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ABSTRACT Background selection, the effects of the continual removal of deleterious mutations by natural selection on variability at
linked sites, is potentially a major determinant of DNA sequence variability. However, the joint effects of background selection and
genetic recombination on the shape of the neutral gene genealogy have proved hard to study analytically. The only existing formula
concerns the mean coalescent time for a pair of alleles, making it difficult to assess the importance of background selection from
genome-wide data on sequence polymorphism. Here we develop a structured coalescent model of background selection with
recombination and implement it in a computer program that efficiently generates neutral gene genealogies for an arbitrary sample
size. We check the validity of the structured coalescent model against forward-in-time simulations and show that it accurately captures
the effects of background selection. The model produces more accurate predictions of the mean coalescent time than the existing
formula and supports the conclusion that the effect of background selection is greater in the interior of a deleterious region than at its
boundaries. The level of linkage disequilibrium between sites is elevated by background selection, to an extent that is well summarized
by a change in effective population size. The structured coalescent model is readily extendable to more realistic situations and should
prove useful for analyzing genome-wide polymorphism data.

GENOME-WIDE surveys of DNA sequence variability
within populations in a variety of species are providing

evidence that the amount and pattern of neutral or nearly
neutral variability in given regions of the genome are af-
fected by selection at sites that are linked to those under
observation (Wright and Andolfatto 2008; Charlesworth
et al. 2009; McVicker et al. 2009; Sella et al. 2009; Cutter
and Choi 2010). While these effects are strongest in geno-
mic regions or genomes with low frequencies of genetic re-
combination, where all sites are closely linked (Betancourt
et al. 2009; Kaiser and Charlesworth 2009; Seger et al.
2010), they can also be detected in regions with “normal”
levels of genetic recombination (Andolfatto 2007; Shapiro
et al. 2007; Haddrill et al. 2011). In addition, the extent of
adaptation at the sequence level, as measured by codon
usage and the level of selective constraint on nonsynony-
mous sites, is reduced when recombination is infrequent

(Betancourt and Presgraves 2002; Hey and Kliman 2002;
Presgraves 2005; Haddrill et al. 2007; Larracuente et al.
2008; Betancourt et al. 2009).

These observations, which date back to the early findings
in Drosophila that silent site variability at a locus is
correlated with the local rate of recombination for the
region in which it is situated (Aguadé et al. 1989; Begun
and Aquadro 1992), suggest strongly that selection at sites
genetically linked to those under observation is influencing
the evolutionary process at the latter. Two main processes
have been proposed as the source of this influence. The first
is hitchhiking by positively selected mutations (Maynard
Smith and Haigh 1974) or “selective sweeps” (Berry et al.
1991). Evidence in favor of this interpretation has been
compiled by Stephan (1995) and Andolfatto (2007), among
others (reviewed by Sella et al. 2009). The second involves
hitchhiking effects caused by the continual introduction of
new, deleterious variants by mutation at sites across the
genome and their elimination by selection, as first discussed
by Fisher (1930). Weakly selected or neutral variants on
a haplotype that carries a closely linked mutation, which is
sufficiently strongly selected against that it is virtually cer-
tain to be eliminated from the population, will also be re-
moved from the population. This results in a reduction in the
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mean coalescent time for neutral variants and in the efficacy
of selection on weakly selected variants; this process has
become known as “background selection” (Charlesworth
et al. 1993).

Several analytical and simulation studies of the effects of
background selection on neutral variability (Charlesworth
et al. 1993, 1995; Hudson and Kaplan 1994, 1995; Nordborg
et al. 1996; Fu 1997; Neuhauser and Krone 1997; Santiago
and Caballero 1998; Gordo et al. 2002; Williamson and
Orive 2002; Zeng et al. 2006; Wakeley 2008b; O’Fallon
et al. 2010) and on the properties of weakly selected var-
iants (Charlesworth 1994; Stephan et al. 1999; Zeng and
Charlesworth 2010) have been conducted. The effect of
background selection on the mean coalescent time for a pair
of alleles, caused by mutations at a large number of sites
subject to sufficiently strong selection that the allele frequen-
cies behave approximately deterministically, is especially well
understood (Hudson and Kaplan 1995; Nordborg et al.
1996). The relevant formula has been used to predict pat-
terns of variability as a function of local recombination rate in
Drosophila (Hudson and Kaplan 1995; Charlesworth 1996),
humans (Cai et al. 2009; McVicker et al. 2009), and Caeno-
rhaditis elegans (Cutter and Choi 2010; Rockman et al. 2010).
In addition, there is increasing evidence that background se-
lection may affect patterns of variation and the efficacy of
selection in and around a single gene, although the effects
are small and detectable only with genome-wide data (Loewe
and Charlesworth 2007; McVicker et al. 2009; Hammer et al.
2010).

In addition to its effect on the level of neutral variability,
as determined by the mean coalescent time for a pair of
alleles, background selection can also distort the shape of
the neutral gene genealogy, in the direction of increasing the
length of external branches relative to the rest of the tree,
resulting in an excess of rare variants relative to standard
neutral expectation, especially when selection against del-
eterious mutations is relatively weak (Charlesworth et al.
1993, 1995; Fu 1997; Santiago and Caballero 1998; Gordo
et al. 2002; Williamson and Orive 2002; Zeng et al. 2006).
This effect has proved hard to study analytically, and most
results have been obtained either by coalescent models that
assume no recombination (Charlesworth et al. 1995; Fu
1997; Neuhauser and Krone 1997; Gordo et al. 2002; Zeng
et al. 2006; Wakeley 2008b; O’Fallon et al. 2010) or by
forward-in-time computer simulations (Williamson and Orive
2002; Kaiser and Charlesworth 2009; Zeng and Charlesworth
2010).

Given the evidence from genomic data that background
selection against nonsynonymous variants in coding sequen-
ces may have significant local effects, it is important to
develop efficient methods to predict its effects on both levels
of variability and patterns of departure of allele frequency
spectra from neutral expectations. To initiate progress
toward this end, we have developed a structured coalescent
model of background selection that includes recombination.
The purpose of this article is to describe this model and its

implementation in a computer program that generates
numerical predictions of several biologically informative
genealogical statistics, as well as to check the validity of
the method against the results of forward simulations. The
results are at present quite limited in their range, but the
approach should be readily extendable to more realistic
situations.

Theory

A background selection model

In this section, we formulate a background selection model
forward in time, under the assumption that the population is
at mutation–selection equilibrium, so that genotype fre-
quencies at sites under selection are constant over genera-
tions. The results are used in the next section to construct
a structured coalescent model that takes into account the
joint effects of background selection and recombination on
local gene genealogies. Consider a haploid population of
constant size N. We focus on a “deleterious region” where
the total rate of mutation to deleterious alleles follows
a Poisson distribution with a mean of U mutations per gen-
eration per individual. The mutation rate is uniform across
the deleterious region, and back mutation does not occur.
We represent the deleterious region by the interval [0, 1].
A haplotype that carries i deleterious mutations is referred
to as an i-haplotype. We further assume that all mutations
in the deleterious region have the same fitness effect,
s (0 , s , 1). The selected sites in a haplotype interact
multiplicatively, so that the fitness of an i-haplotype is (1 – s)i

relative to wild type.
We assume a discrete-generation model as shown in Fig-

ure 1. The adults in generation t produce infinitely many
gametes, without fertility differences. Mutation, selection,
and recombination then operate sequentially on the result-
ing infinite population, causing changes in the frequency of
i-haplotypes, which are denoted by fi and gi at different
stages. Note that

XN
i¼0

fi ¼
XN
i¼0

gi ¼ 1: (1)

Under the assumption that the system is at equilibrium, fi
and gi remain constant over generations. Genetic drift oper-
ates through population size regulation, which reduces the
population size to N at random with respect to genotype. We
assume N to be sufficiently large that the distribution of
haplotype frequencies with respect to selected sites remains
approximately unchanged by the population size regulation.
Consequently, drift affects only neutral sites within the re-
gion in question.

