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Surveying the Manifold Divergence of an
Entire Protein Class for Statistical Clues to

Underlying Biochemical Mechanisms
Andrew F. Neuwald

Abstract

Certain residues have no known function yet are co-conserved across distantly related protein
families and diverse organisms, suggesting that they perform critical roles associated with as-yet-
unidentified molecular properties and mechanisms. This raises the question of how to obtain
additional clues regarding these mysterious biochemical phenomena with a view to formulating
experimentally testable hypotheses. One approach is to access the implicit biochemical
information encoded within the vast amount of genomic sequence data now becoming available.
Here, a new Gibbs sampling strategy is formulated and implemented that can partition hundreds of
thousands of sequences within a major protein class into multiple, functionally-divergent
categories based on those pattern residues that best discriminate between categories. The sampler
precisely defines the partition and pattern for each category by explicitly modeling unrelated, non-
functional and related-yet-divergent proteins that would otherwise obscure the analysis. To aid
biological interpretation, auxiliary routines can characterize pattern residues within available
crystal structures and identify those structures most likely to shed light on the roles of pattern
residues. This approach can be used to define and annotate automatically subgroup-specific
conserved domain profiles based on statistically-rigorous empirical criteria rather than on the
subjective and labor-intensive process of manual curation. Incorporating such profiles into domain
database search sites (such as the NCBI BLAST site) will provide biologists with previously
inaccessible molecular information useful for hypothesis generation and experimental design.
Analyses of P-loop GTPases and of AAA+ ATPases illustrate the sampler’s ability to obtain such
information.

KEYWORDS: protein sequence/structural analysis, Markov chain Monte Carlo sampling,
Bayesian partitioning with pattern selection
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1. INTRODUCTION 
 
A major goal of modern biology is to understand how protein molecular machines 
work at the atomic level in the context of the living cell (Alberts, 1998). Although 
the catalytic mechanisms of certain proteins are relatively well understood, much 
less is known regarding mechanisms mediating other aspects of protein function, 
such as energy-dependent coordinated conformational changes.  Moreover, the 
existence of mysterious, as yet unidentified molecular mechanisms is suggested 
by the fact that related proteins from diverse organisms often strikingly conserve 
specific residues whose functions, thus far, are completely unknown.  For 
instance, an invariant tyrosine and a nearly invariant isoleucine that is never 
replaced by a leucine occur far from the active site within Ran GTPases (based on 
276 sequences from 9 metazoan, 4 fungal, 2 plant, and 10 protozoan phyla). This 
suggests that relatively minor side-chain modifications at these sites, such as 
removal of an oxygen or rearrangement of a methyl group, are consistently 
eliminated by natural selection and that such residues thus establish interactions 
with precise geometric or chemical constraints required for some critical unknown 
function. Often such residues are conserved across families that are associated 
with distinct multi-component complexes and that vary widely in their protein-
protein interactions, localization, turnover, kinetics of binding, et cetera—
indicating that the roles of these residues transcend functions or properties 
specific to individual families and instead involve general mechanisms shared by 
otherwise functionally-divergent proteins.  

Delving deeper into the biochemical roles of such residues through 
experimentation requires that we first obtain sufficient preliminary information to 
formulate plausible hypotheses.  An important source of such information is, of 
course, protein crystal structure analysis. Nevertheless, even with a complete set 
of functionally-relevant structural conformations, identifying the underlying 
biochemical mechanisms of a protein is non-trivial. One reason for this is that, at 
the atomic level, matter and energy obey the laws of quantum electrodynamics 
(Feynman, 1985) and thus do not behave like particles or waves or anything else 
that we have ever seen. This counterintuitive behavior of quantum phenomena 
hinders our ability to conceptualize molecular processes correctly.  

To help work around these inherent limitations, we can utilize another 
source of implicit information regarding molecular mechanisms, genomic 
sequence data—the cell’s own library for encoding those mechanisms.  As such, 
sequence data may provide valuable clues regarding protein biochemical 
properties and mechanisms that, thus far, have escaped our attention.  One way to 
access this information is to use a statistical approach: Just as a statistical analysis 
of patterns of inherited traits can provide clues regarding underlying genetic 
mechanisms, a statistical analysis of patterns in protein sequences can provide 
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clues regarding underlying biochemical mechanisms. Residue patterns that have 
been conserved for a billion years or more presumably reflect strong selective 
pressures maintaining structural and mechanistic similarities. Divergent patterns 
that are conserved in descendent proteins maintaining a particular divergent 
function likewise reflect structural and mechanistic differences. Thus such 
patterns presumably correspond to conservation and divergence of underlying 
molecular mechanisms that are responsible for critical biochemical properties, 
which I define broadly here to include all properties that are required for a 
protein’s function. When examined in the light of available structural data and of 
published biochemical analyses, patterns of co-conserved residues can suggest 
plausible hypotheses regarding underlying biological processes. These hypotheses 
can be tested by experimentally determining, for example, whether an engineered 
protein harboring those patterns acquires a particular biochemical property. 
Hence, without postulating a specific mechanism, we can still associate certain 
residue patterns with certain biochemical properties.  

The identification of such patterns is complicated by the probabilistic 
nature of protein sequence data: Sequences possessing certain biochemical 
properties are characterized by inherent variability, such that each protein family 
is best viewed as a distribution of (similar) sequences corresponding to a peak 
within a high dimensional ‘sequence space’ or, when viewed from an 
evolutionary perspective, within a ‘fitness’ landscape (Romero and Arnold, 2009).  
This landscape may be quite irregular insofar as small peaks and valleys can form 
on top of larger peaks whenever a protein subgroup either gains additional 
biochemical properties or loses certain aspects of ancestral properties. Moreover, 
protein sequences may encode multiple biochemical properties in various 
combinations and to varying degrees.  As a result, we should not expect 
characteristic patterns to be clearly defined across related sequences (i.e., to be 
associated with isolated, sharply-defined peaks in sequence space), but rather to 
be obscured by various degrees of evolutionary and combinatorial noise. To make 
biological sense of sequence data, it is helpful to extract from this noise those 
canonical patterns that are most typical of (albeit not fully conserved within) 
specific categories of functionally-divergent proteins. Such canonical patterns are 
helpful for the same reason that simple, idealized models help make sense of 
complex phenomena in physics.    

In order to identify canonical patterns in this way, we previously 
developed a procedure, termed Bayesian Partitioning with Pattern Selection 
(BPPS) (Neuwald, 2007a; Neuwald et al., 2003). BPPS relies on a Gibbs 
sampling strategy (Liu, 2008) to identify a residue pattern that most distinguishes 
one set of protein sequences (termed the ‘foreground’) from another, functionally 
divergent sequence set (termed the ‘background’). Gibbs sampling is a Bayesian 
Markov chain Monte Carlo (MCMC) procedure that relies, as does the scientific 
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method itself, on iterating between empirical testing and model refinement until 
convergence on the most probable models given the input data. For BPPS the 
input data consists of a (typically very large) set of related, multiply-aligned 
protein sequences. A Gibbs sampling strategy is required because, a priori, we 
know neither which sequences to assign to the foreground, nor which positions 
are pattern positions, nor exactly which residues are conserved at each pattern 
position. More specifically, the BPPS procedure samples over two random 
variables: a sequence pattern and a set of indicators for assigning each sequence 
in the alignment to either the foreground or the background partition. While doing 
so, it explores possible pattern-partition pairs, searching for one where the 
pattern maximally distinguishes the foreground sequences from the background 
sequences (Fig. 1). To ensure that pattern residues are conserved due to strong 
positive selective pressure (rather than merely to recent common descent), we 
require conservation of patterns across distinct phyla or kingdoms.   

