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Gene-Gene Interaction Tests
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Abstract

In the past few years, several entropy-based tests have been proposed for testing either single
SNP association or gene-gene interaction. These tests are mainly based on Shannon entropy and
have higher statistical power when compared to standard χ2 tests. In this paper, we extend some of
these tests using a more generalized entropy definition, Rényi entropy, where Shannon entropy is a
special case of order 1. The order λ (>0) of Rényi entropy weights the events (genotype/haplotype)
according to their probabilities (frequencies). Higher λ places more emphasis on higher probability
events while smaller λ (close to 0) tends to assign weights more equally. Thus, by properly
choosing the λ, one can potentially increase the power of the tests or the p-value level of
significance. We conducted simulation as well as real data analyses to assess the impact of the
order λ and the performance of these generalized tests. The results showed that for dominant
model the order 2 test was more powerful and for multiplicative model the order 1 or 2 had similar
power. The analyses indicate that the choice of λ depends on the underlying genetic model and
Shannon entropy is not necessarily the most powerful entropy measure for constructing genetic
association or interaction tests.
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1 Introduction
The strategy of using a single locus to test for association with a particular pheno-
type has not been as successful as one would expect [Manolio et al. (2009)]. This
may be due to different reasons such as the predominance of common variants in
the genome-wide platforms, and the synergy between environment and genetic risk
factors as well as between different genetic risk factors [Kraft et al. (2007), Thomas
(2010)]. However, complex human genetic diseases are typically caused not only
by marginal effects of genes or gene-environment interactions, but also by the in-
teractions of multiple genes [Cordell (2009)]. Recently, gene-gene interaction, or
epistasis, has been a hot topic in molecular and quantitative genetics.

If the effect at one genetic locus is altered or masked by the effects at another
locus, single-locus tests or marginal tests may not be able to detect the association.
By allowing for epistatic interactions among potential disease loci, we may succeed
in identifying genetic variants that might otherwise remain undetected.

Several statistical techniques have been applied or developed in detecting
statistical epistasis or gene-gene interaction [Cordell (2009)]. Among those tech-
niques the most applied ones are logistic regression models and χ2-tests of inde-
pendence due to easy access in well known statistical packages. However, little
attention has been given to the entropy methods. Entropy methods are best known
for their application in information theory with the seminal work by Kullback and
Leibler [Kullback and Leibler (1951)]. Shannon’s entropy is one of the most well
known entropy measures, and it is the one that has been applied in single locus and
gene-gene interaction analyses [Zhao et al. (2005), Dong et al. (2008), Kang et al.
(2008)]. However, Shannon’s entropy is a particular case of a more generalized
type of entropy, the Rényi entropy [Rényi (1960)].

The goal of this study is to extend the application of Shannon entropy to
Rényi entropy in a single locus association as well as gene-gene interaction. Since
entropy measures are nonlinear transformations of the variable distribution, an en-
tropy measure of allele frequencies can amplify the allele difference between groups
of interest (e.g. case/control). Furthermore, the extension to Rényi entropy intro-
duces more flexibility in such transformations.

Thus, in this paper, we have proposed several Rényi entropy based tests and
compared the performance of the novel tests to some traditional methods. We first
introduced a single locus association test under two-group design, then a one-group
gene-gene interaction test under linkage equilibrium (LE) assumption. The power
of these tests was compared through simulations. We demonstrated that by properly
choosing the Rényi entropy order λ , we could increase the power of the association
test. We also discussed possible ways to construct a two-group interaction test and
how to check whether an interaction effect is due to disease or not under case-
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control design. All the methods introduced in this paper were applied in analyzing
real venous thromboembolism (VTE) case-control data.

Throughout this paper, we use the terminology “statistical gene-gene inter-
action test” or “statistical epistasis test” for interaction test. The word “entropy”
refers to Rényi entropy unless otherwise specified. The simulation data sets were
generated by GWAsimulator [Li et al. (2007)] and the analyses were performed by
using R functions written by the authors.

2 Methods

2.1 Rényi Entropy

In information theory, entropy is a measure of the uncertainty associated with a
random variable. One of the most common entropies is the Shannon entropy intro-
duced by Shannon (1948), which is a special case of a more generalized type of
entropy introduced by Rényi (1960).