The order of the evolutionary forces in the life cycle is to
some extent arbitrary and is chosen mainly for theoretical
convenience. However, if all the evolutionary forces are
weak, so that second-order terms in their effects can be

252 K. Zeng and B. Charlesworth



neglected, their effects on haplotype frequencies are ap-
proximately additive (Ewens 2004, Chaps. 4 and 5), and the
dynamics of the model are approximately independent of
the order of the forces.

A key feature in the life cycle is that recombination does
not alter the distribution of haplotype frequencies (compare
the two populations immediately before and after the
recombination step in Figure 1). A derivation is given below,
but heuristically this result follows from previous analyses of
selection models with an infinite population size and multipli-
cative fitnesses (Kimura and Maruyama 1966; Charlesworth
1990; Shnol and Kondrashov 1993; Johnson 1999). These
show that the genotypic composition of an infinite popula-
tion at equilibrium between selection and mutation is inde-
pendent of the presence or absence of recombination, which
should therefore have no effect on fi.

To establish the above result, we first note that previous
work with zero recombination has shown that

fi ¼ e2lf
lif

i!
; gi ¼ e2lg

lig

i!
; (2)

where lf = U(1 – s)/s and lg = U/s are the mean numbers of
mutations that a haplotype carries before and after the mu-
tation step in the life cycle (Haigh 1978; Gordo et al. 2002).
In other words, fi and gi follow Poisson distributions. Note
that mutation increases the average number of mutations
that an individual carries from lf to lg. As a result, the mean
fitness of the population is lowered from exp{2U(1 – s)}
before mutation to exp(2U) after mutation. On the other
hand, selection changes the mean number of mutations back
to lf by allowing fitter individuals to contribute more off-
spring to the gene pool of the next generation, thus restoring
the mean fitness to the premutation level.

Recombination is formulated as follows. To produce
a new haplotype in the postrecombination population, two
haplotypes are sampled randomly with replacement from
the postselection population. With probability 1 – R, no re-
combination occurs, in which case one of the two chosen

haplotypes is randomly selected to be present in the post-
recombination population. If recombination occurs (with
probability R), it is assumed to involve a single crossover
event whose breakpoint falls randomly within the interval
[0, 1]. Two recombinants are produced and one of them is
randomly selected to be retained in the postrecombination
population. The recombination rate parameter R is therefore
equivalent to the genetic map length of the focal genomic
region, whose size is so small that the chance of double
crossover events is negligible.

Suppose that an i-haplotype and a j-haplotype are involved
in a recombination event with breakpoint x (0 , x , 1). To
construct the recombinants, it is necessary to determine the
numbers of mutations on both sides of the breakpoint. We
assume that, for a randomly chosen i-haplotype and a given
recombination breakpoint x, the number of mutations to the
left of the breakpoint, denoted by Li, follows a binomial dis-
tribution with index i and parameter x,

PrfLi ¼ lg ¼
�
i
l

�
xlð12 xÞi2l ¼ Bðl j i; xÞ; (3)

where 0 # l # i.
Equation 3 effectively assumes that the mutations carried

by an i-haplotype are uniformly distributed on the interval
[0, 1]. This is reasonable, because the model is spatially
homogeneous in the sense that the mutation rate to delete-
rious alleles is uniform and each deleterious mutation has
the same fitness effect regardless of its location.

Under the above recombination model, the frequency of
i-haplotypes in the postrecombination population, denoted
by fi*, is

fi* ¼ ð12RÞfi þ R
Xi
l¼0

AðlÞ ¼ fi; (4)

where

AðlÞ ¼
XN
j¼l

XN
k¼i2l

fj fk

ð1
0
Bðl j j; xÞBðk2 ½i2 l� j k; xÞdx ¼ fi

iþ 1

(5)

(see the Appendix for a derivation).
Equations 4 and 5 can be understood by noting that an

i-haplotype in the postrecombination population is either
a nonrecombinant or a recombinant with probabilities 1 – R
and R, respectively. If it is a nonrecombinant, it must be a de-
scendant of an i-haplotype in the postselection population. If
it is a recombinant, the chance that the breakpoint falls be-
tween x and x + dx is dx. Given x, l of the i mutations, which
are to the left of x, are inherited from the first parent with
j ($l) mutations, and the remaining i – l to the right of x come
from the other parent with k ($i – l) mutations.

To understand the spatial distribution of mutations in an
i-haplotype taken randomly from the postrecombination
population, we note that

Figure 1 The life cycle assumed in the analysis. Shown are the life-history
events between the finite adult populations of two consecutive gener-
ations. The frequencies of i-haplotypes at different stages are denoted
by fi and gi.
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1
fi

Xi
l¼0

AðlÞ ¼
ð1
0

Xi
l¼0

Bðl j i; xÞdx ¼
ð1
0
dx ¼ 1 (6)

(see the Appendix for a derivation).
Equation 6 shows that, among the recombinants with i

mutations, the proportion that are formed by recombination
events with a breakpoint between x and x + dx is dx (i.e., it
is a uniform distribution). Given x, the proportion that l of
the i mutations are found in the region [0, x] is B(l | i, x).
These properties are the same as those leading to Equation
3. Hence the mutations carried by a recombinant are uni-
formly distributed on the interval [0, 1]. Because the same
must be true for the mutations in a nonrecombinant, we can
conclude that the uniformity assumption with respect to the
spatial distribution of mutations is preserved in the postre-
combination population.

Equations 4–6 show that recombination in our model
does not alter the distribution of haplotype frequencies, as
expected from the heuristic arguments given above. How-
ever, it should be noted that the derivation relies on the
assumption of multiplicative fitness effects, in an infinite
population at mutation–selection equilibrium. The result is
untrue under models with synergistic interactions between
mutations at different sites (Kimura and Maruyama 1966;
Charlesworth 1990; Shnol and Kondrashov 1993).

A structured coalescent model

Suppose that we sample a random individual from the
finite-size adult population in generation t+ 1 (the bottom
population in Figure 1). The probability that this haplotype
carries i mutations is fi. To construct the coalescent model,
we trace the ancestry of this haplotype step by step accord-
ing to the life cycle in Figure 1. First, we note that the focal
haplotypemust have been present in the postrecombination
population. A haplotype in the postrecombination popula-
tion can be either a nonrecombinant or a recombinant, with
probabilities 1 – R and R, respectively. If the focal haplotype
is a nonrecombinant, then it must have been present in the
postselection population as an i-haplotype. If the focal hap-
lotype is a recombinant, it contains genetic material from
two different individuals in the postselection population.
We need to reconstruct the two parental haplotypes, so that

we can trace the history of ancestry farther backward. From
Equation 6, we can deduce that, for a recombinant, the
breakpoint can be determined by drawing x from a uniform
distribution on [0, 1] and that the number of mutations
inherited from the first parental haplotype in [0, x] can be
determined by drawing l from a binomial distribution with
index i and parameter x and the remaining i – l mutations
are inherited from (x, 1] in the other parental haplotype.
These segments are marked by the thick lines in Figure 2
and are referred to as “real” segments because they are di-
rectly inherited by the recombinant under investigation. On
the other hand, both parental haplotypes contain “imagi-
nary” segments that are nonancestral to those in the sample
(thin lines in Figure 2). It is, however, necessary to keep
track of the numbers of mutations in both the real and the
imaginary segments because, as shown below, they jointly
determine the rate that a haplotype moves between differ-
ent genetic backgrounds and the rate that two haplotypes
coalesce.