 

 
 
Figure 1. Input and output for the BPPS sampler. The main alignment is partitioned into a 
‘foreground’ (colored horizontal bars) and a ‘background’ (gray horizontal bars) based on 
conserved foreground pattern positions (dark blue vertical bars) that diverge from (or contrast 
with) the background residues at those positions (white vertical bars). For this reason, the output is 
termed a “contrast alignment”. The heights of the bars above the alignment quantify the selective 
constraints imposed on divergent residue positions. 

 
This ‘single category’ (sc)BPPS sampler serves as a starting point for the 

‘multiple category’ (mc)BPPS sampler described here. The mcBPPS sampler is 
substantially more powerful in the following respects: (i) By representing multiple 
pattern-partition pairs, it can optimally model the sequence space of an entire 
protein class. (In contrast, the scBPPS sampler merely identifies one globally or 
locally optimal pattern-partition.)  (ii) It uses an enhanced statistical formulation 
that avoids over-fitting by minimizing the number of free parameters. (iii) It sets 
up a stringent competition between functional-divergent categories for pattern 
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residues, thereby defining each pattern-partition pair with greater clarity. (iv) It 
models protein subgroups more precisely by explicitly modeling (and eliminating) 
problematic sequences that tend to obscure an analysis.  Such problematic 
sequences are likely to include, for example, pseudogene products and other non-
functional proteins, related proteins that have undergone additional functional 
divergence, and unrelated and erroneous sequences. (v) Unlike the scBPPS 
sampler, it includes an option that does not require assignment of ‘gold standard’ 
sequences to a foreground partition in order to help define that partition, though—
to address specific questions—it still allows specification of such gold standard 
sequences. (vi) Perhaps most importantly, it can be used to generate 
(automatically) protein domain profiles, in which multiple categories of pattern 
residues are annotated. And (vii), when merged into the National Center for 
Biotechnology Information (NCBI) conserved domain database, such annotated 
profiles can aid experimental design by suggesting (via web-based BLAST 
searches linked to the NCBI Cn3D viewer) (Wang et al., 2000) plausible 
hypotheses regarding mysterious, as-yet-unidentified biochemical properties and 
mechanisms.  

2. RESULTS 
 
The mcBPPS sampler addresses the following problem: We are given a (typically 
large) set of aligned input sequences corresponding to a major protein class. Each 
of these sequences belongs to one out of N subgroups, though we know not which 
one.  The sampler’s task is to infer the most likely subgroup to which each 
sequence belongs based on M functionally-divergent categories, each of which is 
associated with a canonical pattern that likewise needs to be inferred. These are 
termed ‘differentiating patterns’ because they correspond to residues that are co-
conserved within one or more subgroups (that together constitute the foreground) 
but that diverge within one or more other subgroups (constituting the background) 
and that thus differentiate between the foreground and the background.  

As most commonly applied, the user selects the number of subgroups and 
assigns one or more ‘seed sequences’ to each of the subgroups.   Typically, less 
than a dozen seed sequences are selected from distinct phyla for each subgroup to 
ensure that pattern residues are conserved due to functional constraints rather than 
merely to recent common descent. These seed sequences serve as Bayesian priors 
or—if viewed as a ‘missing data’ problem (Little and Rubin, 2002)—as ‘labeled’ 
sequences that are required to remain in their pre-assigned subgroups during 
sampling and that thus help define each subgroup. The remaining (unlabeled) 
sequences are assigned to subgroups through Bayesian inference.  This strategy 
focuses the sampler on those properties of the sequence data of primary interest to 
the user.   
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Figure 2. A hyperpartition table (top left), which corresponds to the multiple category functional 
divergence model optimized by the mcBPPS sampler. Each row in the table corresponds to a 
distinct divergent subgroup and each column corresponds to a distinct contrast alignment. A 
column is converted into the corresponding contrast alignment—such as the one shown for 
column 4 (bottom)—as follows: Each subgroup corresponding to a row with a ‘+’ symbol in that 
column is assigned to the foreground, each subgroup with a ‘-’ symbol in that column is assigned 
to the background, and each subgroup with an ‘o’ symbol in that column is assigned to the non-
participating partition. A tree (top right) can also represent the hierarchical relationships between 
functionally divergent subgroups in this table, where, for example, the subtrees rooted at nodes 5, 
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4 , 2 and 1 could correspond to a subfamily, a family, a superfamily and the entire protein class, 
respectively.  Such a tree can be converted into a hyperpartition, as follows:  Each node of the tree 
corresponds to both a column and a row in the hyperpartition table. The subtree rooted at a 
particular node corresponds to the foreground for that column in the table, whereas the rest of the 
subtree rooted at the parent of that node corresponds to the background. Hence sequences 
corresponding to the subtree of a node share a pattern (albeit often imperfectly) that corresponds to 
that node’s column (i.e., contrast alignment) in the table. Note that internal nodes in the tree 
corresponds to miscellaneous subgroups—that is to sequences sharing a common pattern with, but 
lacking patterns specific to subgroups corresponding to that node’s descendent nodes. For the root 
node a set of random sequences serves as the background; the sampler will favor assignment of 
aberrant input sequences to this random subgroup. The program tree2hpt (which is distributed 
with the mcBPPS program) may be used to convert a tree in Newick format into the corresponding 
hyperpartition.  Although any tree can be converted into a hyperpartition, some hyperpartitions 
(such as the one shown in Table 2 below) cannot be converted into a tree.  
 

The user chooses which comparisons are to be made by providing a 
N M  table (termed a hyperpartition) that specifies which of the N subgroups 
(one per row) to place in the foreground and background partitions (as well as 
which subgroups to leave out) for each of M divergent categories (i.e., one 
category per column). Thus each column in a hyperpartition corresponds to a 
single contrast alignment (Fig. 2) where those subgroups assigned to the 
foreground are indicated by a ‘+’ in the table, those assigned to the background 
by a ‘-‘ and the ‘non-participating’ subgroups by a ‘o’. (Further information is 
given in the supplementary file.)  The phylogenetic relationships between 
subgroups are useful when creating a hyperpartition, and indeed a phylogenetic 
tree can be directly converted into a hyperpartition (Fig. 2). However, as 
discussed below (and as illustrated in the supplementary file), subgroups from 
distinct clades sometimes share certain co-conserved residues that would be 
unexpected based solely on their phylogeny. For this and other reasons, the 
hyperpartition is not required to conform strictly to a phylogenetic tree.  

 
2.1.The scBPPS model.  
 