The so called Rényi entropy is a family of functionals for quantifying the
diversity, uncertainty, or randomness of a system. The Rényi entropy of order λ ,
λ ≥ 0, is defined as

Hλ (X) =
1

1−λ
log

(
n

∑
i=1

pλ
i

)
,

where X is a discrete random variable with n values of positive probabilities and
∑

n
i=1 pi = 1. Rényi entropy with higher values of λ is more dependent on higher

probability events, while lower values of λ weight all possible events more equally.
Some Rényi entropy measures have quite natural interpretations, such as

H0(·) is defined as the logarithm of the number of values that have non-zero prob-
abilities; H2(·) is often called collision entropy and is the negative logarithm of the
likelihood of two independent random variables with the same probability distribu-
tion to have the same value; and H∞(·) is called min-entropy and is a function of
the highest probability only.

The most well known Rényi entropy is the one with λ = 1. By applying
L’Hopital’s rule, one can show that the formula of Rényi entropy reduces to the
form of Shannon entropy:

H1(X) =−
n

∑
i=1

pi log pi.
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2.2 Association Tests

In this section, we derive a model free association test based on Rényi entropy.
Under a two-group design, such as a case-control design, one may test whether a
set of SNPs or a single SNP is associated with the disease of interest by comparing
the entropy of the first group (case group) to the second group (control group).

Let us assume a locus with k genotypes G1,G2, . . . ,Gk. For the disease
population, let PD = [pD

1 , . . . , pD
k ] be the distribution of the genotypes, where pD

i is
the probability of a case having genotype Gi at a locus of interest. Similarly let us
denote the genotype distribution of normal population by PN = [pN

1 , . . . , pN
k ], where

pN
i is the probability of a control having genotype Gi at a locus of interest. Under

null hypothesis of no association, PD and PN are identical.
For a given observed case-control data, let P̂D and P̂N be the estimated distri-

bution of genotypes of cases and controls, respectively. The Rényi entropy of order
λ is calculated as

Hλ (P̂D) =
1

1−λ
log

(
k

∑
i=1

(p̂D
i )λ

)
. (1)

Similarly, one calculates Hλ (P̂N). The difference between the two entropy statistics

SA
λ

= Hλ (P̂D)−Hλ (P̂N) (2)

is then considered the association test statistic with superscript A standing for ”as-
sociation”.

In the appendix, we show that the entropy statistic (2) follows asymptoti-
cally a normal distribution. Therefore, a test of difference between the two groups
can be constructed, where a significant difference indicates a possible association
between the SNP and the disease.

For multiple loci, it is worth noting that this test may include or exclude
the effect of interaction depending on the way PD and PN are estimated. To allow
for interaction, the genotype distributions should be jointly estimated. To test for
marginal effects only, one could estimate P̂D and P̂N as the product of the marginal
probability estimates.

When λ = 1, the Rényi entropy reduces to the Shannon entropy, i.e.,

lim
λ→1

Hλ (P̂D) =−
k

∑
i=1

(p̂D
i ) log(p̂D

i ). (3)

Thus the statistic of the association test SA
1 is a summation of terms of the form

pi log(pi)− qi log(qi), where i is the index over all genotypes with p and q repre-
senting the corresponding distributions of the case group and the control group. By
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studying each component of the statistics, one can tell which genotype has the most
impact on the statistics, and consequently, it can help us choose the appropriate λ

for the association test. For the purpose of achieving more power to observe a dif-
ference between genotype frequency in cases and controls, the choice of λ depends
on where the main difference lies, whether on the higher or the lower genotype fre-
quencies. One should favor a larger λ value for the former and a smaller λ value
for the latter.

The R codes of the entropy test are available upon request. We tested the
computing time of the association test using a PC processor Intel(R) Core(TM)
2 Duo CPU P7750 @2.26GHz. The test data set contains 1000 cases and 1000
controls. It took about 0.4 sec to get the association test results of one SNP with
20 different λ values. Since most of the computational time is contributed to the
calculation of frequency of genotypes, we recommend to apply the association test
using multiple values of lambda simultaneously.