Consider the first parental haplotype in Figure 2, which
has an imaginary part to the right of breakpoint x. Because
this haplotype is in the postselection population, using the
fact that the spatial distribution of mutations is uniform, it
follows that the number of mutations in the imaginary seg-
ment follows a Poisson distribution with mean (1 – x)lf.
Similarly, the number of mutations in the imaginary seg-
ment in the second parental haplotype follows a Poisson
distribution with mean xlf. Thus, by sampling from these
Poisson distributions, we can determine the total number of
mutations in these haplotypes (Figure 2).

We can see from Figure 2 that, to construct the parental
haplotypes of a recombinant, we need to assign mutations to
different regions. In other words, a recombination event
brings location information to the haplotypes in the struc-
tured coalescent model. To manage this information, we
define the genetic background of a haplotype, G, as

G ¼ fx; yg: (7)

In Equation 7, x = (x0, x1, . . . , xB) and y = (y1, y2, . . . , yB),
with 0 = x0, x1, . . ., xB=1 and yb$ 0. The xb (0, b, B)
denote the breakpoints caused by recombination events that
generated this haplotype, and the yb denote the numbers of

Figure 2 Reconstructing the parental haplotypes in the
postselection population that produce the recombinant
descendant in the postrecombination population. The
following steps are used in the reconstruction. First, the
recombination breakpoint x is determined by sampling
from a uniform distribution on [0, 1]. Second, we sample
l from a binomial distribution with index i and parameter
x. These l mutations are assigned to the interval [0, x] of
the left-hand parent, and the remaining i – l mutations
are assigned to (x, 1] of the other parent. Third, to fill the
imaginary parts of the two parental haplotypes (indicated
by the thin lines), q1 and q2 are drawn from Poisson
distributions with means (1 – x)lf and xlf, respectively.
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mutations in (xb–1, xb] (1 # b # B). We further define the
size of a genetic background as the total number of muta-
tions carried by the focal haplotype:

jGj¼
XB
b¼1

yb: (8)

For example, in Figure 2, the genetic background of the
sampled haplotype is G = {x = (0, 1), y = (i)}, whereas
that of the left-hand parental haplotype is G= {x= (0, x, 1),
y = (l, q1)}.

The above steps enable us to reconstruct the parental
haplotypes in the postselection population that gave birth to
the haplotypes under investigation. To go farther backward,
we note that any haplotypes that exist in the postselection
population must have survived selection and therefore must
havebeenpresent in thepostmutationpopulation. Suppose that
we have an i-haplotype in the postmutation population. This
haplotype may have received new mutations. Because the mu-
tational process is irreversible, the parent of the i-haplotype
necessarily has nomore than imutations. Specifically, the prob-
ability that the focal haplotype has a parent with j (#i) muta-
tions is

Pij ¼ i!
j!ði2 jÞ!ð12 sÞ jsi2 j ¼ Bðj j i; 12 sÞ (9)

(see the Appendix for a derivation). Therefore, j can be de-
termined by sampling from a binomial distribution with in-
dex i and parameter 1 – s. Once j is specified, the parental
haplotype can be constructed by randomly purging i – j
mutations from the i-haplotype.

The methods described so far can determine the haplo-
types of the postreproduction population that are ancestors of
one of the extant haplotypes in our sample. Repeating these
procedures for other haplotypes in the sample, we can obtain
a set of haplotypes in the postreproduction population that
are ancestral to the individuals in our sample. The next task is
to determine the probability that some of these postrepro-
duction haplotypes were born to the same parents in the
previous generation.

Suppose that we have two haplotypes in the postrepro-
duction population whose genetic backgrounds are denoted
by G(1) and G(2), respectively. Because reproduction and mu-
tation happen in two separate steps in the life cycle, and the
two focal haplotypes are in the population before mutation
takes place, if |G(1)| 6¼ |G(2)|, it is impossible for the two
haplotypes to have a common parent in the previous gener-
ation. When |G(1)| = |G(2)|, there are two possible situa-
tions. First, the two focal haplotypes may have incompatible
genetic backgrounds and therefore cannot share a common
parent in the previous generation. An example is illustrated
in Figure 3A. The first haplotype has one mutation in (0, x].
Consequently its parent must also have had one mutation in
this region. However, this is incompatible with the fact that
the second haplotype does not carry any mutation in (0, x].

In contrast, the two haplotypes with genetic backgrounds
G(1) and G(2) depicted in Figure 3B may coalesce into the
same parent with genetic background G(A). This is because
a mutation is located somewhere in (0, y] in the first hap-
lotype, whereas none exists in (0, x] in the second haplotype
(x , y). Therefore, if the two haplotypes share the same
parent, the parental haplotype cannot have any mutation
in (0, x]. This confines the mutation in the first haplotype
to (x, y], because it must have inherited the region (0, x]
from its parent. Applying similar arguments to (y, 1], we
conclude that the parental haplotype cannot have any mu-
tation in this region, and this requirement restricts the mu-
tation in the second haplotype to (x, y]. Thus, we finish the
construction of the potential location of the mutation in the
parental haplotype, denoted by G(A).

More generally, Figure 3 illustrates the fact that, for the
postreproduction population, coalescent events can happen
only among haplotypes with compatible genetic back-
grounds. For two haplotypes with genetic backgrounds
G(1) and G(2), the computer algorithm given in supporting
information, File S1 can simultaneously determine whether

Figure 3 Examples of incompatible and compatible genetic back-
grounds. We assume that two haplotypes have been taken from the
postreproduction population; their genetic backgrounds are denoted by
G(1) and G(2), respectively. The thick and thin lines in a haplotype indicate
regions with and without deleterious mutations, respectively. The genetic
backgrounds are G(1) ¼ {x ¼ (0, x, 1), y ¼ (1, 0)} and G(2) ¼ {x ¼ (0, x, 1),
y ¼ (0, 1)} in A and G(1) ¼ {x ¼ (0, y, 1), y ¼ (1, 0)}, G(2) ¼ {x ¼ (0, x, 1),
y ¼ (0, 1)}, and G(A) ¼ {x ¼ (0, x, y, 1), y ¼ (0, 1, 0)} in B. As explained in
the text, G(1) and G(2) in A are incompatible, and consequently, the two
haplotypes cannot be born to the same parent in the previous generation.
In contrast, G(1) and G(2) in B are compatible. The probability that the two
descendant haplotypes coalesce into a common parent is given by Equa-
tion 11, where G(A) is the genetic background of the parent.
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they are compatible and, if they are, the genetic background
G(A) of their parental haplotype in the previous generation.

To calculate the coalescent probability, we need to know
the number of individuals with a given genetic background in
the finite adult population of the previous generation. Making
use of the fact that the model is spatially homogeneous, we
can extend the argument that leads to Equation 3 and assume
that, among the i-haplotypes, the proportion with a given
genetic background G follows a multinomial distribution

PiðGÞ ¼ IðjGj ¼ iÞ i!QB
b¼1yb!

YB
b¼1

ðxb2 xb21Þyb ; (10)

where I() is a function that takes the value of one if the condi-
tion in the parentheses is true and the value of zero otherwise.

