the variance in Froh in large simulated
(Ne ¼ 10,000) and observed Caucasian SNP data sets is
low, and because of this, there is likely to be little power
to detect inbreeding effects in unselected (with respect to
recent inbreeding) samples unless samples sizes are large.
We estimate that sample sizes between 12,000 and 65,000
would be required to regularly detect previously reported
IQ-inbreeding effects using Froh in unselected samples. Thus,
current studies investigating the effects of Froh on human
complex traits that have samples sizes ,3000 and that have
failed to find significant inbreeding effects (Nalls et al. 2009;
Spain et al. 2009; Vine et al. 2009; Enciso-Mora et al. 2010;
Hosking et al. 2010) are likely to be underpowered. Further-
more, small studies (e.g., n , 1000) that do find significant

inbreeding depression effects using Froh (e.g., Lencz et al.
2007) may greatly overestimate the size of the effects.

Our findings suggest two strategies for achieving suffi-
cient power in studying inbreeding depression of complex
traits using a genomic estimate of F. The first is to conduct
analyses on very large (e.g., n . 10,000) samples, such as
those being put together by multisite consortia (Interna-
tional Schizophrenia Consortium 2009). The second is to
conduct analyses on smaller samples (perhaps �1000–
3000) from populations where the variation in inbreeding
is likely to be high, such as in population isolates (Rudan
et al. 2009) or in cultures where close inbreeding is common
(Bittles and Black 2010a). In either case, Froh is likely to be
a more powerful approach for detecting inbreeding depres-
sion than any other alternative.

While much of the focus in this article has been on
understanding the behavior of estimates of F in human pop-
ulations, our general results should apply to nonhuman an-
imal populations as well. Animals with larger effective
population sizes than humans will manifest lower levels of
variation in F than those reported here and will require
commensurately larger sample sizes to detect inbreeding
effects in nonselected samples. On the other hand, many
species have smaller effective population sizes than humans.
Moreover, fitness traits in other species may show larger
inbreeding depression effects than the human example ex-
plored here and may be detectable with smaller sample
sizes.

Figure 11 Estimated power to detect inbreeding effects on a human
complex trait using Froh. Higher levels of real inbreeding (smaller Ne) lead
to higher variance in Froh and thus greater statistical power to detect an
inbreeding effect. Large (solid lines) and small (dashed lines) inbreeding
effect sizes were derived from a review on the effects of consanguinity on
IQ (see text). Arrows show predicted sample sizes required to achieve
�80% power. When inbreeding is high (Ne ¼ 100), sample sizes of
�400 are adequate, but in outbred populations (Ne ¼ 10,000 or real
SNP data), samples sizes .20,000 may be required.

Figure 10 Correlations between F and homozygous mutation load as
a function of generations since population expansion. The relationship
between the homozygous mutation load and Froh increases the most
quickly following a population expansion.
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The simulation parameters explored in this article were
chosen to mimic the human genome. Recombination rates
and recombination hotspot rates can vary at least threefold
across mammals (Jensen-Seaman et al. 2004; Kauppi et al.
2004). Nevertheless, the basic conclusions made here are
not overly dependent on the specific parameters chosen
and can readily be applied to animals with different recom-
bination parameters. When distance is conceptualized in
centimorgans rather than base pair units, different recombi-
nation rates lengthen or shorten the genome vis-à-vis our
simulation. This would slightly lower or raise (respectively)
the variance of Froh, as shown above when variation in Froh
was extrapolated to its expected genome-wide value. Simi-
larly, when genomic distance is measured in centimorgans,
different recombination hotspot parameters change the var-
iation in SNP density vis-à-vis our simulation. This should
have minimal effect on the ROHs detected, and therefore on
Froh, because even the shortest ROH encompasses �175
hotspots on average. Thus, while the specific values in our
results depend on the specific simulation parameters used,
and are therefore most relevant to human populations, the
qualitative conclusions regarding the advantages of Froh over
the alternative estimates of F apply across a wide range of
parameters and extend to nonhuman animals as well.

Inbreeding has had a central place in the field of population
genetics since its inception. Its importance derives not only
from its relevance to many theoretical concepts in population
genetics. Evolutionists have used inbreeding as a way to
gauge which traits are likely to have been under ancestral
selection given that traits most affected by it tend to be most
related to fitness (Roff 1997). At a more practical level, in-
breeding can have important health consequences in human
populations (Bittles and Black 2010b; Rudan et al. 2003a).
Rates of recent inbreeding are not low across the world. For
example, progeny from second-cousin or closer marriages
(Fped . 0.016) are estimated to account for 10.4% of the
global human population. In this article, we have shown
that rates of inbreeding due to distant common ancestors
in large outbred populations are high enough to have de-
tectable effects, and we have demonstrated the optimal way
of identifying such ancient inbreeding. Investigations into
ancient inbreeding effects should help investigators under-
stand the evolutionary forces acting on the genes underlying
trait variation and whether inbreeding represents an impor-
tant risk factor in disease.
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