2.3 Interaction Test

2.3.1 One-group analysis (case-only or control-only)

In this section we describe the Rényi entropy based interaction test of two loci,
L1 and L2, in detail. A generalization of the test for three or more loci is straight
forward. Assume the two loci are in linkage equilibrium with the first locus having
two alleles, A and a, and the second locus two alleles, B and b. Let pL1

0 , pL1
1 , pL1

2
denote the probabilities of three genotypes aa, aA and AA, respectively, at the first
locus. Similarly, at the second locus, let pL2

0 , pL2
1 , pL2

2 denote the corresponding
probabilities of three genotypes bb, bB and BB. Then the joint probability of the
nine genotype combinations is represented by pi j, i, j = 0,1,2, with i and j being
the index of the genotypes at the first and second locus, respectively.

Define qi j = pL1
i pL2

j as the product of the two marginal probabilities. Under
the null hypothesis of no interaction effect, the two loci are independent and the
entropy calculated based on the true joint probability pi j and on the induced qi j
should be identical.

We first estimate the joint and the marginal probabilities as the observed
frequencies p̂i j, p̂L1

i and p̂L2
j . The induced joint probability is then the product of

the observed marginal frequencies q̂i j = p̂L1
i p̂L2

j . The entropy (1) can be estimated
using either the observed frequencies P̂ = p̂i j or the induced frequencies Q̂ = q̂i j.
The proposed interaction (epistasis) test statistic, denoted as SE

λ
, is calculated as the

entropy difference between the two entropy estimates,

SE
λ

= Hλ (Q̂)−Hλ (P̂) = Hλ (P̂1)+Hλ (P̂2)−Hλ (P̂), (4)
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where P̂1 = p̂L1
i and P̂2 = p̂L2

j are the observed marginal genotype distributions of
the first and second locus, respectively. A statistically significant difference means
an interaction between the two loci.

For case-only study, in the case where λ = 1 and n is the case-only sample
size, the statistic 2nSE

1 is the interaction test statistic proposed by Kang et al. (2008).
The statistics is asymptotically distributed as a χ2 with 4 degrees of freedom. For
a more general λ , the asymptotic distribution of (4) under null is unknown. Thus
simulation methods such as Monte Carlo simulations are needed to determine its
distribution and p-values. For a given pair of SNPs, permute the genotypes of one
SNP among subjects to break the possible joint structure of the pair. Follow with
a calculation of the test statistic SE

λ
using the permuted data. Generate N permu-

tation samples and for each permuted sample calculate the test to estimate the null
distribution of (4).

We tested the computing time of the interaction test using a PC processor
Intel(R) Core(TM) 2 Duo CPU P7750 @2.26GHz. The data set contains 1000
samples. The calculation of interaction tests is based on 1000 shuffles and it took
about 10.5 sec to get the one-group test results of one pair of SNPs. Note that most
of the computational time is attributed to the calculation of frequency of genotypes,
thus it makes almost no difference if we test using only one value of lambda or
multiple values of λ . The R code is available upon request.

2.3.2 Two-group analysis

A question one may ask is, for a given significant p-value of an interaction test,
how does one know if the interaction is truly due to either the disease or to some
unknown cause. Under a case-control design, we can apply the one group interac-
tion test to both case and control groups separately. If the interaction effect is not
due to the disease, we would expect the case group and control group to behave
similarly. The question then becomes how to compare the test results between the
two groups.

First, we compared the test statistics of two groups using the ratio of test
statistics. Let SE

λ
(Case) and SE

λ
(Ctrl) be the corresponding test statistics of the two

groups, then SE
λ
(Case)/SE

λ
(Ctrl) should be close to 1 under null. If the ratio of the

statistics is significantly different from 1, the case group and control group are not
equivalent in terms of interaction, therefore, the difference may be associated with
the disease. The null distribution of the ratio statistics can be estimated using the
already generated permutation samples of each one-group analysis, thus, the com-
puting time is just the summation of the computing time of two one-group analysis.
Our simulation results (data not shown) showed that the power to detect the true
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difference is weak, especially when the marginal effect is strong. Larger sample
size is needed to get reliable test results, however, the exact sample size is not eas-
ily determined. It depends on the disease model, the strength of the interaction and
the marginal effects.