Suppose that we have two haplotypes in the postrepro-
duction population, with genetic backgrounds G(1) and G(2).
Equation 10 implies that, in the adult population of the pre-
vious generation, the number of individuals with genetic
background G(z) is NfiPi(G(z)), and the probability that a par-
ticular one of these is the parent of the zth descendant hap-
lotype is 1/[NfiPi(G(z))] (z = 1 or 2). For a coalescent event
to occur, the two sets of potential parents must have over-
lapped, and one of the individuals in the intersection must
have given birth to the two descendant haplotypes in ques-
tion. The situations where the two parental sets do or do not
overlap correspond to the cases where the two descendants
have compatible or incompatible genetic backgrounds (e.g.,
Figure 3). The overlapping region between the two parental
sets, denoted by G(A), can be found by the computer algo-
rithm given in File S1. Using Equation 10, we note that the
number of individuals in the intersection in the previous
generation is NfiPi(G(A)). Hence, the probability that the
two descendant haplotypes were born to the same parent
in the previous generation is

PCA ¼ NfiPi
�GðAÞ� 1

NfiPi
�Gð1Þ�

1

NfiPi
�Gð2Þ� ¼ 1

N
Pi
�GðAÞ�

fiPiðGð1ÞÞPi
�Gð2Þ�:

(11)

Note that, for two incompatible genetic backgrounds,
Pi(G(A)) = 0 and thus PCA = 0 (e.g., Figure 3A).

This calculation follows the spirit of the work of Hudson
and Kaplan (1994), in the sense that the deleterious muta-
tions are not pinpointed to specific sites in the deleterious
region. Rather, the mutations are merely confined to seg-
ments in the deleterious region (i.e., genetic backgrounds),
so that haplotypes with the same genetic background can be
considered together, enabling the construction of coalescent
processes. However, the model of Hudson and Kaplan
(1994) considered only the effect of background selection
on a pair of alleles at a neutral site, linked to a nonrecombin-
ing deleterious region. Here we establish the spatial distri-
bution of deleterious mutations and introduce G, so that all
the neutral sites in the deleterious region can be considered
simultaneously for an arbitrary sample size.

It is, however, difficult to calculate the probability of
coalescent events that involve more than two individuals.
Implementing a simulation algorithm that exactly follows
the dynamics described above is, therefore, not straightfor-
ward. To solve the problem, we resort to the following well-
established approximation techniques.

Continuous-time approximations

We approximate the processes using the standard rescaling
techniques that underlie the coalescent framework (Kingman
1982; Hudson 1990). We assume that U, s, R, and 1/N are so
small that their second-order terms can be neglected (i.e., the
evolutionary forces are weak). Under this assumption, the
possibility that two or more of the three possible events
(i.e., recombination, mutation, and coalescence) occur in
the same generation is in the order of 1/N2 and can be ig-
nored. As a result, recombination, mutation, and coalescence
can be regarded as three independent Poisson processes. We
define three scaled parameters: u = NU, g = Ns, and r = NR.
As in the neutral coalescent, time is measured in units of N
generations. Going backward in time, recombination splits
a haplotype into two parental haplotypes at rate r. For mu-
tation, we note from Equation 9 that

Pij ¼
8<
:

12 isþ Oðs2Þ � 12 is; if j ¼ i
isþ Oðs2Þ � is; if j ¼ i2 1
Oðs2Þ � 0; if j, i2 1;

(12)

where O(s2) represents terms of the second order in s.
Therefore, the next mutation event arrives at an i-haplotype
at rate ig and changes it to an (i 2 1)-haplotype by ran-
domly removing one of the i mutations. Finally, as in the
standard neutral coalescent, we assume that a coalescent
event involves only two haplotypes. Under the rescaling,
the rate at which two compatible haplotypes coalesce into
a common parent is NPCA (see Equation 11).

Suppose that we have a sample of n haplotypes with
genetic backgrounds G(1), G(2), . . . , G(n). The total scaled
rates for recombination and mutation events are rr = nr and
rm =

Pn
z¼1gjGðzÞj, respectively. For the total coalescent rate,

we need to examine all the n(n – 1)/2 pairs to identify those
that involve two haplotypes with compatible genetic back-
grounds, so that a NPCA value can be calculated for each of
these compatible pairs. The total coalescent rate, rc, is given
by the sum of the NPCA values. Then, the scaled time to the
next event follows an exponential distribution with rate rt =
rr + rm + rc. Given that an event has occurred, the proba-
bility that it is due to a particular process can be calculated
by dividing the rate of the process of interest by rt. For in-
stance, the chance that the first haplotype undergoes
a mutational change conditional on an event occurring is
g|G(1)|/rt. After randomly removing one mutation from this
individual, we recalculate the event rates to determine the
time of the next event. This process is repeated until the first
time when only one haplotype remains. The resulting rela-
tionship between the haplotypes in the whole history of
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ancestry defines an ancestral recombination graph (ARG).
Local gene genealogies at different neutral sites in the del-
eterious region can be extracted from the ARG using stan-
dard methods (Hudson 1990).

Materials and Methods

Coalescent simulations

We have written a computer program that implements the
structured coalescent model with the continuous-time approx-
imations outlined. The algorithm uses the neutral coalescent
algorithm implemented in the program ms (Hudson 2002).
Our program requires four parameters: n, u, g, and r. To set
up the initial haplotypes, n random numbers are drawn from
a Poisson distribution with mean l= U/s (i.e., we assume l=
lg � lf, which is a good approximation under the continuous-
time model). Because these haplotypes are taken randomly
from an equilibrium population, by using the arguments lead-
ing to Equations 3 and 10, we can assume that the mutations
are uniformly distributed on these haplotypes [i.e., G(z) has
the form fx = (0, 1), y = (|G(z)|)g for z = 1, . . . , n]. To
reconstruct the coalescent history of a sample, for each hap-
lotype in the ARG, the program keeps track of its genetic
background and the ancestral information about the extant
haplotypes in the sample it contains (e.g., Figure 2). For
each set of parameter values presented in the Results sec-
tion, 105 simulation replicates were performed.

Forward-in-time simulations

To check whether the structured coalescent model provides
good approximations, we implemented a forward-in-time
simulation algorithm that follows the life cycle given in Figure
1. A haploid Wright–Fisher population of constant size N is
simulated. Each site in a haplotype has two states, A0 and A1,
representing the wild type and the mutant type, respectively.
In each generation, the number of new mutations experi-
enced by a haplotype is determined by drawing a random
number from a Poisson distribution with mean U. A haplotype
with i mutations has fitness (1 – s)i. To produce a haplotype
in the next generation, we first randomly sample two haplo-
types from the current generation, with the probability of
sampling a particular haplotype being proportional to its fit-
ness. With probability R, the parental haplotypes undergo
a recombination event. The location of the breakpoint is de-
termined by drawing from a uniform distribution on [0, 1].
Two recombinants are constructed and one of the two is
randomly chosen for retention. These steps are repeated N
times to generate the N individuals in the new generation.

Each replicate of the simulation starts from a mutation-
free population. This population is allowed to evolve for 20N
generations so that statistical equilibrium is achieved. Ran-
dom samples are then taken every 10N generations. To com-
pare with the results obtained from the coalescent
simulations, the gene genealogies at five evenly spaced sites
in the simulated region are recorded (i.e., at X1 = 0, X2 =
0.25, X3 = 0.5, X4 = 0.75, and X5 = 1). The forward simu-

lation algorithm is much more computationally demanding
than the coalescent algorithm, especially when N is large.
Unless stated otherwise, we used an N value of 5000 in the
forward simulations and obtained 2000 random samples for
each set of parameter values.

