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ABSTRACT In genetic studies, many interesting traits, including growth curves and skeletal shape, have temporal or spatial structure.
They are better treated as curves or function-valued traits. Identification of genetic loci contributing to such traits is facilitated by
specialized methods that explicitly address the function-valued nature of the data. Current methods for mapping function-valued traits
are mostly likelihood-based, requiring specification of the distribution and error structure. However, such specification is difficult or
impractical in many scenarios. We propose a general functional regression approach based on estimating equations that is robust to
misspecification of the covariance structure. Estimation is based on a two-step least-squares algorithm, which is fast and applicable
even when the number of time points exceeds the number of samples. It is also flexible due to a general linear functional model;
changing the number of covariates does not necessitate a new set of formulas and programs. In addition, many meaningful extensions
are straightforward. For example, we can accommodate incomplete genotype data, and the algorithm can be trivially parallelized. The
framework is an attractive alternative to likelihood-based methods when the covariance structure of the data is not known. It provides
a good compromise between model simplicity, statistical efficiency, and computational speed. We illustrate our method and its

advantages using circadian mouse behavioral data.

ANY phenotypes (or traits) in genetic studies are

quantitative and can be summarized by a single num-
ber; examples include bone mineral density and body
weight. Other traits of interest to geneticists such as growth
curves (Kramer et al. 1998), circadian rhythms (Shimomura
et al. 2001), and morphology (Leamy et al. 2008) have spatial
or temporal structure and cannot be reduced to a single num-
ber. Such traits may be viewed as curves or as function-valued
(Pletcher and Geyer 1999). Quantitative genetics of such
traits benefit from generalizations tailored to their function-
valued nature (Kirkpatrick and Heckman 1989). In this arti-
cle we present a new framework for identifying regions of the
genome, quantitative trait loci (QTL) (Rapp 2000; Broman
2001), contributing to variation in function-valued traits.
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Acknowledging the function-valued nature of a trait has
several advantages. We can naturally treat features such as
rates of growth or periodic fluctuations. We may also arrive
at a more parsimonious representation of the data: a long
sequence of correlated observations can often be described
by a few values. From an evolutionary perspective, the
function-valued nature of the data puts constraints on the
patterns of variation possible and how selection might
operate on the trait (Kingsolver et al. 2001). For these rea-
sons, application of functional data analysis (FDA) (Ramsay
and Silverman 2005) to genetic data has been fruitful. Wu
and Lin (2006) called genetic mapping of function-valued
traits functional mapping. Function-valued traits have been
variously referred to as infinite-dimensional traits, longitu-
dinal traits, repeated measures, functional traits, and dy-
namic traits (Kingsolver et al. 2001).

Most existing methods for mapping function-valued traits
use a likelihood framework where the analyst must specify
the mean function, the error distribution, and the error
structure. When those features can be specified, one can use
parametric functional mapping (Ma et al. 2002; Wu et al.
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2004; Wu and Lin 2006). Here the analyst specifies the form
of the mean function (say logistic, for modeling growth
curves) and the error function (say autoregressive Gaussian
errors). If there is not enough information about the form of
the mean function, one may model the mean function non-
parametrically using different basis function families: Legen-
dre polynomials (Lin and Wu 2006), orthogonal polynomials
(Yang et al. 2006), B-splines (Yang et al. 2009; Yap et al.
2009), and wavelets (Zhao et al. 2007) have all been used
in the past. The approaches of Yang et al. (2009) and Yap
et al. (2009) allow for an unstructured form of the variance—
covariance matrix of the errors and use a multivariate Gauss-
ian distribution. However, when the number of measure-
ments per individual exceeds the number of samples and
the empirical covariance matrix is thus singular, additional
procedures such as wavelet dimension reduction (Zhao
et al. 2007) or regularized estimation of the covariance ma-
trix must be employed. For likelihood-based methods, incom-
plete genotype data are typically handled by the EM
algorithm as in Lander and Botstein (1989). Bayesian formu-
lations have been considered by Yang and Xu (2007) and Liu
and Wu (2009).

In this report, we present an alternative framework for
mapping function-valued traits on the basis of estimating
equations. It is especially suited for scenarios where the
error structure is unknown or poorly specified or when the
number of time points exceeds the number of samples. Such
data are becoming increasingly common with advances in
automatic phenotyping. We present a mouse behavioral
data set below that has these characteristics.

Our simulation studies indicate that likelihood functional
regression models, when misspecified, may not have the
desired false positive rates and can have lower power than
our estimating equations approach. Generalized estimating
equations have been used for mapping nonnormal traits
(Lange and Whittaker 2001), but, to our knowledge, they
have not been applied to mapping function-valued traits.
Note that for genetic mapping, the covariance may be con-
sidered a nuisance parameter; for evolutionary studies and
animal breeding, the covariance function is a key para-
meter of interest (Kingsolver et al. 2001; Mezey and Houle
2005).

Central to our approach is a general linear functional
model that can accommodate any number of covariates and
use a single set of computer programs without modification
for different numbers of covariates. We use a simple two-step
least-squares estimation procedure that is comparable in
speed and memory to regular linear regression. This fa-
cilitates the use of commonly needed but computationally
intensive procedures such as permutation tests for assess-
ment of critical values or multiple testing correction, multiple
imputation of incomplete genotypes, and model selection
procedures.

Our article is organized as follows. The Mouse Behav-
ioral Data section describes a mouse behavior data set that
motivated our method. Then in Model and Estimation
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Figure 1 Mouse active state probability data trajectories, mean, and
variance. (A) Raw trajectories of three randomly chosen individual mice.
The dark period (7 pM=7 awm) is shown in gray. (B) All individual trajectories
are shown in gray, and the mean trajectory is overlaid in maroon. There is
a peak in activity between 7 and 8 pm, which gradually dies out, followed
by a second peak at ~7 am. The dark period is shown in a box. (C)
Variance of the trajectories as a function of time. The variance function
shows roughly the same pattern as the mean function.

we outline the statistical theory underlying our method, in-
cluding the model, estimation, and testing methods.
We examine the method’s characteristics in simulations
and on the mouse behavioral data in Simulation Studies
and Data Analysis. We conclude with a summary in the
Discussion.