The starting point for the mcBPPS sampler is the scBPPS procedure (Neuwald et 
al., 2003), which samples over the joint distribution that is defined 
(logarithmically) by:   
 

 

       
1 1 1 1

log , , , , log , log ,

log log log log

k n k n
j

j ij i j ij
j i j i j

P x R C x

p p p p
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X R C Θ θ
θ

Θ R C
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where X is an n k matrix representing a multiple alignment of n sequences and k 
columns, ,i jx  is a 20-dimensional vector of all 0’s except for a lone ‘1’ indicating 

the observed residue type, R is a vector indicating which rows (i.e., sequences) 
belong to the foreground ( 1iR  ) or background ( 0iR  ) partitions, C is a vector 

indicating which columns do ( 1jC  ) or do not ( 0jC  ) differentiate the 

foreground from the background, Θ  is an array of vectors representing the amino 
acid compositions at each column position for each partition, ,  denotes the 

inner product of two vectors, and  1
jj j A

        models the foreground 

composition at pattern positions where  T

,1 ,20,...,j j j    is the background 

amino acid frequency vector for column j, the parameter α specifies the expected 
background ‘contamination’ at pattern positions in the foreground, and 

jA  is a 

vector that specifies the pattern residues at position j. At the positions defined by 
C, we require that the pattern match a consensus residue that is derived from the 
seed sequences and that, in this way, helps define the foreground partition. Note 
that, at non-pattern positions, the vector j  corresponds to the overall (foreground 

and background) composition. The first two terms on the right hand side of 
Equation (1) correspond to the logarithm of the likelihood. The third through sixth 
terms correspond to the logarithm of the product of the prior probabilities (which 
are defined as for Equation 2 below).  
 
2.2. A Function-based Alphabet. 
 
Presumably the most important feature discriminating between two functionally 
divergent categories of proteins is whether the foreground residues at pattern 
positions can perform a critical function that the corresponding background 
residues cannot.  I capture this feature by collapsing the 20 letter amino acid 
alphabet A  at each position j down to a two-letter alphabet consisting of a 
functional residue set jA  and a complementary non-functional residue set c

jA . 

The vector A  defines an array of k such functional residue sets: one jA for each 

position in the alignment. In keeping with the minimum description length 
principle (Grunwald, 2007), this allows us to focus on the relevant properties of 
the sequence data, namely, whether or not residues at position j can perform an 
implicit function. Moreover, this has the added benefits of increasing the 
statistical power by decreasing the number of parameters and of speeding up the 
sampler.  

In order to sample pattern residue sets in this way, for each amino acid 
residue y, I define a set of permissible functional residue sets as those subsets of 
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the alphabet that contain y along with zero or more additional residues with 
positive (non-integer) BLOSUM62 (Henikoff and Henikoff, 1992) log-odds 
scores both with y and with each other; that is, as: 
 

    62, , 0j j j fy A A A y A y y A Blsm y y           A . 

 
(This provides a statistical basis for defining biochemically similar residues 
because, within related proteins, such residue pairs occur more often than 

expected by chance.) Hence, for differentiating columns I require that  j jA yA  

where jy  is the seed alignment consensus residue for column j.  For example, if 

Tjy   then           T , S,T , T,N , S,T,Njy A ). For non-differentiating 

columns jA   . Moreover, the column indicator variable is redefined as  

 
1 if 

0 if 
j

j
j

A
C

A


  

 . 

 
This allows us to define independent priors for A (and indirectly for C  at the 

same time) as  
1

j

k

A
j

p 


A (product categorical distributions), where:  

 

1
j

j

A

A

j

q

A
     (when jA   );  

 

where 0 1q  ; 
q
  ;   is a normalizing constant; and

 jA  denotes the 

number of residue sets in  jyA  with cardinality jA .  For example, if Vjy  ,  

 

                  V , V,I , V,L , V,M , V,L,M , V,I,M , V,I,L , V,I,L,Mjy A ,  

 

and  V,LjA  , then jA =3 because there are three sets in  jyA  with a 

cardinality of 2.  Formulated in this way, 
fA  is geometrically down-weighted 

based on jA  and linearly down-weighted based on jA .  The former disfavors 

the inclusion of additional residues to the pattern set whenever those residues are 
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only marginally elevated in the foreground relative to the background. The latter 
spreads out the prior probability equally over all residue sets having the same 
cardinality. By default 0.5q  ; lowering or raising the value of q increases or 
decreases, respectively, the prior probability associated with larger residue sets. 

Thus the logarithm of the joint distribution of all the variables for this 
modified scBPPS model is  log , , , ,P  X R A  

 

    
       

1 1

log , 1 log , 1 log ,

log log log log

k n

j i j ij i j ij j j ij
j i

C R x R x C x

p p p p




 

     

   

 θ θ θ

Θ R A

 

 
(2) 

 
where the variable C  depends entirely on the variable A  and where the priors for 
, Θ  and R are defined as: 
 

   
      00

110 0

0 0

1
baa b

p
a b

    
 
 

 (Beta), 

   
1

1

d

j
j

p





 


bb

θ
b

(product Dirichlets),  

and   1

1

(1 )i i

n
R R

i i
i

p r r 



 R    (independent Bernoullis). 

 
2.3. The mcBPPS model 
 
The modified scBPPS sampler is generalized into the mcBPPS sampler by 
introducing the notion of a hyperpartition, as follows. Consider an N-fold 
partitioning of the input sequences into disjoint sets, which we denote as the N-
dimensional vector S. Thus each zS  corresponds to a distinct, functionally-

specialized subgroup (within the protein class) that is ‘labeled’ through 
association with a (user-defined) seed alignment, from which is derived a 
consensus sequence as required for the Bayesian statistical formulation. Based on 
these sets, a hyperpartition H is defined as a length M  array, each element of 

which (1 h M  ) corresponds to a 3-tuple , , o
h h h hH H H H  denoting a tri-

partitioning of the set indices 1 z N   such that the foreground, background and 
“non-participating” sequence sets correspond to 
 

h

z
z H

S


  , 
h

z
z H

S


   and 
o
h

z
z H

S

 , respectively. 
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 The multiple categories are modeled by adding an extra dimension to the 
variables R , C , Θ , α  and A and by redefining R  (based on S and H)  such that

, 1z h h ii S z H R      otherwise , 0h iR  , and by redefining the prior for R 

based on the priors for S, which are modeled as independent categorical 
distributions:  
 

 
1

z

N

S
z

p 


S  (product categorical),   

 
where, by default, 1

zS N   for all z (uniform distribution). 