Statistics of interest

We focus on four genealogy-based statistics: T2, ht, ze, and
rxy. T2 refers to the time to the most recent common ancestor
of a sample of size 2 at a given nucleotide site. Assuming
neutral evolution and measuring time in units of N gener-
ations (the same scaling is applied to the other time-related
statistics of interest), the expectation of T2 is E(T2(neu)) = 1
(Wakeley 2008a, p. 76). Under background selection and
recombination, previous analyses have obtained

E
�
TðbgsÞ
2

� � exp

(
2
X
w

u

s½1þ ð12 sÞrw=s�2
)
; (13)

where u is the mutation rate to deleterious alleles at a nucleo-
tide site and rw is the recombination rate between the wth
selected site and the focal neutral site (Hudson and Kaplan
1995; Nordborg et al. 1996). In the absence of recombination
(i.e. rw[ 0), Equation 13 reduces to exp(2U/s) (Charlesworth
et al. 1993; Hudson and Kaplan 1994). Note that E(T2(bgs))N is
the expected number of generations needed for two randomly
sampled alleles to coalesce into a common ancestor. Hence, an
effective population size under background selection can be
defined as Ne(T2) = E(T2(bgs))N.

T2 is closely related to the widely used measure of DNA
sequence variability, p, the nucleotide site diversity, which is
defined as the probability that two randomly sampled haplo-
types have different variants at the nucleotide site under in-
vestigation (Tajima 1983). Under the infinite-sites model of
mutation (Kimura 1969), p is determined by T2 through the
equation p = 2Nu(neu)E(T2), where u(neu) is the neutral mu-
tation rate per site (Tajima 1983). Thus, we can define a mea-
sure of the diversity-reducing effect of background selection as

BðT2Þ ¼
TðbgsÞ
2

E
�
TðneuÞ
2

� ¼ TðbgsÞ
2 : (14)

Note that E[B(T2)] = E(T2(bgs)) and Ne(T2) = E[B(T2)]N.
The second statistic is ht, the total length of all the

branches in the genealogy of a sample of size n at the focal
nucleotide site. Under the standard neutral coalescent model,

E
�
h
ðneuÞ
t

� ¼ 2
Xn21

z¼1

1
z

(15)

(Wakeley 2008a, p. 76). ht is related to S, the number of
segregating sites observed in the sample, whose expectation
is given by E(S) = Nu(neu)E(ht) under the infinite-sites
model (Watterson 1975; Hudson 1990). Defining an = 1 +
1/2 + . . . + 1/(n – 1), ht is also related to the alternative
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measure of sequence variability, uW, given by uW = S/an,
whose expected value is Nu(neu)E(ht)/an (Watterson 1975).
Hence we can define a second measure of the diversity-
reducing effect of background selection as

BðhtÞ ¼
h
ðbgsÞ
t

E
�
h
ðneuÞ
t

�: (16)

Third, we look at ze, the proportion of external branches
(i.e., branches leading to extant haplotypes in the sample) in
the genealogy at the focal site. Specifically, ze = he/ht, where
he is the total length of all the external branches. The neutral
expectation of he is E(he

(neu)) = 2 (Fu and Li 1993). However,
the moments of ze are unknown, so that we obtained the
neutral expectation of ze, denoted by E(ze(neu)), via coalescent
simulation. Because mutations on an external branch can be
inherited only by the haplotype descending from this branch,
these mutations must be at low frequencies in the sample. In
particular, with the infinite-sites assumption, mutations on ex-
ternal branches lead to singletons (i.e., segregating sites where
the mutant variant is present in only one individual). Let Se be
the number of singletons. The proportion of segregating sites
that are singletons is Se/S= (Nu(neu)he)/(Nu(neu)ht) = he/ht =
ze. Hence, ze is a major determinant of the relative abundance
of low-frequency variants in the sample. We therefore define
a third relative diversity measure as

BðzeÞ ¼
z
ðbgsÞ
e

E
�
z
ðneuÞ
e

�: (17)

Note that, under neutrality with a stable population size,
E[B(T2)] = E[B(ht)] = E[B(ze)] = 1. However, T2, ht, and ze
are known to respond differently to the influence of back-
ground selection (Charlesworth et al. 1993, 1995; Fu 1997;
Gordo et al. 2002; Williamson and Orive 2002; Zeng et al.
2006; Kaiser and Charlesworth 2009; Seger et al. 2010).
This is the basis of using tests such as Tajima’s D (Tajima
1989) and Fu and Li’s D (Fu and Li 1993) to detect the
presence of background selection. For example, the power
of Tajima’s D is mainly determined by the difference be-
tween T2 and ht, whereas the power of Fu and Li’s D is
mainly determined by ze.

The last statistic of interest, rxy, is the correlation in T2
between two different sites at positions x and y in the del-
eterious region (0 # x , y # 1). rxy can be viewed as
a measure of linkage disequilibrium (LD). Under neutrality,
we have

rðneuÞxy ¼ 9þ rxy

9þ 13rxy þ 2r2xy
; (18)

where rxy = (y – x)r (there is a linear relationship between
recombination frequency and physical distance between x
and y) (Griffiths 1981; McVean 2002).

We carried out the following analysis to understand the
effects of background selection on patterns of LD, which
have not been examined previously. First, in the simulations
(both forward and coalescent), we kept track of the local
genealogies at five evenly spaced sites in the deleterious
region (i.e., at X1 = 0, X2 = 0.25, X3 = 0.5, X4 = 0.75, and
X5 = 1). Because of the spatial symmetry of the model, it
suffices to estimate rxy for only six pairs of sites: X1X2, X1X3,
X1X4, X1X5, X2X3, and X2X4. We denote these six pairwise rxy
values in the order shown above by ri (i= 1, . . . , 6). Let r =
(r1, . . . , r6). When we have two such r vectors, referred to
as r(1) and r(2), we can define the distance between r(1) and
r(2) as ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX6

i¼1

�
rð1Þi 2 rð2Þi

�2r
: (19)

Suppose that r(1) was obtained from the background selec-
tion model with parameters u(1), g(1), and r(1). To under-
stand the effects of background selection, we divided the
interval (0, 10r(1)) into an evenly spaced grid. For each
point in the grid, we obtained an r vector under neutrality
using Equation 18 and calculated its distance from r(1). Let
r* be the value in the grid that produced the pattern closest
to r(1), as measured by Equation 19. Then r* can be viewed
as the effective recombination rate under background selec-
tion. Hence we can define a second effective population size
as Ne(rxy) = (r*/r(1))N. In contrast to Ne(T2), which meas-
ures the reduction in nucleotide diversity brought about by
background selection, Ne(rxy) measures the effects of back-
ground selection on LD. Finally, we define

BðrxyÞ ¼ NeðrxyÞ
N

: (20)

Results

We present results obtained from both forward and co-
alescent simulations. The questions of interest are (i) the
effects of background selection on patterns of neutral di-
versity and LD and (ii) whether the structured coalescent
model provides a good approximation. For the latter ques-
tion, instead of generating and examining sequence variabil-
ity, we focus on several genealogy-based statistics, which are
the ultimate determinants of sequence-based statistics (see
above). The advantage of using genealogy-based statistics is
that they are less variable than sequence-based statistics (the
latter contains the additional variation brought about by the
mutation process), allowing a more accurate assessment of
the performance of the coalescent model.

The effects of background selection on B(T2)

The only general analytic result regarding the joint effects of
background selection and recombination on neutral diver-
sity is the expected value of T2(bgs), given by Equation 13.
We can deduce three results from this formula. First,
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background selection reduces neutral diversity (as measured
by p) because E[B(T2)] , 1 (Equation 14). Second, the
extent of reduction in diversity is spatially inhomogeneous,
in that the reduction is more extreme in the interior of the
deleterious region relative to the boundaries. As a result, the
effects of background selection cannot be fully summarized
as a simple reduction in Ne for the whole region (Nordborg
et al. 1996; Loewe and Charlesworth 2007). Third, within
the limit of validity of Equation 13, E(T2(bgs)) and equiva-
lently E[B(T2)] depend exclusively on the ratios between
U, s, and rw, but not the absolute values of these parameters.