Mouse Behavioral Data

The mouse experimental data come from a genetic analysis
of mouse behavior using an automated home cage monitor-
ing system. A backcross population was generated by crossing
C57BL/6J and 129S1/SvimJ strains. The resulting F; mice
were then crossed back to the 129S1/SvImJ strain to gener-
ate the 89 N; backcross mice that were phenotyped and
genotyped. Genotyping was performed using Illumina’s low-
density mouse SNP panel, which provided 233 informative
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(polymorphic) autosomal markers between these two strains.
The average marker distance was 9.7 Mb (median 8.0 Mb,
range 0.2-35 Mb). For phenotyping, mice were individually
housed for 16 days in a home cage monitoring system that
is described in detail elsewhere (Goulding et al. 2008).
Briefly, this system allowed automated collection of feeding
(detection of photobeam breaks when mice access food),
drinking (detection of capacitance change with lick contacts
at water spout), and movement (load cell position plat-
form) data under a 12:12 light:dark cycle (lights on at
7 aMm and off at 7 pm).

Data were processed for errors in detection of feeding,
drinking, and movement events as previously described
(Goulding et al. 2008). Only mice with at least 4 days of
complete data were used for subsequent analysis. Mice were
allowed 4 days of acclimation to the monitoring cages and
the final 12 days of data were used for analysis.

Mice in their home cages exhibit transitions between two
major distinct states: an active state where the animals en-
gage in bouts of feeding, drinking, and locomotion and an
inactive state in which the animals engage in prolonged
episodes of minimal movement at a discrete home base
location (Goulding et al. 2008). Transitions between active
and inactive states were identified with a resolution of 20
msec; the data then were aggregated into 6-min bins across
all analysis days. Thus, each measurement represents the
probability that an individual mouse was in the active state
(active state probability, ASP) during any 6-min interval
across all analysis days (Goulding et al. 2008).

As indicated earlier, the data showed several features that
motivated the development of new methodology:

1. The number of measurements per mouse (220) exceeds
the number of mice (89), which presents problems for
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Figure 2 Correlation between time points for mouse
- 2 active state probability data. There is some structure in
the correlation matrix, although it does not fall into an
easily classifiable category. There is high local correlation
between 7 pm and 11 pv, and a negative correlation be-
tween 7-9 am and 7 pm-5 AMm.
S
<
i

many methods as the empirical covariance matrix is
singular.

2. There is considerable variation in individual mouse active
state probabilities (Figure 1, A and B).

3. The distribution is awkward to describe. There are mice
with active state probabilities of zero or one at some time
points.

4. The variance between individuals as a function of time is
smooth with two peaks (Figure 1C).

5. The average ASP pattern is also smooth with two peaks:
one at 7-9 pm and one at 6-8 am. There is a third mod-
erate peak between these two peaks. There is a minimum
or nadir at night at 4-6 aMm. Note, however, that usual
transformations of the data (such as the arcsine transforma-
tion) failed to stabilize the variance (results not shown).

6. The correlation between time points was also smooth but
without an easily articulated structure (Figure 2).

Model and Estimation

We outline our method in this section. We start with the
functional regression model. Using estimating equations, the
parameter estimates and test statistics have a closed-form so-
lution, assuming complete genotype data. Next, we present some
extensions that broaden the method’s applicability and de-
scribe our strategy for handling incomplete genotypes. Finally,
we discuss the computational requirements of our method, ba-
sis function choice, and shrinkage estimation of the covariance.

Model

When complete genotype data are available, we can express
the trait data in terms of a regression model. For example,
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Figure 3 Genome scans using a nonfunctional approach. (A) Genome
scans for total daily ASP (black), dark cycle onset peak (blue), and mid-
dark cycle (red). (B) Genome scans for dark cycle nadir (black), dark cycle
offset peak (blue), and light cycle activity (red). The solid horizontal lines
are the 5% permutation threshold for the maximum of the six genome
scans, which adjusts for the fact that we are examining six correlated
genome scans.

a linear regression model is traditionally used for mapping
a quantitative trait,

Yy =201 +2:2B2+ " + 2B, te,

where y is the quantitative trait of interest, and z, k =
1,...,p, are covariates, By, k = 1,...,p, are the effects of
the covariates, and e is the random error. The covariates may
include an intercept, the QTL genotypes, and any other fac-
tors such as age, sex, or body weight that may contribute to
the trait. The focus of QTL mapping is to identify the genetic
covariates contributing to the trait.

Analogously, we use a functional regression model for our
function-valued trait when complete genotype data are
available. Let y(t) be the function describing the observable
trait as a function of t; in the remainder of our treatment we
consider t to be time, but it can be extended to consider
spatial position in one or more dimensions. We assume that
the function can be represented as follows in terms of cova-
riates z1, 2, . .., %, (that may include genotypes),

Y(t) = 21B1(t) +22B2(t) + ... +2pBy(t) +e(t)

4
=z Bi(t) +e(t), (1)
k=1

where B,(t),k =1, ..., p, are unknown functions, and e(t) is
random error. We assume that each of the B,(t) functions
can be represented as a finite linear combination of a family
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Figure 4 Genome scans using the functional approach. (A) A genome
scan using the residual error statistics expressed as a proportion of the
integrated error explained by a locus. The horizontal line is the 5%
permutation threshold. (B) A genome scan using the Wald statistic and
the corresponding 5% permutation threshold.

of basis functions (say splines, polynomials, or Fourier se-
ries) as

q
Br(t) = biaa (£) + biatia (6) + - + byqli(£) = > bty (1),
=1

where q is the number of basis functions. The number and
nature of the covariates 2, 2,...,%, will depend on
intended use. They may include a single QTL, multiple
QTL with or without interaction effects, or nongenetic cova-
riates such as age and sex.