In the case where a significant p-value for the case group and an insignif-
icant p-value for the control group are observed, a further permutation test can be
performed to investigate whether these two groups are truly different in terms of
p-value significance. Notice that here we compare the p-values of interaction tests,
thus only interaction effect difference is studied. The comparison can be done using
a 2-step procedure. In the first step the case-control indicator is shuffled to create
new case and control groups and to recalculate the interaction test for these two
groups. The second step is to compare the group p-value difference (defined as the
p-value of the control group minus the p-value of the case group) of the observed
data to the group p-value difference of the shuffled sample. Repeat these two steps n
times (n to be determined by the investigators) to obtain the proportion of the shuf-
fled sample group p-value difference exceeding the observed sample group p-value
difference, which is the empirical p-value of the permutation test. A significant re-
sult of the permutation test indicates the case group has more significant interaction
than the control group, which means the interaction is associated with the disease.
Since this procedure requires a lot of permutation, this method is computational in-
tensive and may be only feasible to apply to a small set of genes or SNPs. Using a
PC processor Intel(R) Core(TM) 2 Duo CPU P7750 @2.26GHz, it takes n×21 sec
to compare the p-values of one pair of SNPs for a date set of 1000 cases and 1000
controls, where n is the number of permutations.

3 Simulation
In this study we performed Monte Carlo simulations to investigate the performance
of the entropy-based tests for several λ values. We also compared our results with
two other methods, χ2-test for contingency tables and likelihood ratio (LR) test for
logistic regression. Data were simulated using GWAsimulator Version 2.0 [Li et al.
(2007)].

3.1 Simulation 1: Comparison between association tests

We studied the performance of the entropy-based association tests with parameter
λ = 0.9,1,2 and compared it to the logistic regression method. LR tests were used
to test for the significance of the allele effect in the regression model.
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Data were simulated using logistic models [Li et al. (2007)]. Four different
marginal effect models were considered: weak dominant, strong dominant, weak
multiplicative and strong multiplicative. The dominant marginal effect (threshold
marginal) is not affected by the number of copies of risk allele as long as at least one
copy is present. The multiplicative marginal assumes the relative risk (compared to
the risk with zero copy of risk allele) increases multiplicatively as the number of
copies of the risk allele increases. Given a disease locus, let R1 be the relative risk
with 1 copy of risk allele and R2 be the relative risk with two copies, then dominant
marginal satisfies R1 = R2 and multiplicative marginal satisfies R2 = R2

1.
Let gi = 0,1,2 be the number of copies of the the risk allele at SNP i, and

define f (gi) = Pr(affected|gi) as the penetrance for genotype gi. Then, the disease
models can be described by the following formula:

logit[ f (gi)] = β0 +β1Igi=1 +β2Igi=2, (5)

where β j is the marginal effect coefficient of the disease locus with j copies of
risk allele. These parameters are calculated approximately as the natural log of the
corresponding relative risk.

For our simulation we fixed the risk allele frequency as 0.15. Relative risk
R1 was chosen to be 1.25 as weak and 1.5 as strong. For each disease model, 1000
data sets were simulated. The coefficients in (5) for each model are shown in the
following Table 1:

Model β0 β1 β2
1: WD -1.844 0.265 0.265
2: SD -1.968 0.484 0.484
3: WM -1.864 0.265 0.542
4: SM -1.990 0.483 1.017

Table 1: Parameters for the four disease models: Weak Dominant (WD), Strong
Dominant (SD), Weak Multiplicative (WM), Strong Multiplicative (SM)

Each simulated data set was analyzed by Rényi entropy association tests
with λ values of 0.9, 1, and 2. A logistic regression model assuming additive ge-
netic effect was fitted to each data set. The likelihood ratio test was used to test
the association of a single SNP to the disease. For each test, power was calculated
as the percentage of having p value less than 0.05 over the 1,000 simulations. The
power of the four tests under four disease models was summarized in Figure 1. We
also evaluated the false positive (type I error) rates for the LR and entropy-based
tests under different sample sizes. We observed that for a sample size less than or
equal to 300, the LR test had the lowest type I error rate (below 0.05) followed by
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Figure 1: Power and sample size for the likelihood ratio (LR) test and entropy-based
test for λ values of 0.9, 1.0, and 2.0 under different marginal effects.

the entropy test with λ =2. For a sample size greater than 300, the entropy test with
λ = 2.0 had the lowest type I error (Figure 2). Both LR test and entropy test with
λ = 2 had good control of type I error with small sample size. All the tests had type
I error close to the target 0.05 as sample size increased.