The simulation results, obtained from both the forward
and the coalescent approaches, confirm the first two
predictions (Table 1). To evaluate the third prediction,
we compare the first three pairs of results in Table 1 where
the ratios of U/s and R/U are the same within each pair.
With weaker selection, values calculated from Equation 13
are much lower than those obtained from simulations (e.g.,
the first case in Table 1). The agreement improves as g, the
scaled selection coefficient, becomes larger (e.g., the sec-
ond case in Table 1). This pattern holds regardless of the
presence or absence of recombination. In other words,
Equation 13 tends to underestimate E[B(T2)] (i.e., overes-
timate the reduction in diversity) when selection is weak,
as observed in previous simulations (e.g., Nordborg et al.
1996). This is probably caused by the fact that the deriva-
tion of Equation 13 replies on the assumption that, in the
coalescent history of a haplotype, the time that it was
loaded with more than one deleterious mutation is very
short compared to the time it spent as a 0- or 1-haplotype,
and consequently, coalescent events take place only among
0- or 1-haplotypes (Hudson and Kaplan 1994, 1995). Be-
cause the rate that mutations are purged is proportional to
g (Equation 12), Equation 13 is more accurate when g is
larger.

Encouragingly, the structured coalescent model appears
to be more accurate than Equation 13, in the sense that the
coalescent results agree more closely with those obtained
from forward simulations, in terms of both the mean and the
percentiles of B(T2) (Table 1). However, the mean values of
B(T2) produced by the structured coalescent model are
sometimes higher than those produced by the forward sim-
ulations. This is probably because, in the continuous-time
approximation, we assume that only one event can happen
at any one time and that each coalescent event involves only
two haplotypes. However, in a finite population, especially
one with a small population size, the chance of having more
than one event may be sizeable. Furthermore the product of
NfiPi(G) (Equation 11) can be small, which increases the
chance of having coalescent events involving multiple hap-
lotypes. These factors may affect the accuracy of coalescent
models (Fu 2006). In fact, for the case with scaled param-
eters u = g = 6 and r = 3 (the third case in Table 1), when
forward simulations were conducted using either a smaller
haploid population size of 2500 or a larger one of 20,000,
the mean values of B(T2) at x = 0.5 (the center of the
deleterious region) were 0.587 and 0.610, respectively,
showing a convergence to the value of 0.609 obtained from
the coalescent model. Thus, the discrepancies shown in Ta-
ble 1 may be unimportant for species with large effective
population sizes such as Drosophila melanogaster whose dip-
loid Ne is �106 (Kreitman 1983) and should not undermine
the potential usefulness of the coalescent model.

The effects of background selection on B(ht) and B(ze)

In addition to reducing nucleotide site diversity (p), it is
known that, in the absence of recombination, background
selection also distorts neutral genealogies, such that exter-
nal branches take up a larger proportion of the genealogy,
and this effect tends to be greater when selection is weaker

Table 1 The effects of background selection on B(T2)

Parameters B(T2) at x ¼ 0 B(T2) at x ¼ 0.5

u g r Theory Forward Coalescent Theory Forward Coalescent

6 6 0 0.37 0.55 0.55 — — —

— [0.03, 1.72] [0.03, 1.62] — — —

25 25 0 0.37 0.39 0.41 — — —

— [0.02, 1.28] [0.02, 1.40] — — —

6 6 3 0.51 0.62 0.66 0.45 0.59 0.61
— [0.02, 2.12] [0.03, 2.18] — [0.02, 1.82] [0.03, 1.94]

25 25 12.5 0.51 0.53 0.54 0.45 0.47 0.49
— [0.02, 1.93] [0.02, 1.91] — [0.02, 1.65] [0.02, 1.71]

15 7.5 7.5 0.37 0.51 0.54 0.26 0.45 0.46
— [0.03, 1.74] [0.03, 1.76] — [0.03, 1.37] [0.03, 1.43]

25 12.5 12.5 0.37 0.45 0.46 0.26 0.37 0.38
— [0.02, 1.52] [0.03, 1.54] — [0.02, 1.17] [0.03, 1.21]

7.5 15 15 0.78 0.82 0.81 0.72 0.73 0.75
— [0.03, 2.98] [0.03, 2.95] — [0.03, 2.68] [0.03, 2.69]

The definition of B(T2) is given by Equation 14. The scaled parameters used in the coalescent simulations were u ¼ NU, g ¼ Ns, and r ¼ NR. Forward simulations were performed
with a haploid population size of 5000. The results were based on 105 and 2000 replicates of the coalescent and forward simulation, respectively. The mean values of B(T2) at x ¼
0 (the left end of the deleterious region) and x¼ 0.5 (the center of the region) are presented. For each mean value, the 2.5 and 97.5 percentiles of the distribution of B(T2) are also
shown. Note that B(T2) at x ¼ 1.0 should be the same as B(T2) at x ¼ 0 when R . 0, whereas B(T2) should be the same for every x 2 [0, 1] when R ¼ 0.
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(Charlesworth et al. 1993, 1995; Fu 1997; Gordo et al.
2002; Williamson and Orive 2002; Zeng et al. 2006; Kaiser
and Charlesworth 2009; Seger et al. 2010). To see whether
the structured coalescent model can accurately describe
these aspects of variability, we investigate the properties of
two other summary statistics, ht and ze, which are major
determinants of the number of segregating sites and the
relative abundance of low-frequency variants. In Tables 2
and 3, we present values of B(ht) and B(ze), which are de-
fined as the values of ht and ze under background selection
relative to their neutral expectations (Equations 16 and 17),
so that deviations from unity indicate the direction of de-
parture from neutrality. Over the combinations of parameter
values we have examined, the coalescent model offers very
good approximations to both B(ht) and B(ze); this is true for
both the mean and the percentiles. Again, as with B(T2), the
properties of B(ht) and B(ze) depend on absolute values of
the scaled parameters, not just their ratios.

Several patterns emerge from the comparison of Tables
1–3, where data were generated using the same set of pa-
rameter values. First, from Tables 1 and 2, it can be seen
that E[B(T2)] and E[B(ht)] are reduced to roughly the same
extent by background selection, although the reduction in E
[B(T2)] tends to be slightly more extreme, especially when
selection is weaker. This is in agreement with the observa-
tion that Tajima’s D, which depends on the difference be-
tween T2 and ht, tends to have a negative mean under
background selection (Charlesworth et al. 1995; Fu 1997;
Gordo et al. 2002; Williamson and Orive 2002; Zeng et al.
2006). As expected, with strong selection and/or a high
level of recombination, the difference between E[B(T2)]
and E[B(ht)] is very small and can be difficult to detect
(e.g., the last case in Tables 1 and 2).