The statistical model.	To formulate the mcBPPS statistical model, we first 
define a “global background model” (GBM), for which the joint distribution of 
the sequence data and of an array of 20-dimensional (i.e., non-collapsed alphabet) 
residue frequency vectors Θ  is defined (logarithmically) by 

   
1 1

log , log , log
k n

j ij
j i

P x p
 

   X Θ θ Θ . Note that this GBM independently 

models the residue frequencies observed in each column of the alignment, but not 
how those residues are distributed among the N sequence sets—which, instead, is 
captured by the following pattern-partition models (PPMs). These PPMs are 
based on a conditional version of Equation (2) that uses a collapsed alphabet and 

which is denoted as  , , , , ,h h h h hP R Θ A H S U  where 

, , , ,h h h h h    U R Θ A Θ  denotes the conditional universe of discourse and 

where the h  subscripts indicate that the corresponding vector includes every 
element except the h-th element. Note, however, that we cannot compute a 
complete data log-likelihood by summing the data log-likelihoods for the GBM 
and the PPM inasmuch as this doubly models the residue frequencies at each 
position. Instead, we add the data log-likelihood ratio (LLR) of the PPM versus 
the same PPM except where hΘ  is defined as for non-differentiating columns; 

that is, we add:  , , , , , ,h h h h h hLLR  X R Θ A U H S
 

 

   , ,
, , , ,

1 1 , ,

log , 1 log ,
k n

h j h j
h j h i ij h i ij

j i h j h j

i C R x R x


 

            
 H S

θ θ
I

θ θ
 

 
(3) 

 
where the function  
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 ,

1 if 

0 if 

o
z h

o
z h

i S z H
i

i S z H

   
 

  
H SI  

 
indicates the participating sequences for the h-th PPM. For differentiating 
columns ,h jθ  denotes an alternative residue frequency vector for column j that is 

computed using the same collapsed two-residue alphabet, but with all the 
foreground sequences merged in with the background partition. For non-
differentiating columns (i.e., where , 0h jC  ) ,h jA  , so that the residue 

frequency vectors are 1-dimensional with 1  , , 0h j
   and , , 1h j h j    ; 

therefore, using the convention (based on continuity) that 0 log 0 0 , non-
differentiating columns contribute nothing to Equation 3.  As a result, this LLR 
adjusts the GBM log-likelihood upward or downward proportional to how likely 
or unlikely it is that the sequence data harbors each pattern-partition pair.  

The preceding discussion focuses on the relationship between the GBM 
and a specific PPM, but we also need to ensure that there is no overlap between 
different PPMs—that is, that we can justify treating all the differentiating columns 
as statistically independent. This is the case for PPMs whose pattern positions are 
distinct or whose participating sequence sets are disjoint. In addition, given a 
collapsed alphabet, two or more models of a shared differentiating column can be 
treated as approximately independent under the following conditions:  (i) the 
PPMs’ foreground or background partitions are disjoint; (ii) their pattern residue 
sets are disjoint; or (iii) for each pair of PPMs, both the foreground partition and 
the pattern residue set of one PPM are proper subsets of those of the other PPM.  
Satisfying the column independence conditions in this way leads to a dependency 
between PPMs, which is modeled by enumerating, for each column, every 
permissible combination of categories and of collapsed alphabets satisfying these 
conditions and then defining (uniform) priors for each (within  p A ) and setting 

the priors for prohibited combinations to zero.  The resulting number of 
combinations is large, but manageable (due to consensus-imposed pattern 
restrictions); however, the formulation is too complicated to be helpful here. To 
avoid overtraining and to speed up the sampler, a maximum number of pattern 
positions for each category h can be specified; this is straightforward to model 
using appropriately-modified indicator variables.  

Given these restrictions, we estimate the multiple-category log-likelihood 
as:  log , , , , , ,P X R Θ α A H S  
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1

log , , , , , , ,

log log log log log

h h h h h h
h

P LLR

p p p p p




 

    


H

X Θ X R Θ A H S U

Θ Θ α A S

 

 
(4) 

 
where the logs of the PPM prior probabilities (the last 5 terms) ensure that the 
adjusted distribution sums to 1. We can also compute a multiple-category (mc)-
LLR by subtracting from Equation (4) the value obtained when all of the columns 
are non-differentiating.  Due to the conservative nature of the Bayesian 
formulation, this mc-LLR provides a measure of significance: if the aligned input 
sequences are randomly shuffled within each column, then this value is expected 
to be negative—unless, that is, all of the PPMs likewise lack differentiating 
columns, in which case it is zero.  

Hyperpartition restrictions. When creating a hyperpartition several 
restrictions are imposed. First, we require inclusion of an ‘aberrant sequence set’ 
(denoted as 0S ) that contains a large number of random prior pseudocounts and 

that serves as the background for the largest foreground partition(s) (e.g., the root 
in Fig. 2). This allows the sampler to eliminate unrelated sequences, pseudogene 
products and other non-functional or erroneous sequences from the analysis. 
Second, the remaining partition assignments must be either derived from a 
phylogenetic tree (as in Fig. 2) or else arbitrarily defined based on two conditions: 
(i) Each of the sets (except 0S ) must be assigned to at least one foreground 

partition. And (ii) no two sets can share identical foreground assignments (as this 
would prohibit the sampler from discriminating between sets). An analysis based 
on an arbitrarily-defined hyperpartition (Table 2) is illustrated below.  

 
2.4. Sampling and optimization strategies 
 
Instead of directly sampling sequences between the foreground and background 
partitions, as for the scBPPS sampler, the mcBPPS sampler moves sequences 
between sets (i.e., the zS ) and, as a result, indirectly changes the foreground and 

background partitions for each category as specified by the hyperpartition. With 
minor modifications to account for sampling between partitions indirectly in this 
way and for multiple categories, the mcBPPS sampling strategies are as described 
for the scBPPS sampler (Neuwald et al., 2003)—except, that is, for the following 
optimization strategy for functional residue sets.  

Optimization of jA . Because the functional residue set jA  at each position 

in each PPM is unknown to us a priori, these need to be inferred from the data.  
Conditional on all the other variables we can determine the relative probability of 
the observed residues in an aligned column. Since we are working on one column 
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and one category at a time, we ignore the indicators j and h for notational clarity. 
Hence, the probability associated with a column residue composition vector 
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where 1, 1,,f nn n  and 0, 0,,f nn n  are the numbers of functional and non-function 

residues in the foreground and background, respectively. Based on this 
formulation, we can conduct the following Metropolis algorithm: 
 Randomly select an alternative functional residue set 

    A y A A     A  (where y is the consensus residue at that 

position) and propose to change A to A ; 
 Accept the proposal with probability: 
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Note that for non-differentiating columns A  and 1, 1, 0f nn n  . 

 Sampling versus optimization. The mcBPPS sampler has two 
applications. The first is to sample a set of random variables from the posterior 
probability distribution, where each variable is a length M array of pattern-
partition pairs. Such a sample can be used to estimate both the predictive 
probability that a specific protein belongs to a specific subgroup (with implicit 
shared functional and/or mechanistic features) and the predictive probability that 
specific pattern residues are distinguishing (i.e., functionally-critical) features of 
these subgroups.  The focus here, however, is on a second application, namely to 
optimally define the functionally-divergent categories (i.e., the partition 
assignments) and the corresponding pattern residues. The sampler applies three 
heuristics to converge on such an optimum more rapidly. First it initializes each of 
the zS  sets to contain those input sequences with the best pair-wise similarity 

score against the consensus sequence for that set. Second, based on these 
initialized sets and the corresponding partitions, it computes, for each category, a 
‘seed pattern’ based on those residues that are both prevalent in the foreground 
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but rare in the background; this is done by identifying functional residue sets that 
maximize the relative entropy—an information theoretical measure of the 
‘distance’ between foreground and background distributions. Finally, simulated 
annealing (Kirkpatrick et al., 1983) is applied during convergence to ‘drop into’ a 
nearby (ideally global) optimum (see Fig. S14 in the supplementary file).   