As shown in Figure 1, for dominant marginal effect models, the entropy-
based test with λ = 2 was the most powerful among the four tests, and the power of
entropy-based test with λ values of 0.9 and 1 were similar to the power of the LR
test. For multiplicative marginal effect models, all four methods look similar. We
applied two-tail matched pair t-test (matched by sample size) to compare the curves
of each method. There was significant (p < 0.05) difference between entropy tests
with different λ . Entropy tests with λ = 2 were significantly different from the LR
test for all the models; entropy tests with λ = 1 and 0.9 were significantly different
from the LR test for the dominant models.
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Figure 2: Type I error rate of likelihood ratio (LR) test and entropy-based test with
λ values of 0.9, 1.0 and 2.0
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Figure 3: Power of the entropy-based test with sample size 100, 300 and 500 for
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sample sizes 100, 300 and 500 under strong dominant and strong multiplicative
marginal effects. The power of the test with λ between 1 and 2 was about the same
for multiplicative model, while for dominant model, the power of λ = 1 test had
much lower power compared to the λ = 2 test. The curves under multiplicative
marginal effect were relatively flat compared to those under dominant marginal
effect. The figure illustrates that the multiplicative model was not very sensitive to
the choice of λ , while properly chosen λ greatly improved the power to detect the
dominant marginal effect.

3.2 Simulation 2: Comparison between Interaction Tests

We studied the performance of the one-group and two group entropy-based inter-
action tests with parameter λ = 0.9,1,2 and compared the one-group test to the
standard χ2-test of association between genotypes at the two loci for a case-only
analysis. We considered two disease loci models with three types of marginal ef-
fects (no marginal, dominant marginal and multiplicative marginal) and two types
of interaction effects (threshold interaction and multiplicative interaction).

The dominant interaction, also called threshold interaction, assumes the
same interaction effect for all genotypes with at least one copy of risk allele at both
disease loci. The multiplicative interaction increases multiplicatively as the number
of copies of disease allele increases. Let ri j be the relative risk with i copies of
risk allele at disease locus 1 and j copies at disease locus 2 (compared to the case
with i copies at locus 1 and j copies at locus 2 but without interaction effect). For
threshold interaction, r11 = r12 = r21 = r22 holds. For multiplicative interaction,
r12 = r21 = r2

11 and r22 = r4
11.

Let gi = 0,1,2 be the number of copies of the risk allele at a locus/gene/SNP
i,(i = 1,2), and f (g1,g2) = Pr(affected|g1,g2) the penetrance for the genotypes
(g1,g2). The disease models can then be described by the following formula:

logit[ f (g1,g2)] = β0 +β11Ig1=1 +β12Ig1=2 +β21Ig2=1 +β22Ig2=2
+γ11Ig1=1,g2=1 + γ12Ig1=1,g2=2
+γ21Ig1=2,g2=1 + γ22Ig1=2,g2=2,

(6)

where the βi j is the marginal effect coefficient of disease locus i with j copies of risk
allele, ∀ i,j, and the γi j the interaction effect coefficient with i copies of risk allele at
disease locus 1 and j copies of risk allele at disease locus 2. These parameters are
calculated approximately as the natural log of the corresponding relative risk.

We simulated 1,000 data sets from each of the disease models specified
above. We set the risk allele frequencies of 0.15 for locus 1 and 0.075 for locus 2
respectively, with a relative risk of r1 = 4. The coefficients in (6) are specified in
Table 2.

Figure 3 depicts the power of entropy-based test with different λ values for
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Figure 4: Six models with different marginal and interaction effects under case-only
design. Power of χ2-test and entropy-based tests with λ = 0.9, 1 and 2 are plotted
against the sample size

Under one group design (for instance, case-only), we evaluated the perfor-
mance of the entropy-based test of three λ values, 0.9, 1.0, and 2.0 with the χ2 test
by comparing their powers. The simulation results (refer to Figure 4) showed that
for all six models, the entropy tests SE