Suppose there are n individuals with y;(t) denoting the
function-valued trait for the ith individual. Further suppose
that the trait is observed at m times, t, to, ..., t,. If we
denote by y; the trait value for the ith individual at ¢;, then
we can represent the observed trait data as an n X m matrix,

Y = b’ij]nxm'

Let z; denote the value of the kth covariate in the ith
individual, {; = U(t;) be the value of the Ith basis function
at the jth time point t;, and let e; be the random error for the
ith individual at the jth time point. In matrix notation, we
write

Z= [Zik}nxp’ V= N’jl]qu B = [bkl]pxqv and E = [eij]nxm'

Then, it can be shown that



Y =7BYT +E. 2)

Writing y = vec(YT), ¢ = vec(ET), B = vec(BT), and X =
Z ® V¥, where ® denotes the Kronecker product and vec is
an operator that stacks columns of a matrix into a single,
large column vector, the above equation can be written in
the familiar form

y=XB+e

If the n individuals are independent with common covari-
ance matrix, then A = var(g) = var(vec(E)) = I, ® 3, where
3, is the covariance matrix of (e(t;), e(ty), ..., e(t,))T. Note
that X is, in general, unknown and must be estimated from
the data.

Estimation

As stated earlier, without a distributional assumption for the
random error, we cannot write out a likelihood function.
Instead we choose B (or equivalently B) to minimize the
residual sum of squares,

SB) = -3y —y) =vec(Y = V)vec(Y - V)T, (3)

. AT . . 5 T
where y = vec(Y ) is an estimate depending on 3 = vec(B ).
The criterion, Equation 3, is an approximation to the inte-
grated squared error of the estimate

[ b0 -swra,

t«

where [t-, t*] is the range of the interval we wish to con-
sider. Assuming that the range of observed time points is
close (or identical) to the range we wish to consider, the
integrated squared error may be approximated by the sum

m

> (r6) -5(6))

j=1

Optimizing this criterion is equivalent to solving a least-
squares problem that has a closed-form solution,

BT = (W) MwlyTz(zTz) L. 4)

This can be seen as a combination of two least squares:
one on basis functions (the V¥ part) and the other on geno-
types (the Z part). The least-squares equations are thus our
estimating equations; the resulting solution is asymptotically
unbiased (Liang and Zeger 1986). Further, a consistent es-
timate of the variance of the estimated coefficients is obtain-
able if a consistent estimate of the residual covariance
matrix, 3, is available. Note that estimation of the coeffi-
cients does not require knowledge or estimation of 3..

The variance of the estimate is
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Figure 5 Functional effect of two genetic loci on chromosome 1 ((A)) and
chromosome 9 ((B)). The dark period is shaded gray. Both loci appear to
have the greatest effect in the high activity periods; there is little
difference between the two genotypes in the low activity period
concentrated between 8 am and 5 am. The chromosome 1 locus effect
is largely between 6 pm and 1 am. The chromosome 9 locus affects activity
between 6 pm and 7 am. For both loci there is evidence of the dark cycle
nadir shifting a little.

var(B) = (272) '@ (W) TSR =1 (5)
The predictions are

v = (Z(ZTZ)*lzT)Y(qf(xpTW)*le).

In the context of statistical methods for longitudinal data,
our approach corresponds to using estimating equations
with a working independent correlation structure and
assuming a Gaussian distribution. In general, these esti-
mates will be less efficient compared to a correctly specified
likelihood model (Godambe 1960). However, significant loss
of efficiency seems to be the exception rather than the rule
(Diggle et al. 2002; Chandler and Bate 2007; McCulloch
et al. 2008). We explored this in our simulations (see Sim-
ulation Studies and Data Analysis).

Testing

A genome scan considers every locus on the genome and
asks the following question: Is trait variation explained by
genetic variation at this locus? The evidence is traditionally
summarized by the LOD score, which is the logarithm (base
10) of a likelihood-ratio statistic. The likelihood ratio com-
pares a trait regression model with and without the genetic
locus under consideration. Since we do not specify a prob-
ability model for the data, we cannot calculate a traditional
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LOD score. Instead, we consider two related quantities as
explained below. These can be used as test statistics to test
the null hypothesis at each locus; i.e., genetic variation at
that locus does not contribute to (function-valued) trait
variation.

Consider the trait model in Equation 1. The standard null
hypothesis is no effect; that is, some Bx(t) are identically
zero, which is same as the coefficients of their basis expan-
sion being zero. Suppose the null hypothesis is B = 0 (testing
select entries by replacing B with SB in Equation 4, where S
is a selection matrix so that SB selects specific columns of B,
and subsequent derivations would be based on modified
estimation).

. . AT . . .
Wald statistic: Let vec (B ) be the estimate of coefficients in
vector form and ¢ be the estimated covariance matrix of
vec (B . The quadratic form

vec (BT) T%flvec (BT> 6)

follows a Hotelling’s T? statistic with parameters d and r,
where d is the degrees of freedom of the estimate of 7 (Equa-
tion 5) and r is the length of vec(BT). For reasonably large
sample sizes, this can be approximated by a x2-statistic with
rd.f.

The estimate of the covariance matrix 7 is

= (772 o (WTwy T Sw (),
where 3 is an estimate of 3. The simplest estimate one can
consider is formed from the residuals:

! zn:(}’i = ¥i) i —5/1’)T«

n=piH

P

This estimate is unbiased, but one may also want to consider
biased estimates as discussed later in this section.