 
2.5. Creating a hyperpartition with and without user-supplied information 
 
To create a hyperpartition for a major protein class, several strategies can be used.  
One strategy is to rely on web resources, such as the NCBI conserved domain 
database (CDD) (Marchler-Bauer et al., 2002), which provides both a curated 
multiple alignment of representative subgroups and a corresponding tree (in 
Newick format) reflecting the (presumed) evolutionary relationships between 
subgroups.  An NCBI CDD curated alignment can be used as input to the 
MAPGAPS program (Neuwald, 2009c) in order to obtain an input alignment for 
the mcBPPS sampler.  Note, however, that one or more of the relationships 
represented in the corresponding phylogenetic tree may fail to correspond to 
significant co-conserved patterns; in such cases, the mcBPPS sampler will fail to 
converge on a contrast alignment with a positive log-likelihood score, which it is 
programmed to reject.  An alternative strategy is to run the scBPPS sampler to 
identify prominently co-conserved pattern-partition pairs prior to constructing a 
mcBPPS hyperpartition.  Multilevel hierarchical relationships can be identified 
through recursive application of the scBPPS sampler to the foreground or 
background alignment from a previous scBPPS analysis.  As a third strategy, the 
mcBPPS sampler includes an option where it will create a starting hyperpartition 
automatically—that is, in the absence of user-supplied seed sequences and a 
hyperpartition. (For an example of such automatically generated output for 
Rossmann fold proteins, see the supplementary file.) In this case, the mcBPPS 
sampler first searches for small sets of seed sequences in the input alignment; 
within each seed set the sequences both are selected from distinct phyla and are 
closely related to each other.  (For this, the input alignment needs to include the 
phylum and kingdom for each sequence.)  It then creates a simple tree consisting 
of a root node corresponding to all of the proteins in the class and one leaf node 
for each of the seed alignments. From this tree it creates a starting hyperpartition. 
This automated procedure can be applied recursively in order to construct more 
complex trees and corresponding hyperpartitions, which can then be edited by the 
user. Again, the sampler will reject nodes in the tree (and the corresponding 
contrast alignments) with LLR’s (Equation 3) below a specified conservative 
cutoff (100 nats by default). (The information is in nats because LLRs are 
computed as natural logarithms.)  The example presented in section 3.2 below, 
illustrates how to design a hyperpartition based on a set of biochemical questions.   
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3. APPLICATION  
 
The mcBPPS sampler’s biological relevance and performance is illustrated here 
through analyses of three major protein classes, P-loop GTPases (Leipe et al., 
2002), AAA+ domains (Neuwald et al., 1999) and helicases (Abdelhaleem, 2010). 
In order to facilitate comparison with the scBPPS sampler and to avoid burying 
novel biological findings within this (statistically-oriented) paper’s supplemental 
files, two of these analyses focus on proteins that we have studied in considerable 
detail previously: Ras-like GTPases (Neuwald, 2007b, 2009a, 2009b; Neuwald et 
al., 2003) and DNA clamp loader subunits (Neuwald, 2005, 2006a, 2006b, 2007a; 
Neuwald et al., 1999). For detailed descriptions and biological interpretations of 
these mcBPPS analyses, see the supplementary file and these previous 
publications. The mcBPPS sampler was also applied to an entirely new analysis 
of Arf and Arf-like GTPases resulting in novel biological findings. To bring these 
findings to the attention of the biological community, this analysis was recently 
published in Biology Direct, a rapid publication online journal that features an 
open review process. Readers are referred to this publication (Neuwald, 2010) for 
evaluations of the mcBPPS sampler’s biological relevance by three expert 
referees. Finally, the supplementary file reports another new (albeit preliminary) 
mcBPPS analysis of superfamily 1 and 2 helicases (Abdelhaleem, 2010); an in-
depth analysis will be published separately (Neuwald, in preparation).  For an 
evaluation of the sampler’s convergence behavior, its robustness when confronted 
with variable input and the choice of tuning parameters in prior distributions, see 
the supplementary file.  

For such analyses, an accurate input alignment can be obtained in about an 
hour by performing a MAPGAPS (Neuwald, 2009c) search of the protein 
sequence databases using, as the query, a curated alignment of representative 
sequences within the protein class. Such curated alignments can be obtained from 
the NCBI CD database (ftp.ncbi.nih.gov/pub/mmdb/cdd/) or from other protein 
domain databases. For the analyses here, however, the curated alignments (except 
for the independently-generated PSI-BLAST GTPase alignment in Fig. S15 of the 
supplementary file) were obtained as described in Methods. These analyses took 
about one to two hours to run on a 64-bit Linux workstation. Unlike the helicase 
hyperpartition, which was derived from the corresponding phylogenetic tree, the 
hyperpartitions for P-loop GTPases and AAA+ domains were designed to address 
specific questions regarding the proteins of interest. An auxiliary program (see 
Methods) was applied to the sampler’s output to generate 3D-visualization scripts 
for structural analysis of pattern residues within available structures.  The Ras-like 
GTPase and DNA clamp loader analyses are summarized as follows. 
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Figure 3. Contrast alignments for Rab GTPases. The seed alignment for the Rab subgroup (Table 
1, row 4) is highlighted in three ways to reveal patterns characteristic of three functionally-
divergent categories for which Rab is in the foreground: top, patterns distinguishing TRAFAC 
class from other proteins (column 3 in Table 1); middle, patterns distinguishing Ras-like from 
other TRAFAC GTPases (column 6); and bottom, patterns distinguishing Rab, Ran and Rho from 
Arf/Arl/Gα GTPases (column 10). Characteristic foreground and background residues at each 
position are shown below each alignment and, directly below these, corresponding frequencies are 
given in integer tenths. (The actual alignments are too large to show every sequence, of course.)  A 
‘7’, for example, indicates that the corresponding residue occurs in 70-80% of the sequences. The 
histograms above highlighted columns quantify selective pressures imposed on pattern residues. 
See the supplementary file for the full size version of the alignment and for detailed descriptions 
and interpretations. 
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Table 1. Hyperpartition for P-loop GTPases. 

Category1 Subgroup2:   
+ - + - - + - - - - - - + + Galpha R

as-Like G
TPases 

TR
A

FA
C

 subclass 

+ - + - - + - - - - - + - + Arl 
+ - + - - + - - - - + - - + Sar 
+ - + - - + - - - + - - - - Rab 
+ - + - - + - - + + - - - - Ran 
+ - + - - + - + - + - - - - RhoLike 
+ - + - - + + - - o - - - - Ras 
+ - + - - + - - - o - - - - MiscRasLike
+ - + - + - o o o o o o o o EF-like  
+ - + + - - o o o o o o o o Era/Obg  
+ - + - - - o o o o o o o o MiscTRAFAC  
+ + o - - o o o o o o o o o SIMIBI   
- - - - - o o o o o o o o o Random   
    5         

1Each column corresponds to a functionally-divergent category. The 
symbols ‘+’, ‘-‘ and ‘o’ indicates that the subgroup in that row is 
assigned to that column’s foreground, background, and non-participating 
partitions, respectively. 2Each row corresponds to a protein subgroup; 
miscellaneous subgroups are italicized. 