λ
with λ ≥ 1 had higher power than the χ2

test. On the other hand, the tests with λ < 1 had lower power. As shown in the
figure, λ = 2 has the highest power especially for the models with multiplicative
interaction. We applied two-tail matched pair t-test (matched by sample size) to
compare the curves of each methods. There was significant (p < 0.05) difference
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Model β0 β11 β12 β21 β22 γ11 γ12 γ21 γ22
1: N/D -1.816 0 0 0 0 1.386 1.386 1.386 1.386
2: D/D -2.074 0.484 0.484 0.490 0.490 1.386 1.386 1.386 1.386
3: M/D -2.096 0.483 1.017 0.490 1.037 1.386 1.386 1.386 1.386
4: N/M -1.775 0 0 0 0 0.693 1.386 1.386 2.773
5: D/M -2.023 0.484 0.484 0.490 0.490 0.693 1.386 1.386 2.773
6: M/M -2.045 0.483 1.017 0.490 1.037 0.693 1.386 1.386 2.773
Table 2: Coefficients of the six models (-/-): first letter labels the marginal effect
and second letter labels the interaction effect. “N” for null, “D” for dominant, “M”
for multiplicative.

between entropy tests with different λ . Entropy tests with λ = 2 and 0.9 were sig-
nificantly different from the χ2-tests for all the models; entropy tests with λ = 1
were significantly different from the χ2-test for the models without marginal effect
and for the model with dominant (threshold) marginal and interaction effects. By
properly choosing parameter λ , one can potentially increase the power.

Under two group design, we have also evaluated the performance of the ratio
statistics to detect interaction for the case-control design. Our simulation showed
that λ = 1 usually had better performance. We compared the test with the LR test
under certain scenarios. The power of the ratio test was low, specially when the
marginal effect was strong (data not shown). As stated in section 2.3.2, this test is
only recommended for large sample size.

4 Real Data Application

4.1 Venous Thromboembolism (VTE) Data Set Description
The data set consists of 1270 VTE subjects and 1302 unrelated controls collected
to participate in a candidate-gene study. 12,296 SNPs located in 764 genes were
genotyped. More details about this study can be found in Heit et al. (2011).
Because there is a genomic region on chromosome 1q24.2 that contains a cluster
of 5 genes highly associated with VTE, we decided to investigate this region for
potential association and SNP-SNP interactions using our proposed entropy-based
tests. A total of 102 SNPs were analyzed.

4.2 Association
We applied entropy-based test with λ = 0.9, 1.0 and 2.0 to test the association of
each single SNP. The LR test was performed using a logistic regression model with
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additive genetic effect. Twenty-one SNPs were identified as significant (p < 0.05)
by each of the three entropy-based tests. The p-values of those 21 SNPs are listed
in Table 3.

SNP Gene LR λ = 0.9 λ = 1 λ = 2
rs2420371 F5 2.22E-16 4.22E-15 1.33E-15 6.66E-16
rs16861990 NME7 2.11E-13 3.03E-12 1.14E-12 2.65E-13
rs1208134 SLC19A2 4.81E-13 9.34E-12 3.10E-12 3.43E-13
rs2038024 SLC19A2 1.09E-10 2.62E-09 1.27E-09 1.97E-10
rs3766031 ATP1B1 2.55E-05 1.73E-05 1.59E-05 5.55E-05
rs6656822 SLC19A2 2.35E-05 0.000259 0.000234 7.47E-05
rs4524 F5 0.001123 0.000403 0.000386 0.000558
rs10158595 F5 0.001018 0.000403 0.000392 0.000911
rs9332627 F5 0.001181 0.000415 0.000399 0.000604
rs2239851 F5 0.001189 0.000419 0.000403 0.000592
rs4525 F5 0.001262 0.000426 0.00041 0.000614
rs970741 F5 0.002286 0.001043 0.000997 0.001292
rs723751 SLC19A2/F5 0.00203 0.003416 0.003036 0.001767
rs6030 F5 0.000572 0.004033 0.003842 0.002098
rs3820059 C1orf114 6.92E-05 0.004635 0.004988 0.011502
rs2176473 NME7 0.000528 0.006444 0.007138 0.021481
rs4656687 F5 0.001071 0.007846 0.007588 0.004945
rs1040503 ATP1B1 0.001453 0.011241 0.012167 0.029942
rs10800456 F5 0.004685 0.01346 0.012734 0.007133
rs3766077 NME7 0.026623 0.034665 0.035445 0.045988
rs16828170 NME7 0.070794 0.03606 0.035897 0.035187

Table 3: The p-values (from likelihood ratio test and entropy-based test with λ =
0.9,1 and 2) of the most significant 21 SNPs sorted by entropy-based association
test with λ = 1.