Residual error statistic: An alternative statistic would be
the difference in residual sum of squares between the model
with the genetic locus and a null model corresponding to the
null hypothesis. Thus, if Y, denotes the fitted values from
the null model, and Y; denotes the fitted values from the
model including the genetic locus under consideration, we
would calculate S; = vec(Y—Y;) vec(Y—Y;), i=0, 1 and
then use

So— 51
S1

as a test statistic. This statistic is closely connected to the
proportion of the variance explained by the locus. The
asymptotic null distribution of this statistic is a mixture of
x2-variables (Rotnitzky and Jewell 1990; Shen and Faraway
2004). The mixing proportions depend on the eigenvalues
of a matrix depending on V¥ and 3.
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Assessing significance: As stated earlier, the Wald statistic
has an asymptotic x2-distribution, while the distribution of
the residual error statistic is more complicated. The genome-
wide significance of either can be established by a permu-
tation test (Churchill and Doerge 1994). For genome-wide
association studies (GWAS), one may contemplate a Bonfer-
roni correction or a false discovery rate correction on point-
wise P-values. In this context the Wald statistic would be
more convenient.

Incomplete genotypes

The functional regression model (Equation 1) assumed that
we have complete genotypes; i.e., the genotype of every in-
dividual at every genomic location is known. In practice this
is rarely the case, as there are gaps between typed markers,
genotyping reactions for some individuals may fail, or selec-
tive genotyping may have been used. A key part of the QTL
mapping problem is to accommodate incomplete genotype
data. If typed markers are reasonably dense and no selective
genotyping is used, one can use Haley—Knott regression
(Haley and Knott 1992). Here we replace the indicator var-
iables corresponding to possible genotypes at a locus by
their probabilities conditional on typed markers. Then we
use functional regression as if we had complete genotypes.
This method is very fast, and easily parallelized, but is sus-
ceptible to bias when selective genotyping is used or when
the marker spacing is big (Kao 2000; Sen et al. 2005). In such
cases we can use multiple imputation (Sen and Churchill
2001). For both multiple imputation and Haley-Knott re-
gression the analyst can contemplate different functional
regression models for the trait without needing any addi-
tional computational machinery.

Computational considerations

The modularity of our algorithm also simplifies computa-
tion. If we assume n and m are greater than p and g, then
a naive application of least squares to the y = Xp + ¢ prob-
lem, where X ~ mn x pq, would be in the order of O(p2g?nm
+ p3¢®) (Golub and Van Loan 1996). In our method, we
solve two smaller least-squares problems. In Equation 4,
the two inverses are of order O(mqg? + ¢® + np? + p?), while
other matrix multiplications add O(mnqg + npq).

Furthermore, only the part involving Z needs to be recom-
puted for different loci, while the rest can be computed once
and saved for later use. Likelihood-based methods employing
the EM algorithm cannot take advantage of this; every in-
stance of the EM algorithm has to be run separately. Suppose
we are performing r permutations, and using s imputations,
the complexity will be O(mg? + ¢ + mnq + lrs(np? + p3 +
npq)) for [ loci. Use of the EM algorithm for maximum likeli-
hood also has the disadvantage that it requires modification
each time the function regression model is changed.

Basis functions

The choice of basis functions and their tuning parameters
(such as knot position and number of splines) is vitally



Table 1 Null distribution P-values from parametric and estimating equation approaches under three error distributions using 1000

simulations each

Covariance structure

Gaussian, autoreg:

t, 4 d.f., autoreg:

Gaussian, Matérn:

Method Method Method
Cutoff Lik EES EE Lik EES EE Lik EES EE
Neighbor correlation 0.61
0.1 0.1 0.11 0.1 0.11 0.12 0.12 0.42 0.077 0.11
0.05 0.057 0.053 0.054 0.064 0.067 0.061 0.32 0.032 0.052
0.01 0.013 0.011 0.011 0.016 0.014 0.010 0.19 0.007 0.010
Neighbor correlation 0.83
0.1 0.099 0.099 0.098 0.099 0.075 0.089 0.44 0.077 0.1
0.05 0.048 0.052 0.058 0.044 0.034 0.042 0.35 0.033 0.055
0.01 0.015 0.010 0.013 0.006 0.007 0.008 0.20 0.009 0.015
Neighbor correlation 0.94
0.1 0.1 0.084 0.1 0.092 0.067 0.10 0.45 0.070 0.1
0.05 0.050 0.039 0.054 0.051 0.034 0.056 0.34 0.038 0.055
0.01 0.012 0.006 0.011 0.013 0.004 0.008 0.18 0.009 0.012

We considered three different covariance structures: (a) Gaussian with autoregressive correlations, (b) t-distributed with 4 d.f. and an autocorrelated covariance, and (c)
Gaussian with Matérn correlation function. We consider three correlation strengths as measured by the correlation between nearest neighbors: 0.61, 0.83, and 0.94. The
parametric likelihood method assumes autocorrelated error (Lik) and has the desired type-I error for both Gaussian and t-distributed errors, when the correlation structure is
correctly specified. However, it is substantially off target when the correlation is misspecified. The estimating equations approach with shrinkage (EES) has close to the desired
type-l error, but is slightly off target. The estimating equations approach (EE) always has the correct type-I error.

important in functional regression and an active research
area. As this is beyond the scope of this article, we note only
that the family and number of basis functions are key
choices and can be flexibly accommodated with our method.
We used B-splines for the mouse behavior data and natural
splines for the simulations.

Shrinkage estimation of 3,

When the number of individuals is greater than the number
of time points, the obvious estimate of 3 is the empirical
covariance of residuals. It is unbiased, but may suffer from
high variance (Kauermann and Carroll 2001). If the number
of time points (m) is large relative to the number of individ-
uals (n), the analyst may consider using a biased estimator
such as the shrinkage estimator proposed by Ledoit and Wolf
(2004) and adapted by Schafer and Strimmer (2005). The
resulting covariance estimate is nonsingular (unlike the em-
pirical estimate when the number of individuals is smaller
than the number of time points). We evaluate this choice in
a simulation study in the next section. Shrinkage estimation
of the genetic covariance for function-valued data has been
considered by Meyer and Kirkpatrick (2010).