Second, as is the case for B(T2), the mean values of B(ht)
and B(ze) are spatially inhomogeneous when r . 0 (Tables
2 and 3). E[B(ht)] is smaller in the center than at the bound-
aries (Table 2), suggesting that there will be on average

fewer segregating neutral variants in the interior of the re-
gion. The reverse is true for E[B(ze)], whose values tend to
be larger in the center but smaller at the boundaries (Table
3). However, an examination of he, the total length of all the
external branches, shows that E(he

(bgs)) , E(he
(neu)) and

that E(he
(bgs)) is smaller in the interior of the region than

at the boundaries. Therefore, the increase in E[B(ze)] in the
center of the region is caused by a more rapid decline in ht

relative to he. With E[B(ze)] . 1 and its spatial pattern, we
expect a higher proportion of low-frequency variants in the
interior of the region. Therefore, in addition to the known
result that Fu and Li’s D, which is determined by ze, should
have a negative mean value under background selection,
which was found previously using a model with zero recom-
bination (Charlesworth et al. 1995; Fu 1997; Gordo et al.
2002; Williamson and Orive 2002; Zeng et al. 2006), the
results in Tables 2 and 3 show that the mean value should
also be more negative in the center than at the boundaries,
although the difference may be small and may not be easily
detectable with sequence variability.

We further explored the effects of various levels of
recombination on E[B(ht)] and E[B(ze)] (Figure 4). As
expected, recombination increases neutral diversity (as mea-
sured by E[B(ht)]), to levels well above that observed in the
absence of recombination (the dashed line at the bottom).
Similarly, E[B(ze)] gets closer to the neutral expectation
of unity with increasing rates of recombination. However,
even with a fairly high level of recombination (u = 25 and
r/u = 4; triangles in Figure 4A), the values of E[B(ht)] and
E[B(ze)] at the boundary of the deleterious region, where
the influence of background selection is minimal, are still
18% lower and 3% higher than the neutral expectation, re-
spectively (Figure 4A), suggesting that, even in highly
recombining regions of the genome, the effect of back-
ground selection should not be overlooked. The spatial pat-
tern displayed in Figure 4 extends the results of previous
studies that are based on E[B(T2)] (Nordborg et al. 1996;

Table 2 The effects of background selection on B(ht)

Parameters B(ht) at x = 0 B(ht) at x = 0.5

u g r Forward Coalescent Forward Coalescent

6 6 0 0.61 0.60 — —

[0.28, 1.10] [0.30, 1.05] — —

25 25 0 0.41 0.44 — —

[0.18, 0.78] [0.20, 0.83] — —

6 6 3 0.68 0.70 0.64 0.66
[0.30, 1.28] [0.32, 1.33] [0.30, 1.17] [0.31, 1.22]

25 25 12.5 0.55 0.56 0.49 0.51
[0.22, 1.10] [0.24, 1.12] [0.21, 0.97] [0.22, 1.00]

15 7.5 7.5 0.56 0.59 0.51 0.52
[0.24, 1.05] [0.27, 1.10] [0.24, 0.93] [0.26, 0.94]

25 12.5 12.5 0.48 0.50 0.42 0.43
[0.22, 0.92] [0.23, 0.95] [0.20, 0.76] [0.21, 0.78]

7.5 15 15 0.81 0.82 0.75 0.77
[0.33, 1.67] [0.33, 1.68] [0.32, 1.51] [0.31, 1.56]

B(ht) is defined by Equation 16. A sample size of 10 was assumed in the simulations (see Table 1 for more details of the simulation procedure). The neutral expectation of ht

for the assumed sample size is 5.66. Note that the same set of combinations of u, g, and r was also used in Tables 1 and 3.

260 K. Zeng and B. Charlesworth



Loewe and Charlesworth 2007) and lends further support to
the conclusion that the effect of background selection is
greater in the center of the region. In particular, the param-
eters used to generate Figure 4B are comparable to those
thought to be “typical” of a gene in the D. melanogaster
genome (Loewe and Charlesworth 2007) and hence may
be relevant to the intragenic spatial patterns of codon usage
bias found in D. melanogaster (Comeron and Kreitman 2002;
Comeron and Guthrie 2005; Loewe and Charlesworth
2007).

Figure 4 shows that the results obtained from the struc-
tured coalescent model agree well with those obtained from
the forward simulations. The discrepancies are probably due
to the artifact of using a small population size in the forward
simulations, as explained above for the case of B(T2). For
instance, in the case where u = 7.5, g = 15, and r/u = 0.25
(circles in Figure 4B), the values of E[B(ht)] at x = 0
(the bottom-left circles) obtained from the forward simula-
tions with N = 5000 and 20,000 are 0.679 and 0.692, re-
spectively, with the latter being very close to the value
of 0.699 obtained under the coalescent model. Hence
we can conclude that the structured coalescent model can
accurately predict patterns of diversity for all levels of
recombination.

Patterns of linkage disequilibrium under
background selection

The effects of background selection on patterns of LD have
not previously been examined. As an initial attempt, we
used rxy, the correlation in T2 between two different sites x
and y, as a measure of LD. As shown in Table 4, the struc-
tured coalescent model can accurately capture this aspect of
neutral variability. Comparing these results with neutral
expectations (Equation 18), we find that background selec-
tion increases the level of correlation (i.e., higher LD) be-
tween sites [compare rxy(bgs) with the neutral expectations
obtained with r = 3 in Table 4]. This is probably caused by

a reduction in the effectiveness of recombination, as a result
of a shorter expected coalescent time in the presence of back-
ground selection {recall that E[B(T2)], 1 and E[B(ht)], 1}.
Using the method described below Equation 19, the effective
recombination rate for the set of parameters in Table 4 was
estimated to be r* = 1.98. It can be seen that the rxy(neu)

values obtained using r* and Equation 18 agree closely with
those obtained under the background selection model (Table
4). Note that, with r* = 1.98, B(rxy) = 0.66 (Equation 20),
which is identical to the E[B(T2)] value at the boundary (see
the third case in Table 1). In other words, if we estimate Ne

from either nucleotide diversity at the boundary of the region
(i.e., the value of p at x = 0, which is governed by T2) or
patterns of LD [i.e., the six pairwise rxy(bgs) values], we should
obtain a similar estimate of Ne � 0.66N. This result is sup-
ported by additional simulations using a wide range of pa-
rameter combinations (Table 5). However, we have examined
only one particular measure of LD, and more research is
needed to examine the effects of background selection on LD.

Discussion

The results that we have described above show that our
structured coalescent approach provides a rapid algorithm
for computing the neutral genealogies of sites situated
within a group of sites subject to sufficiently strong purifying
selection that they can be treated as at equilibrium under
mutation and selection (the conditions for this assumption
to be valid are discussed in Nordborg et al. 1996). In con-
trast to previous coalescent results (Charlesworth et al.
1995; Fu 1997; Neuhauser and Krone 1997; Wakeley
2008b; O’Fallon et al. 2010), we allow for the occurrence
of crossing over within the region in question. Our forward
simulations show that the method provides extremely accu-
rate numerical results. While we have assumed a haploid
model for convenience, the results apply equally to a diploid
model when there is semidominance with respect to the

Table 3 The effects of background selection on B(ze)

Parameters B(ze) at x = 0 B(ze) at x = 0.5

u g r Forward Coalescent Forward Coalescent

6 6 0 1.23 1.27 — —

[0.46, 1.90] [0.53, 1.92] — —

25 25 0 1.25 1.22 — —

[0.50, 1.96] [0.47, 1.91] — —

6 6 3 1.18 1.18 1.19 1.21
[0.43, 1.88] [0.43, 1.88] [0.45, 1.89] [0.46, 1.89]

25 25 12.5 1.13 1.13 1.18 1.16
[0.38, 1.86] [0.39, 1.87] [0.42, 1.87] [0.42, 1.89]

15 7.5 7.5 1.23 1.24 1.28 1.31
[0.46, 1.94] [0.48, 1.92] [0.52, 1.95] [0.55, 1.96]

25 12.5 12.5 1.28 1.25 1.34 1.34
[0.49, 1.95] [0.49, 1.94] [0.55, 1.99] [0.56, 1.99]

7.5 15 15 1.05 1.06 1.08 1.08
[0.32, 1.82] [0.33, 1.80] [0.34, 1.82] [0.34, 1.82]

B(ze) is defined by Equation 17. A sample size of 10 was assumed in the simulations (see Table 1 for more details of the simulation procedure). The neutral expectation of ze
for the assumed sample size is 0.378 (obtained from neutral coalescent simulations). Note that the same set of combinations of u, g, and r was also used in Tables 2 and 3.
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effects of mutations on fitness, with the appropriate changes
in parameter values, or to a diploid model with sufficiently
strong selection that deleterious mutations with partially
dominant effects present at low frequency in the population,

so that their elimination exclusively involves heterozygotes
(Kimura and Maruyama 1966; Simmons and Crow 1977;
Charlesworth 1990). The assumption of haploidy is thus
not especially restrictive.