As previously stated, the Rényi entropy reduces to the Shannon entropy
when λ = 1, therefore the entropy-based association test statistics is a summation
of terms of the form pi log(pi)−qi log(qi), where i is the index over all genotypes of
the SNPs in the test and p and q refer to the two different distributions of case group
and control group, respectively. Each component of the statistics follows a normal
distribution and the standard deviation can then be estimated by delta method (see
Appendix). Thus, to illustrate the effect of Rényi Entropy parameter λ , we de-
composed the test statistics at λ = 1. Three typical SNPs’ analysis results were
displayed. One was very significantly associated with VTE (rs2038024) in all three
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tests, and the other two demonstrated a moderate significant association with VTE
(rs9332627 and rs2176473). SNP names, genotypes, genotype frequencies within
case group, genotype frequencies within control group, the component statistics,
and the standard deviation estimate of each component and p-value are listed in Ta-
ble 4. The analysis showed that the most significant component of SNP rs2038024
was genotype 0, followed by genotype 1 and genotype 2. It is worth noting that
genotype 0 had the highest frequency, followed by genotype 1, with genotype 2
having the lowest frequency. For this SNP, the main difference between case and
control groups came from the high frequency genotypes. To emphasize the differ-
ence on high frequency genotypes, one may increase the λ value. As shown in Fig-
ure 5 top panel, the p-value declined as λ increased. For SNP rs2176473, the geno-
type with lower frequency was more significant. In this case, the p-value decreased
as the λ value moved toward 0 (Figure 5, bottom panel). For SNP rs9332627, there
was no monotonicity between the genotype frequency and the significance of the
components, and the minimum p-value was not achieved at the limits, but rather
around λ =1.2.

Case freq Ctrl freq Stat comp SD p-value
rs2038024

0 0.6144 0.7281 0.0683 0.0112 9.36E-10
1 0.3368 0.2488 0.0204 0.0041 7.85E-07
2 0.0489 0.0230 0.0607 0.0171 3.78E-04

rs9332627
0 0.5923 0.5438 -0.0211 0.0085 0.0130
1 0.3644 0.3840 0.0003 0.0003 0.3158
2 0.0434 0.0722 -0.0537 0.0170 0.0016

rs2176473
0 0.3462 0.3940 0.0003 0.0001 0.0516
1 0.4740 0.4731 -0.0002 0.0050 0.9653
2 0.1798 0.1329 0.0403 0.0123 0.0010

Table 4: Decomposition of the Shannon entropy statistics of three SNPs

To investigate whether two or more SNPs are jointly associated with a phe-
notype, one can apply the entropy test to the joint frequency of the SNPs of interest.
We checked the pairwise joint association for the VTE data set. As one would ex-
pect, pairs with one or both SNPs of strong marginal effect were strongly associated
with the disease. Figure 6, upper panel, depicts the histogram of p-values (entropy-
based association test with λ = 2) for all possible pairs. Thirty percent (1571 out
of 5151) pairs had p-values less than 0.05. We also investigated the joint effect of
SNPs without strong marginal effect. SNPs other than those 21 (identified by the
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Figure 5: The changing pattern of entropy-based association test p-values of SNPs
rs2038024, rs9332627 and rs2176473

previous association test based on the frequency of a single SNP) were considered
SNPs with moderate or no marginal effect. The histogram in the lower panel of
Figure 6 is based on the pairs with both SNPs moderate or of no marginal effect.
Six percent (204 out of 3240) pairs had p-values less than 0.05. The shape of the
histogram is a little skewed to the left. The joint association test seems to have
lower power when the marginal effect is weak or absent.