Additional practical considerations

In our development we assumed that there were no missing
trait data. If there is a modest amount of missing trait data, we
can use local smoothing methods such as smoothing splines to
fill in the missing data. Alternatively, one can incorporate
estimation of missing data into the estimation procedure by
using a basis expansion on the left-hand side of Equation 2 and
replacing Y with the coefficients of the expansion.

Our estimating equations correspond to assuming homo-
scedasticity and independence between time points. We can
easily accommodate heteroscedasticity by using weighted
least squares instead of ordinary least squares. There can be
weights on individuals and/or different time points. More
generally, if the analyst has prior knowledge about the
covariance between samples or time points, it can be used to
increase efficiency, yet the method will remain robust to
their misspecification.

Simulation Studies and Data Analysis

We conducted three simulation studies and analyzed the
mouse behavioral data presented earlier, to evaluate our
method. We studied its type-I error and power and
compared it to other methods (functional and nonfunc-
tional). In the first simulation study, we compared our
method to a parametric likelihood-based functional map-
ping method based on Ma et al. (2002). We computed the
type-I error under three covariance structures. In the second
simulation study we compared our method to a likelihood-
based method that estimates the covariance (Yap et al.
2009). In addition, we looked at the power of different
methods. In the third simulation study, we compared our
method with a nonfunctional method (a cross-sectional
method), which compresses multiple observations within
a sample into a summary statistic by averaging; this material
is in Supporting Information, File S1 Figure S1, and Table
S1 Finally, we applied both the Wald statistic and the in-
tegrated residual error statistic to our mouse behavioral data
and compared the result to a cross-sectional method (taking
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Table 2 Power of parametric and estimating equations approaches under three error distributions: Gaussian, autoregressive (GA); t, 4 d.f.,

autoregressive (tA); and Gaussian, Matérn (GM)

Neighbor correlation

0.61 0.83 0.94
Error model
Method GA tA GM GA tA GM GA tA GM
Lik 0.96 0.96 0.60 0.90 0.92 0.61 0.96 0.95 0.58
EES 0.92 0.90 0.74 0.76 0.81 0.75 0.89 0.90 0.72
EE 0.90 0.90 0.70 0.75 0.80 0.71 0.86 0.88 0.69

Shown is the proportion of times the P-values under the alternative were smaller than the 5th percentile of the null. The parametric approach (Lik) has the highest power
when the covariance structure of the error is correctly specified. This is true for both Gaussian and t-distributed errors. The estimating equations approaches have slightly less
power than the likelihood method with correctly specified correlation. When the covariance structure is incorrectly specified, the estimating equations approaches have
greater power. Estimating equations with shrinkage (EES) appears to have slightly higher power than estimating equations without shrinkage (EES).

means over time intervals) that is currently used to analyze
such data (Nishi et al. 2010).

Simulation studies: Comparison with a parametric
functional approach

Here we report simulation studies comparing our estimating
equations approach to a likelihood-based parametric ap-
proach. Our objective was to compare the null distribution
and power of our method against likelihood-based func-
tional mapping under three conditions: when the likelihood
model is correctly specified, the pointwise error distribution
is incorrectly specified, and the covariance is misspecified.

Our simulations were loosely modeled after the poplar
tree data in Ma et al. (2002). We assumed that 13 equally
spaced measurements between times 0 and 6 were made on
200 individuals; 100 individuals each had one of two possi-
ble genotypes 0 and 1. The mean of the observations was
assumed to follow a logistic curve as in Ma et al. (2002) with
the functional form

()

(o) = 1+ 61exp(—0at)

+&(t), @)

where 6 = (6g, 01, 05) are parameters describing the mean
curve, and &(t) is a stationary stochastic process with mean
0 and point-wise variance o2 = 0.01. The functional param-
eters of individuals with genotypes equal to i are described
by 6, i = 0, 1. Under the alternative, 6° = (1.00, 9.0, 1), and
01 = (0.95, 8.5, 1). Under the null, 8° = 61 = (0.975, 8.75,
1). The plots of three mean functions are in Figure S2.
We considered three error structures:

Gaussian, autoregressive: The marginal (pointwise) and all
finite-dimensional distributions of the error are Gaussian,
and the correlation structure is autoregressive so that the
covariance between measurements separated by a time t is
described by the exponential correlation function p(t) =
o?rt. We evaluated performance under r = 0.61, 0.83,
0.94, which are the correlations between successive time
points for the Matérn correlation function (with smooth-
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ness parameters 0.5, 1, and 2, respectively) considered
below (see File S1 for definition of the covariance func-
tion and references).

t-distributed, autoregressive: The finite-dimensional distri-
butions have a t-distribution with 4 d.f. (the smallest
for which the third moment exists). The correlation func-
tion is autoregressive, as above.

Gaussian, Matérn: The finite-dimensional distributions are
Gaussian, and the correlation function is Matérn with
amplitude parameter ¢, scale parameter 1, and smooth-
ness parameters 0.5, 1, and 2. The three correlation func-
tions are shown in Figure S3.

We compared three functional approaches:

Likelihood (Lik): We used the likelihood-based method pre-
sented in Ma et al. (2002). This assumes that the mean
function has a logistic form and that the errors are Gauss-
ian with an autoregressive structure.

Estimating equations (EE): We used the Wald statistic with-
out a shrinkage estimator for the error covariance matrix,
3.. The mean function was modeled using a natural spline
basis with 7 d.f.

Estimating equations with shrinkage (EES): We used the
Wald statistic with a natural spline basis with the Schafer
and Strimmer (2005) method for shrinking the covari-
ance matrix.

Note that the estimating equations approach is applied
using no knowledge of the mean and correlation functions.
The likelihood method is correctly specified for the first
set of simulations (Gaussian, autoregressive). It misspeci-
fies the finite-dimensional distributions in the second set
(t-distributed, autoregressive), but the correlation is cor-
rectly specified. In the third set, the correlation functions
are misspecified.