 
3.1. P-loop GTPases 
 
Given an input alignment of 66,386 unique P-loop GTPase sequences, the 
mcBPPS sampler searched for optimal pattern-partition pairs based on the 
hyperpartition in Table 1. The pattern-partition pair in column 1 distinguishes 
well-defined P-loop GTPases from related sequences corresponding to 
pseudogene products, non-functional proteins, or otherwise aberrant sequences. 
The background partition includes 30,000 random sequences (as prior 
pseudocounts) for this category—which thus serve as a ‘sink’ for eliminating 
sequences that would otherwise obscure the overall analysis. Columns 2 and 3 
correspond to two major divergent subclasses, the SIMIBI and TRAFAC 
GTPases (Leipe et al., 2002), respectively. Columns 4-6 correspond to three 
divergent groups within the TRAFAC subclass (Leipe et al., 2002), namely 
Era/Obg, translation elongation factor-related (EF-like) GTPases and Ras-like 
GTPases. Columns 7-15 correspond to divergent subgroups of Ras-like GTPases. 
The hyperpartition in Table 1 also includes two miscellaneous subgroups: 
MiscRasLike and MiscTRAFAC; these accommodate sequences that generally 
conserve the canonical features of that particular “supergroup”, but that fail to 
conserve features of the explicitly-modeled subgroups within that supergroup.  

For each non-miscellaneous subgroup the sampler outputs a multi-level 
“hierarchical” alignment consisting of one contrast alignment for each column in 
which that subgroup has been assigned to the foreground partition. Each of these 
contrast alignments highlights, within that subgroup’s seed alignment, those 
conserved residues that most distinguish the foreground from the corresponding 
background partition. Fig, 3 shows a 3-tier hierarchical alignment for Rab 
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GTPases corresponding to columns 3, 6 and 10 of Table 1. The patterns 
associated with these three categories correspond to three structural features (Fig. 
4): (i) the guanine nucleotide-binding pocket (Vetter and Wittinghofer, 2001); (ii) 
a charge-dipole pocket, formation of which is highly correlated with formation of 
an unusual, outward-directed switch II helix (Neuwald, 2009a); and (iii) a 
‘glycine brace’ (Neuwald, 2009b) proposed to stabilize guanine-nucleotide 
binding loop hinge points. These alignments corroborate earlier analyses 
(Neuwald, 2007b, 2009a, 2009b) with two exceptions: due to correction of 
previous misaligned switch I regions, the middle alignment in Fig. 3 
reclassifies—from the Ras-like to the TRAFAC categories—a switch I threonine 
that coordinates with the GTP-bound Mg++ ion (Thr61 in Fig. 3) and highlights 
one additional residue, a glycine (Gly63 in Fig. 3) that appears to serve as a 
switch I hinge point. Thus this mcBPPS analysis identifies these (and other) Ras-
like GTPase distinguishing features more rapidly, precisely and directly than our 
previous approach, which required multiple scBPPS analyses in conjunction with 
various ‘intervention strategies’.  

 

 
 

Figure 4. Structural locations of pattern residues within Rab11 bound to a GTP analog 
(Pasqualato et al., 2004). Color scheme: residues with magenta-, orange- and yellow-colored side-
chains correspond to the top, middle and bottom alignments in Fig. 3, respectively. In this 
structure, the Ras-like residues (orange side-chains) form a ‘charge-dipole pocket’ (Neuwald, 
2009a) whereas the Rab/Rho/Ran-associated residues (yellow side-chains) form a ‘glycine brace’ 
(Neuwald, 2009b). 
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 3.2. DNA clamp loaders 
 
Choosing a specific hyperpartition configuration also depends on the various 
subgroups’ biochemical properties, which do not necessarily follow their 
phylogeny.  A phylogenetic tree is typically determined based on overall sequence 
similarity, whereas sub-regions within each of the corresponding proteins may 
evolve in different ways. As a result, subsets of proteins from different clades can, 
in principle, share certain biochemical properties, presumably inherited from an 
ancestor of both clades, but lost in other members of both clades due to a 
relaxation of selective constraints upon those other members. This is illustrated by 
an analysis of AAA+ domains with a focus on eukaryotic Replication Factor C 
(RFC) DNA clamp loaders (see Fig. 5, the hyperpartition in Table 2 and the 
supplementary file).  

RFC DNA clamp loaders (O'Donnell and Kuriyan, 2006) consist of five 
evolutionarily-related, functionally-specialized subunits (denoted A, B, C, D and 
E). Biochemically, RFC-ABCD are all active ATPases whereas RFC-E is not, and 
RFC-BCDE all interact with the ATP-binding site of an adjacent RFC subunit, 
whereas RFC-A does not. Such sequence similarities and differences reflect 
functional similarities and differences that, presumably, are associated with each 
subunit’s specialized role within the clamp loader complex. Based on this 
information, we construct a hyperpartition that addresses the following questions: 
Which RFC residues: (i) Catalyze ATP hydrolysis?  (Compare all AAA+ 
ATPases with other proteins; column 1 in Table 2.) (ii) Directly couple ATP 
hydrolysis to clamp loading? (Compare RFC-ABCD, which are active ATPases, 
with RFC-E, which is not; column 9.) (iii) Trans-activate ATP hydrolysis? 
(Compare RFC-BCDE, which contact an adjacent ATPase subunit, with RFC-A, 
which does not; column 10.) (iv) Differentiate RFC subunits from active bacterial 
clamp loader subunits?  (Compare RFCs with γ; column 8.) (v) Differentiate all 
trans-acting clamp loader subunits from all other AAA+ subunits? (Compare 
trans-acting clamp loader subunits with other AAA+ subunits; column 6.)  Table 
2 addresses similar questions regarding bacterial clamp loader γ and δ’ subunits, 
which were analyzed along with the RFC subunits (see the supplementary file).  
Because RuvB-like AAA+ subunits are more closely related to clamp loader 
subunits than are other AAA+ subunits, these are modeled specifically (column 5) 
and in some cases are assigned to non-participating partitions so that they would 
not obscure important, co-conserved residues.  Other major AAA+ subgroups 
(columns 2-4) are also modeled specifically so that the sampler can more readily 
distinguish these from clamp loader subunits.  
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Figure 5.	  Contrast alignments and corresponding structural features for RFC-B, -C and -D subunits. (a)-(e) 
Contrast alignments corresponding to columns 1, 9, 6, 12, and 8 of Table 2, respectively. The RFC-BCD seed 
alignment used throughout spans the region from the ATP binding site to just beyond a helix whose C-
terminus binds to the DNA clamp. (f) The structure of the corresponding region within the RFC-complex 
bound to the clamp and to an ATP analog (Bowman et al., 2004). Residue side-chains are colored to match 
the color of the corresponding alignment’s leftmost column (which lists sequence identifiers). For clarity, 
some pattern residues are not shown (e.g., those highlighted in (e) for RFC-B). See the supplementary file for 
the full length alignments and detailed structural and functional interpretations. 
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Some of the sampler’s output is shown in Fig. 5.  This reveals that RFC-
BCD shares co-conserved residues both with RFC-A (because they all hydrolyze 
ATP) but not with RFC-E (Figs 5b and S6D), and with RFC-E (because they all 
trans-activate ATP hydrolysis) but not with RFC-A (Fig. S6E).  Likewise, RFC-
BCD share certain co-conserved residues with both RFC-A and RFC-E (Figs 5e 
and S6C), and with neither RFC-A nor RFC-B (Figs 5d and S6F). Moreover, all 
five RFC subunits conserve residues both in common with (Figs 5c and S6B) and 
distinct from (Figs 5e and S6C) the corresponding bacterial clamp loader 
subunits. Note that these diverse relationships cannot be represented by a tree. 
This single mcBPPS analysis rapidly, precisely and directly characterizes clamp 
loader AAA+ domains that were previously characterized only after much more 
involved scBPPS analyses (Neuwald, 2005, 2006a, 2006b, 2007a). 
 