Since we can compute the genealogies of neutral sites at
arbitrary locations within a set of selected sites, we can
investigate any desired property of a neutral site as
a function of its location within the region subject to
purifying selection, as well as correlations between the
properties of linked neutral sites within the region. This
allows predictions to be made concerning the extent of the
reduction caused by background selection in the expected
pairwise coalescent time, T2(bgs), as a function of location
within the region (Table 1). T2(bgs) can be regarded as a mea-
sure of the local effective population size and determines the
expected level of pairwise neutral diversity under the infin-
ite sites model (Tajima 1983). In addition, statistics such as
the mean total size of the genealogy at a given location,
when contrasted with the mean pairwise coalescent time,
and the proportion of the genealogy contributed by external
branches, ze(bgs), can be used to assess the extent of distor-
tion of the genealogy in favor of longer external branches,
which earlier studies of a nonrecombining region have
shown to be produced by background selection, especially
when selection is relatively weak (Charlesworth et al. 1993,
1995; Fu 1997; Gordo et al. 2002; Williamson and Orive
2002; Zeng et al. 2006; Kaiser and Charlesworth 2009;
Seger et al. 2010). This distortion will be accompanied by
an excess of rare, derived neutral variants compared with
what is observed in the absence of background selection.
Our results show that these effects are observed even in
the presence of recombination (Tables 2 and 3 and Figure
4) and that they are strongest in the middle of the region
subject to selection. The ze(bgs) statistic seems to show this
effect particularly clearly.

Table 4 Patterns of linkage disequilibrium under
background selection

rxy(bgs) rxy(neu)

Site pairs Forward Coalescent r ¼ 3 r* ¼ 1.98

X1X2 0.605 0.598 0.491 0.596
X1X3 0.424 0.424 0.318 0.419
X1X4 0.320 0.318 0.233 0.320
X1X5 0.275 0.250 0.182 0.258
X2X3 0.604 0.608 0.491 0.596
X2X4 0.414 0.422 0.318 0.419
Distance 0 0.028 0.250 0.022

The scaled parameters were u ¼ g ¼ 6 and r ¼ 3. We kept records of the local gene
genealogies at five evenly spaced sites in the deleterious region (i.e., at X1 ¼ 0, X2 ¼
0.25, X3 ¼ 0.5, X4 ¼ 0.75, and X5 ¼ 1) and calculated the correlation coefficient
between the T2 values for the six pairs of sites shown under rxy(bgs). We also
obtained expected values under neutrality using Equation 18 for two different levels
of recombination as shown beneath rxy(neu). Note that r* was the effective recom-
bination rate found by the method described below Equation 19, and r*/r ¼ 0.66 is
the expected reduction in neutral diversity (as measured by p) caused by back-
ground selection at the boundary of the deleterious region (see the third case in
Table 1). The last row gives the distance between the set of values given in a column
and the set obtained from the forward simulations (Equation 19).

Figure 4 The joint effects of background selection and recombination on
E[B(ht)] and E[B(ze)]. Both forward and coalescent simulations were per-
formed and a sample size of 10 was assumed. The scaled parameters
were u ¼ g ¼ 25 in A and u ¼ 7.5 and g ¼ 15 in B, with various values of
r/u. The solid line in the middle indicates the neutral expectation of unity.
In both plots, the results were divided into three sets, and the results
within a set all have symbols of the same shape (e.g., all being triangles).
In a result set, the symbols beneath and above the solid line represent
mean values of B(ht) and B(ze), respectively. The open and solid symbols in
a result set represent results obtained from the forward and coalescent
simulations, respectively. In both plots, the result sets indicated by the
triangles, rectangles, and circles were obtained from simulations with r/u
values of 4, 1, 0.25, respectively. The dashed lines at the bottom and the
top show the mean B(ht) and B(ze) values when r/u ¼ 0. Note that the
scales of the y-axes are different in the two plots.
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If the region subject to purifying selection is taken to
represent a coding sequence, then our results suggest that
not only is the local effective population size most strongly
reduced in the middle of a noninterrupted stretch of coding
sequence (as found previously by Loewe and Charlesworth
2007), but also this will be associated with a stronger excess
of rare variants at neutral sites in the middle of genes com-
pared with their end or with intergenic or intronic sequen-
ces. It should shortly be possible to test this prediction
quantitatively against data from large-scale genome-wide
resequencing projects, which are capable of detecting very
small effects when data from large numbers of genes are
combined. There is already evidence for reductions in non-
coding nucleotide site diversity in human populations in the
proximity of genes compared with more remote regions
(McVicker et al. 2009; Hammer et al. 2010).

Intuitively, the reduction in effective population size for
a small genomic region caused by background selection
might be expected to cause a corresponding increase in the
level of linkage disequilibrium among pairs of closely linked
neutral sites. This has not previously been investigated
theoretically. We have used our program to calculate the
correlations between the genealogies at different sites
within the region subject to purifying selection; the results
show that these are well predicted by Equation 18 for the
standard neutral case, if the population scaled recombina-
tion rate r is calculated using the effective size under back-
ground selection at the boundary of the region.

The results presented here are obviously very limited in
scope and need to be extended in several ways. First, our
results for genealogies need to be translated into predictions
concerning observable DNA sequence diversity statistics;
this is a relatively straightforward matter of adding neutral
mutations onto the genealogies, as is standard practice in
coalescent theory (reviewed by Wakeley 2008a). Second,
a distribution of mutational effects on fitness needs to be
included in the model, in view of the evidence that the

selection coefficients against deleterious nonsynonymous
mutations follow a wide distribution (Loewe and Charlesworth
2006; Keightley and Eyre-Walker 2007; Boyko et al. 2008).
Third, instead of considering a single genomic region, the di-
vision of the genome into different regions with differing
strengths of purifying selection, such as noncoding and coding
sequences, needs to be modeled. Fourth, the effects of non-
reciprocal recombination need to be included, since this is of
major importance over short genetic distances in eukaryotes
and across the whole genome in bacteria. Fifth, the effects of
population size change and population structure need to be
modeled. Some of these extensions, notably the inclusion of
a distribution of fitness effects, present more of a challenge
than others. The ultimate goal is to have a flexible and rapid
set of programs that allows predictions to be made about the
properties of neutral genetic diversity across the genome.
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Appendix

Derivation of Equation 5

First, we note that
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Similarly, we have
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Therefore Equation 5 can be rewritten as
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Derivation of Equation 6

Using the second equation in Equation A3, we have

1
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Derivation of Equation 9

Because mutation is unidirectional, the i-haplotypes in the postmutation population must have been produced by premu-
tation haplotypes with j (#i) mutations. Noting that the proportion of j-haplotypes in the premutation population is given by
fj and that the number of new mutations (i.e., i – j) follows a Poisson distribution with mean U, we have

Pij ¼
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