Table 1 gives tail probabilities of the test statistics under
the null. It shows that the correctly specified likelihood-
ratio statistic has x?-tail probabilities as expected. This holds
true when the marginal distribution of the errors has a
t-distribution as well. However, when the correlation structure
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Table 3 Mean, standard deviation, and root mean squared error of the genome scan peak in simulations using our method and that of

Yap et al. (2009)

Yap (nonpara) Yap (autoreg) EE (Wald) EE (residual)
Covariance n Mean SD rmse Mean SD rmse Mean SD rmse Mean SD rmse
PN 100 32.8 9.9 9.9 33.2 7.7 7.8 33.0 10.4 10.5 32.8 9.09 9.1
400 31.5 2.8 2.8 31.8 3.2 3.2 32.1 2.9 2.9 32.1 2.9 2.9
p7 100 32.6 7.6 7.6 353 15.7 16.0 32.7 7.7 7.7 33.1 12.0 12.0
400 31.7 2.6 2.6 32.0 5.4 5.4 32.1 2.4 2.4 32.2 3.7 3.7
33 100 33.2 22.2 22.2 46.5 27.4 31.0 40.6 26.5 27.9 39.3 253 26.3
400 32.3 11.9 11.9 43.6 26.4 28.9 33.1 10.8 10.9 33.1 10.7 10.8

The true QTL is at 32 cM. The columns labeled “Yap (nonpara)” and “Yap (autoreg)” are derived from Tables 1 and 2 of Yap et al. (2009). They refer to the results of using
the likeihood-based methods of Yap et al. (2009) with an estimated regularized covariance and autocorrelated covariance, respectively. The columns labeled “EE (Wald)” and
“EE (residual)” refer to our estimating equations approach with the Wald statistic and the residual error statistic, respectively. Yap et al. (2009) performed 100 simulation
replicates, whereas we used 10,000 replicates, which gave stable estimates. For each method we report the mean position of the genome scan maximum (“mean”) over
simulation replicates, the standard deviation (“SD"), and the root mean squared error (“rmse”). Note that Yap et al. (2009) reported standard error, which we converted to
standard deviation as the latter is independent of the number of simulation replicates. The simulations were performed with three error structures corresponding to an
autocorrelated covariance (34), an equicorrelated covariance (2,), and an unstructured covariance (X3).

is misspecified, it no longer has a x2-distribution and the type-I
errors corresponding to all the critical values are higher than
expected.

The simulations indicate that the regular estimating
equations approach has near the expected type-I error
behavior under all circumstances. However, the estimating
equations approach with shrinkage does not have this
property with slightly too low type-I error rates, and thus
its null distribution would need to be obtained empirically
using permutations. The likelihood-ratio statistic has the
expected x2-distribution only when the correlation structure
is correctly specified; otherwise it may be way off target.
Thus, in practice, if the covariance is hard to specify, the
likelihood-ratio statistic’s statistical significance should be
established using a permutation distribution.

Since the null distribution of the statistics is not always as
expected, we used the null distribution quantiles as the
critical values to calculate power (Table 2). We find that the
likelihood approach has the greatest power when the corre-
lation structure is correctly specified (note that the likeli-
hood method in this case also benefits from having the
correct mean function). The estimating equations ap-
proaches have greater power when the correlation structure
is incorrectly specified. In all situations, the estimating equa-
tions with shrinkage has slightly greater power than the
approach without shrinkage. Thus, our simulations demon-
strate that power of likelihood methods may be compro-
mised if the correlation structure is misspecified (even if
the type-I error has been recalibrated).

Simulation studies: Comparison with parametric
functional method with unstructured covariance

Yap et al. (2009) proposed using regularized covariance
estimation within the framework of parametric likelihood-
based functional mapping. The regularization parameter
was selected by 10-fold cross-validation and assumed con-
stant throughout a marker interval.

We performed simulations using the same scenario as in
Yap et al. (2009). We simulated a 100-cM linkage group

with six equally spaced markers with a QTL at 32 ¢cM. The
associated phenotypes were sampled from a multivariate
Gaussian distribution with logistic function describing the
mean function conditional on the QTL genotypes. There
are three genotypes with three mean curves following logis-
tic functions as in Equation 7: the first genotype has 64 = 30,
6, = 5, 8, = 0.5; the second genotype has 6, = 28.5, 6; = 5,
0, = 0.5; and the third genotype has 65 = 27.5,0, =5, 6, =
0.5. Each individual is observed at 10 time points. The re-
sidual error was assumed to be multivariate normal, with
three different covariance structures:

1. X, is autoregressive with o2 = 3, p = 0.6.

2. 3, is equicorrelated with o2 = 3, p = 0.5.

3. X3 is an “unstructured” covariance matrix, as given in Yap
et al. (2009) (reproduced in File S1). It does not have an
easily described structure.

All parameter values including the covariance matrices are
taken from Yap et al. (2009). We ran 10,000 simulation
replicates to obtain stable estimates; Yap et al. (2009) had
100 simulation replicates.

The LOD score (or linkage test statistic) was calculated
every 4 cM, resulting in 26 loci. As in the simulations
reported by Yap et al. (2009), for each simulation, we esti-
mated the location of the QTL as the location of the maxi-
mum LOD score. The average, standard deviation, and root
mean squared error of QTL location estimates were com-
pared. Lower root mean squared error indicates a better
method. (Note that we are unable to compare the power
of the methods as we do not have access to the software
used in the Yap et al. 2009 article and are restricted to what
was reported in the article.) The results are in Table 3.

We found that our method performed comparably to Yap
et al.’s (2009) method for the most part, except for 23 with
a small sample size of 100, where Yap et al.’s (2009) method
had better mean and slightly smaller standard deviation. But
looking at the large values of standard deviations for all
methods, it is clear that no method performed satisfactorily
with this small sample size. For 23 with sample size 400, the
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performance of both methods was again comparable. Note,
however, that our method is considerably simpler to imple-
ment and has lower computational complexity.