Table 2. Hyperpartition for AAA+ domains. 

Category Subgroup:  
+ - - - - o + + + - o - - + + o o  RfcA C

lam
p Loaders 

+ - - - - o + + + - o - + - + o o  Ctf18 
+ - - - - + + + + + - + o o - - o  RfcBCD 
+ - - - - + + + - + + - o o o - o  RfcE 
+ - - - - o + o o o o o o o o o o  MiscRfc
+ - - - - + o - o o o o o o o + +  γ 
o - - - - + o o o o o o o o o + -  δ' 
+ - - - + o o o o o o o o o o o o  RuvBlike  
+ - - + - - - o o o o o o o o o o  ClpLon  
+ - + - - - - o o o o o o o o o o  NtrClike  
+ + - - - - - o o o o o o o o o o  AAA  
+ - - - - - - o o o o o o o o o o  MiscAAA+  
- o o o o o o o o o o o o o o o o  Random  
1 3 5 7 9 11 13 15 17   

 
4. DISCUSSION 
 
The mcBPPS sampler addresses the problem of obtaining statistical clues from 
vast amounts of sequence data regarding unknown biochemical phenomena as a 
starting point for biological discovery. Note that this is a fundamentally different 
problem from that addressed by "functional subtype" prediction (FSP) methods 
(Carro et al., 2006; Chakrabarti et al., 2007; Feenstra et al., 2007; Gu and Vander 
Velden, 2002; Hannenhalli and Russell, 2000; Kalinina et al., 2004; Lichtarge et 
al., 1996; Livingstone and Barton, 1996; Mihalek et al., 2004; Mirny and Gelfand, 
2002; Pirovano et al., 2006; Ye et al., 2008). FSP methods aim to predict residue 
functions that are sufficiently well-understood to allow benchmarking (Capra and 
Singh, 2008; Chakrabarti and Panchenko, 2009); in particular, they typically are 
designed to detect residues directly involved in substrate specificity. Validation 
against benchmark data sets is, of course, important for such tools.  However, 
some of the most interesting phenomena in Nature are those that initially defy 

21

Neuwald: The mcBPPS sampler

Published by Berkeley Electronic Press, 2011



 

prevailing paradigms. For this reason, the mcBPPS sampler lets the data itself 
reveal its most statistically striking properties without making assumptions about 
the types of residues to be identified. It is further distinguished from each of the 
FSP methods in at least several of the following respects: (i) It does not require 
that the input alignment be partitioned into divergent subsets beforehand; this is 
unlike many (Chakrabarti et al., 2007; Feenstra et al., 2007; Hannenhalli and 
Russell, 2000; Kalinina et al., 2004; Livingstone and Barton, 1996; Mirny and 
Gelfand, 2002; Pirovano et al., 2006; Ye et al., 2008), though not all (Carro et al., 
2006; Gu and Vander Velden, 2002; Lichtarge et al., 1996; Mihalek et al., 2004) 
such methods. (ii) It has a rigorous statistical basis. One FSP method (Marttinen 
et al., 2006) is Bayesian-based, though it lacks a MCMC sampling component.  
(iii) It is designed for very large input alignments (of up to a million or more 
sequences). (iv) It can be used to estimate predictive probabilities for membership 
within each subgroup. (v) It automatically separates out unrelated and aberrant 
sequences. And (vi) it identifies multiple categories of patterns within individual 
proteins of interest and (vii) thereby introduces Bayesian multilevel modeling 
(Snijders and Bosker, 1999) to protein sequence analysis.   

Although the scBPPS and mcBPPS samplers address similar problems, the 
mcBPPS sampler identifies functionally critical residues more precisely, is much 
faster, can address questions that neither the scBPPS sampler nor other programs 
are able to address and (in conjunction with auxiliary routines) can define and 
generate structurally-annotated protein domain profiles automatically. By setting 
up a stringent competition between categories for both pattern positions and 
sequences, both the conserved residues most distinctive of and the sequences 
within each category are more precisely defined. Protein evolution often leads to 
three or more functionally divergent groups: one group harboring certain 
‘canonical’ features, another lacking them, and one or more groups that—due to 
further divergence—harbor some but not all of the canonical features. For 
example, the RFC clamp loader complex performs three distinct functions: one 
associated with DNA replication (Tsurimoto and Stillman, 1989), another with 
sister chromatid cohesion (Bermudez et al., 2003) and a third with DNA damage 
checkpoints (Ellison and Stillman, 2003; Majka and Burgers, 2003). As a result, 
the ancestral RFC-A subunit has further diverged functionally (and in sequence) 
into at least three distinct subunits, one for each of these cellular functions (Majka 
and Burgers, 2004); one of these is CTF-18 in Table 2. The mcBPPS sampler 
prevents such divergent features from obscuring an analysis (without having to 
identify and remove such sequences beforehand) by explicitly modeling divergent 
and miscellaneous RFC-A subgroups. Likewise, an input alignment is nearly 
certain to harbor a significant number of pseudogene products and other related, 
non-functional sequences. For example, among fifty naturally-expressed protein 
tyrosine phosphatase-related transcripts identified in humans, twelve (or 24%) 
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were determined experimentally to be pseudogene products (Andersen et al., 
2004). The mcBPPS sampler addresses this problem by explicitly modeling 
aberrant sequences.  

The mcBPPS sampler generates multilevel contrast alignments that 
facilitate comparisons between various functionally-divergent categories. This 
allows the mcBPPS sampler to search for a single global optimum, whereas the 
scBPPS sampler could only identify more than one functionally-divergent 
category by searching for local optima in the posterior probability distribution.  
Likewise, by explicitly modeling all 20 amino acid residues the scBPPS sampler 
inadvertently disfavors certain biologically-relevant patterns. For example, if the 
pattern residues are acidic and the foreground is ‘contaminated’ with serine, 
whereas the background lacks serine, then the scBPPS statistical model imposes a 
penalty—even though this situation implies further (not less) divergence of the 
foreground from the background. The mcBPPS sampler’s improved statistical 
model avoids this problem. 