Data analysis

Please refer to the Mouse Behavioral Data section for the
details of the mapping population, markers, and phenotypic
data collection. Our analytic goal was to detect genetic loci
that contribute to individual variation in the shape of the
curve describing how ASP changes with time of day. We
applied our method using the Wald statistic and the residual
error statisticc. We also applied a nonfunctional approach
informed by prior knowledge and a visual exploration of
the data. The approach tries to mimic what we might do if
we did not have a functional method at our disposal. It par-
allels the approach taken recently by Nishi et al. (2010) for
similar homecage movement data in consomic strains. Note
that a credible parametric model for mouse behavior cannot
be easily specified, and thus we cannot use a parametric func-
tional method.

Nonfunctional method

We constructed six measures on the basis of the marginal
distribution of the ASP curves as shown in Figure 1. Note
that the change in active state probability with time of day
exhibited by the mice appears to be divided into five phases.
During the dark cycle, there is an onset peak (7-9 pm) in
active state probability that then decreases somewhat,
exhibiting a broad peak from 9 pm to 4 am followed by a dark
cycle nadir from 4 to 6 am. An offset peak (6-8 am) in the
active state probability then occurs near the end of the dark
cycle. Finally, the active state probability is low throughout
the majority of the light cycle. On the basis of these obser-
vations we segmented the day into the following phases to
measure the probability that a mouse was in the active
state:

. Daily: This is the mean over all time points.

. Dark cycle onset peak: This is the mean over 7-9 pm.

. Mid-dark cycle: This is the mean over 9 pM—4 AM.

. Dark cycle nadir: This is the mean over 4-6 awm.

. Dark cycle offset peak: This is the mean over 6-8 am.

. Light cycle: This is the mean over 8 am-12 noon and
2-7 pm.

U1 WN -

We performed genome scans using the Haley-Knott
method (Haley and Knott 1992) for each of these measures.
To correct for the fact that we used six correlated genome
scans, we calculated a genome-wide threshold for the max-
imum of the six genome scans, using 1000 permutations.
Using the 5% multiple-scan corrected threshold we found
only one locus on chromosome 1 for daily ASP (Figure 3).

Functional method

We used B-splines as our basis functions. We applied 10-fold
cross-validation to the behavioral data, ignoring the geno-
type data, to select the number of basis functions to use for
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smoothing. We selected the smallest number of basis
functions that gave a residual sum of squares within one
standard deviation of the least value. This led us to select B-
splines with 16 d.f. with equally spaced knots. These basis
functions were used for all genome scans.

We performed genome scans using the Haley-Knott
method with both the Wald statistic and the residual error
statistics. We used 1000 permutations to establish genome-
wide statistical significance. Using the functional approach
and the 5% genome-wide threshold, we found two loci (on
chromosomes 1 and 9) using the residual error statistic (Fig-
ure 4A) and one locus on chromosome 9 using the Wald
statistic (Figure 4B). The estimated genetic effects of the
two loci are shown in Figure 5. Thus, in this example, the
Wald statistic appears to be less sensitive than the residual
error statistic.

Discussion

We have presented a new approach based on estimating
equations for mapping function-valued traits. It is an at-
tractive alternative to likelihood-based methods, especially
when we have incomplete knowledge of the covariance
structure or when the number of time points exceeds the
number of samples. While information about the covariance
can be incorporated to improve efficiency, our method is
robust to its misspecification. Relative to a correctly spec-
ified likelihood model, the estimating equations approach
may be slightly less efficient. However, such loss was
modest in our simulations and other studies (Chandler
and Bate 2007). We thus believe that our method would
be a good choice in most settings where the analyst is un-
certain about the error distribution. The mouse behavioral
data we presented are such an example. Likelihood meth-
ods may be preferred, say, for traits such as growth curves,
which have a long history of study, lending confidence to
the data model.

Misplaced confidence in the covariance structure may
have a price, as our simulations indicate. Likelihood-based
methods with a misspecified covariance may not have the
target type-I error and may have lower power than the
estimation equations method. Although the anticonservative
behavior of a misspecified likelihood observed in our sim-
ulations may be rectified by a permutation test, that has an
additional computational cost. This cost is manageable for
QTL mapping in experimental crosses, but less so in GWAS
where a correctly calibrated P-value is desired at each locus.
Thus, the estimating equations Wald statistic has an edge in
GWAS.

There are several ways to deal with more time points
than the sample size, which engenders a singular covariance
matrix. Zhao et al. (2007) used a wavelet transform for time
series dimension reduction as a precursor to parametric
functional mapping. Our method, on the other hand, has
dimension reduction built in via the basis functions, which
in fact could be wavelets. While Zhao et al. (2007) used



wavelets for dimension reduction as a separate step, we per-
form dimension reduction and functional mapping in one step.

Computational efficiency, as opposed to statistical effi-
ciency, plays a bigger role for high-dimensional data. If the
number of time points is very large or if model selection,
permutation testing, or multiple imputation is needed,
computational time increases severalfold. In such settings,
our method has a clear advantage, as it is based on two
low-dimensional least-squares operations: it can be computed
quickly and does not involve any complex optimization pro-
cedures. The computational advantage is particularly pro-
nounced when covariance structure defies easy specification.
While Yap et al’s (2009) method does not rely on specifi-
cation of covariance structure, it comes at the expense of
a generalized EM algorithm that must numerically solve a
nonlinear optimization problem as part of the M-step. For
large-scale studies with dense genotyping, computational
efficiency is essential.

The estimating equation approach for mapping function-
valued traits can be adapted for different situations. Our
formulation assumes that the error variance is independent
of the mean, which might not hold for traits whose point-
wise marginal distribution is markedly non-Gaussian such as
Poisson-distributed count data. A simple change to the
sandwich estimator in Equation 5 can be used to obtain
a robust variance estimate in this scenario. This involves
replacing the estimate by a sum of n terms with the same
form as in Equation 5, with 3 replaced by the empirical
multivariate residual for each individual. Another extension
is when trait data on all individuals are not observed on the
same set of time points. While small amounts of missing trait
data can be dealt with by smoothing or imputation, the
more general problem of uneven time points is more chal-
lenging. The approach of Yao et al. (2005) may offer a res-
olution under Gaussian modeling assumptions.

In summary, our estimating equation method based on
a general functional linear model makes few distributional
assumptions. It has broad applicability to genetic studies and
has opened an attractive alternative avenue to functional
mapping distinct from likelihood methods. The possible
improvements and adaptations listed above suggest the
method’s promise and flexibility. Data and software used in
this paper are available in File S2. The mouse behavior data
also is available at http://www.qtlarchive.org; updated ver-
sions of the software will be posted at http://www.biostat.
ucsf.edu/sen/software,/ .
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MATERN COVARIANCE FUNCTION

The Matérn covariance function is a family of covariance functions widely used for simu-
lating and studying Gaussian processes (BANERJEE ET AL., 2004). The covariance between
two points = and y is defined as var(z, y) = C(||z — y||), where ||| denotes a distance func-
tion (usually Euclidean norm), and

0.2

o) = 5

(2v/0t6)" K, (2V/vt6), t >0,

where K, (-) is the modified Bessel function. The ¢% parameter is the amplitude parameter
that controls the variance, ¢ is the scale parameter that controls the span of dependence
(in space or time), and v is a smoothness parameter that controls how rough the resulting
error process is. See BANERJEE ET AL. (2004) for details, and PATIL (2010) for examples
and interpretation.

SIMULATION STUDIES: COMPARISON WITH NON-FUNCTIONAL
APPROACHES

We present the simulation studies of Type-I error and power of our Wald statistic under
a Gaussian process noise. For power, we assessed the effect of both sample size and the
number of time points.

Model We used a functional linear model y(¢) = z3(t) + ¢(t), where the design matrix
z was random genotypes encoded as 0’s and 1’s and (¢) is a genetic effect function; we
only simulated dominant effects (one allele out of two is dominant).
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Type-l error In order to assess Type-I error, we simulated data from a linear model
under the null hypothesis. Since under the null hypothesis there is no genetic effect, 3(¢) is
identically zero. We assumed one genetic locus of three genotypes with probabilities 0.25,
0.5, 0.25. The random processes were sampled at 20 evenly spaced time points and there
are 5000 runs for each of four sample sizes, 300, 400, 500, and 600. The results are in Table
1. We can see that proportions at cutoffs agree with the theoretical values. This confirms
the use of x? distribution and degrees of freedom as a valid reference distribution for the
Wald statistic.

Power To evaluate the performance of the functional linear models for identifying QTLs,
we compared their power with that of the traditional cross-sectional models for QTLs. We
considered a single trait locus, and the frequency of two genotypes at the trait locus were
assumed to be equal. The genetic model used the functional linear model mentioned
above. The power is the number of times the p-values are over the significance level of
0.05. We used three functions as genetic effect functions and the random process was
generated with zero mean and Matérn covariance functions (as in the Type-I error simu-
lations above). The three functions were

1. Quadratic function: 5(t) = 2.5+ & + ﬁ

5t

2. Exponential function: 5(t) = 1 — 75 exp(—1o55)

1

3. Logistic function: §(t) = Trow( D

A total of 1,000 simulations were conducted. The cross-sectional method averaged the
trait over all time points: .- ™" y(¢;). Our functional method used B-spline basis func-
tions of order 4 with 2 knots, and used the Wald test statistic. We computed power either
as a function of the number of time points, where 400 subjects were sampled, or as a func-
tion of sample sizes where 5, 6 and 7 time points were assumed for exponential, logistic
and quadratic effect functions, respectively. The functions were simulated over intervals
[—50, —38], [—460,—316], and [—6, 2], respectively, for the three functions. The powers
curves are in Figure 1. Several features emerge: First, power increased with the num-
ber of time points. Second, in general, the functional linear models had higher power to
detect a QTL than the cross-sectional approach, sometimes dramatically so. Third, differ-
ence in power between the functional approach and cross-sectional approach depends on
the types of genetic effect functions. We observed the largest difference in power between
the functional linear models and cross-sectional models for the logistic genetic effect func-
tion.
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The “unstructured” covariance matrix, ¥3 used by YAP ET AL. (2009) and used in our
simulations is given below.
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File S2
Supporting Files

A compressed folder of data and programs is available for download at
http://www.genetics.org/content/suppl/2011/06/24/genetics.111.129221.DC1.
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Figure S1 The effect of sample size (n) and number of time points (m) on power of the functional method using the Wald
statistic. The panels on the left column show power as a function of the number of time points, while the panels on the right

column show power as a function of sample size.
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trait

0.0

time

Figure S2 Logistic mean curves under null and alternative hypotheses. The solid line corresponds to the null hypothesis. The
dashed and dotted curves correspond to the alternative hypothesis. The genetic effect is quite small, and most of the difference
is in the later time points.
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trait

autoregressive processes.

Figure S3 Matérn correlation functions for three smoothness parameters. The solid line is for smoothness 2, the dashed line
for smoothness 1, and dotted line for smoothness 0.5. Notice that the correlation function is not exponential, as it would be for
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Table S1 Type-l error of Wald statistics. In this table we show the type | errors at thresholds 0.1, 0.05, 0.01, 0.005 with 5000
runs of simulation. The simulation results agree with theoretical thresholds, thus confirming that Wald statistics under the null

hypothesis have correct exceedance probabilities.

Sample size )(2 threshold
0.1 0.05 0.01 0.005
300 0.10 0.056 0.011 0.0064
400 0.092 0.047 0.01 0.0046
500 0.10 0.047 0.0096 0.0052
600 0.11 0.053 0.0086 0.0046
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