The mcBPPS sampler’s speed is illustrated by the Ras-like GTPase and 
AAA+ clamp loader analyses described here.  Our earlier scBPPS analyses of 
these proteins were performed over a period of several years and required: (i) 
Considerable data manipulation and processing (such as, for example, elimination 
of spurious sequences and pulling out specific sequence sets for subgroup-to-
subgroup comparisons). (ii) Intervention strategies—such as guiding the sampler 
into suboptimal solutions (corresponding, for example, to specific subfamilies) 
rather than letting it converge on an optimal solution (corresponding, for example, 
to a superfamily). And (iii) time-consuming interactive structural analyses to 
interpret the biological relevance of pattern residues. By contrast, the mcBPPS 
sampler (with auxiliary structural routines) can quickly perform such analyses in 
parallel, obtain more clear-cut results and dramatically speed up the biological 
interpretation of those results.  And, although not emphasized here, the mcBPPS 
sampler can provide predictive probabilities for alternative subgroup assignments 
and, in a similar manner, probabilistically assign functions based on co-
classification with functionally-verified proteins.  

The mcBPPS sampler constitutes a substantial step toward fully 
automating protein classification, structural/functional annotation, and the 
construction of subgroup-specific domain profiles. It can also annotate likely 
functionally-critical residues—and (in conjunction with other routines) their 
corresponding structural interactions—automatically, based on empirical, 
statistically-based criteria. For speed and sensitivity it will be increasingly 
important to search a query sequence against domain profiles rather than against 
millions (and soon billions) of individual protein sequences. Thus a principle 
application of the mcBPPS sampler is automated generation of annotated profiles 
for incorporation into the Pfam (Finn et al., 2008) and NCBI conserved domain 
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(Marchler-Bauer et al., 2009) databases. Most importantly, when linked into web-
based BLAST searches and into the NCBI Cn3D viewer, such annotated profiles 
will provide biologists with previously inaccessible molecular information 
regarding mysterious, as-yet-unidentified biochemical phenomena. 

5. METHODS 
 
5.1. Input alignments 
 
The mcBPPS sampler requires an (ideally very high quality) multiple sequence 
alignment as input. This is typically accomplished using the MAPGAPS program 
(Neuwald, 2009c) (http://mapgaps.igs.umaryland.edu). MAPGAPS identifies and 
aligns database sequences that share significant similarity to at least one sequence 
within a manually-curated alignment, which serves as the query.  (To ensure that 
seed sequences are selected from distinct phyla, taxonomic information can be 
added to a sequence database using another auxiliary program.) Using the query 
alignment as a template, it then multiply aligns the detected sequences with 
accuracy comparable to that of the query alignment (assuming that the query 
alignment adequately represents the various subgroups within the associated 
protein class).  A good source for such template alignments is the NCBI 
conserved domain database (Marchler-Bauer et al., 2009).  For the two analyses 
described above, however, we used our own, template alignments, which were 
curated with the help of our Bayesian and MAPGAPS multiple alignment 
procedures (Neuwald, 2009c; Neuwald and Liu, 2004; Neuwald et al., 1997). 
Together, these approaches facilitate the construction of accurate alignments 
containing vast numbers of sequences.    
 
5.2. Other input files 
 
The sequences within a curated alignment can also serve as seed sequences for the 
mcBPPS analysis. The seed sequence phylogenetic tree can be used to generate 
the corresponding hyperpartition (using an auxiliary program called ‘tree2hpt’). 
Alternatively, the user may curate both a set of seed sequences for each subgroup 
and a hyperpartition designed to ask specific questions regarding functionally 
divergent subgroups (as is illustrated by the GTPase and AAA+ analyses here).  
 
5.3. Down weighting for sequence redundancy 
 
The sampler deals with overrepresentation of certain sequences using the 
weighting scheme of (Henikoff and Henikoff, 1994), as implemented within the 
PSI-BLAST program (Altschul et al., 1997); to avoid rounding errors this was 

24

Statistical Applications in Genetics and Molecular Biology, Vol. 10 [2011], Iss. 1, Art. 36

http://www.bepress.com/sagmb/vol10/iss1/art36
DOI: 10.2202/1544-6115.1666



 

implemented using integer sequence weights, where the integers 1 to 100 
correspond to weights of .01 to 1.0, respectively.  
 
5.4. Structural analysis 
 
The mcBPPS package includes an unpublished auxiliary routine termed the 
Structural Analysis of Residue Patterns (SARP) program. The SARP program 
takes as input several files generated by the mcBPPS program and a file that lists 
the locations of the corresponding structural coordinate files.  (A MAPGAPS 
search of the NCBI pdbaa sequence database can be performed to detect related 
proteins of known structure.)  The SARP program searches the structural 
coordinate files (up to ten thousand or more) for interactions involving pattern 
residues. The interactions include both classical (Baker and Hubbard, 1984) and 
weak (Toth et al., 2001; Wahl and Sundaralingam, 1997; Weiss et al., 2001) 
hydrogen bonds, aromatic-aromatic interactions (Burley and Petsko, 1985), and 
van der Waals contacts (determined based on a standard distance of 4.5 Å). The 
REDUCE program (Word et al., 1999) was used to attach hydrogen atoms prior to 
hydrogen bond determination. Residue interactions between subunits are assessed 
based on contact surface area (Lee and Richards, 1971).  SARP uses heuristics to 
order the structures based on how likely they are to shed light on the roles of 
pattern residues; this ordering allows the user to examine the most informative 
structures first.  The heuristic used to determine this ordering is based primarily 
on the number of hydrogen bonds between pattern residues weighted by the 
strength of the interaction.  For example, strong hydrogen bonds have greater 
weight than weak hydrogen bonds.  However this current heuristic is tentative, as 
I am actively exploring ways to improve this scoring scheme.  SARP also outputs 
a list of pattern residue interactions for each structure; various auxiliary routines 
are used to convert these lists into scripts for various structural visualization 
programs; for the examples described here RasMol (Sayle and Milner-White, 
1995) scripts were generated.  Future versions of SARP will include an option to 
generate PyMOL (DeLano, 2002) scripts and 3D visualizations using Cn3D 
(Wang et al., 2000).  
 
5.5. Annotated domain profiles 
 
The mcBPPS program outputs an alignment for each of the subgroups modeled by 
the hyperpartition along with the corresponding canonical patterns.  The SARP 
program reports the structurally most conserved 3D interactions between pattern 
residues across all of the structures searched; this flags the most informative 
pattern residues and interactions for structural annotation. Together these output 
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files can be used to generate a structurally annotated conserved domain profile for 
each subgroup.  
 
5.6. Program availability 
 
C++ implementations of the mcBPPS and tree2hpt programs are freely available 
at http://chain.igs.umaryland.edu. 
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