4.3 Interaction

Entropy-based interaction tests were applied to the VTE data set. We first applied
the tests to case group and control group separately. For an interaction associated
with the disease, one would expect the test result of the case group to be significant
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Figure 6: Distribution of p-values of entropy-based association tests for SNP pairs.
Upper panel: SNP pairs of strong, moderate or no marginal effect. Lower panel:
SNP pairs of moderate or no marginal effect.

while that of the control group insignificant. To check if the case group and the
control group differ in terms of interaction effect, we applied further permutation
to compare p-values between case and control groups. The case-control indicator
was shuffled to create new case and control groups and tests were performed using
the shuffled data. The details of the two-step procedure is described in the last
paragraph of subsection 2.3.2.

Due to heavy computational burden, we only considered λ = 1 as an ex-
ample, and we set up the threshold of significance and insignificance as 0.05 and
0.2, respectively, and only considered the SNP pairs with case group p-value less
than 0.05 and control group p-value greater than 0.2. There were 182 pairs of SNPs
that met the criteria. We applied the p-values comparison procedure to those 182
SNP pairs and calculated the p-values of the comparison (for a given SNP pair, it
tests if the interaction effect of case group is more significant than the control group
interaction effect). Among those p-values of comparison, 82 were less than 0.05.
Accordingly, those 82 pairs, with a case group p-value smaller than the control
group p-value, may have interaction associated with the disease and deserve further
analysis. These pairs are listed in Table 5.
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SNP1 SNP2 P SNP1 SNP2 P
rs16828170 rs12120904 0.000 rs1200082 rs2420371 0.016
rs16828170 rs9332618 0.000 rs10800456 rs6678795 0.017
rs1208134 rs6427202 0.000 rs1208134 rs4525 0.017
rs3766031 rs6703463 0.000 rs9332618 rs6663533 0.017*
rs16861990 rs6427202 0.000 rs16861990 rs9332627 0.017
rs3766031 rs2285211 0.000 rs6027 rs12755775 0.017*
rs16861990 rs4656687 0.000 rs1894691 rs1894702 0.018*
rs3766031 rs16828170 0.000 rs3766031 rs3766117 0.019
rs16861990 rs6678795 0.000 rs3766031 rs7545236 0.019
rs2213865 rs2420371 0.000 rs1208134 rs4524 0.020
rs16861990 rs6030 0.000 rs16828170 rs12120605 0.021
rs1892094 rs2420371 0.000 rs17516734 rs9332684 0.022*
rs12728466 rs2420371 0.000 rs9783117 rs2420371 0.022
rs3766031 rs1208370 0.000 rs16861990 rs4525 0.023
rs1208134 rs9332627 0.001 rs10158595 rs6678795 0.024
rs1208134 rs10800456 0.001 rs10158595 rs2239854 0.024
rs16861990 rs10800456 0.001 rs17518769 rs6027 0.027*
rs3753292 rs2420371 0.001 rs3766031 rs1894701 0.028
rs3766031 rs10753786 0.001 rs6018 rs9332684 0.028*
rs1200160 rs2420371 0.001 rs9783117 rs6022 0.030
rs1208134 rs970741 0.002 rs16862153 rs2420371 0.031
rs1208134 rs4656687 0.003 rs4524 rs2239854 0.032
rs723751 rs2420371 0.003 rs1894691 rs2239854 0.034*
rs2420371 rs6035 0.003 rs4525 rs2239854 0.034
rs16861990 rs12120605 0.003 rs9783117 rs1894701 0.034*
rs3766031 rs9287095 0.004 rs9783117 rs9332653 0.035*
rs1208134 rs2239851 0.005 rs9332624 rs6663533 0.035*
rs16861990 rs970741 0.005 rs3766031 rs12758208 0.036
rs1208134 rs6030 0.006 rs4524 rs3766119 0.039
rs1208134 rs6678795 0.006 rs2239851 rs3766119 0.039
rs12753710 rs2038024 0.006 rs1200138 rs3766077 0.040
rs1200131 rs1208134 0.006 rs2420371 rs9332628 0.040
rs6027 rs9332684 0.008* rs6663533 rs12755775 0.040*
rs1208134 rs2213865 0.008 rs1200131 rs12758208 0.041*
rs2420371 rs12755775 0.008 rs1320964 rs2420371 0.042
rs3766031 rs6022 0.012 rs4525 rs3766119 0.045
rs1894691 rs3766119 0.012* rs2239851 rs2239854 0.045
rs12120904 rs6663533 0.013* rs9332653 rs6663533 0.046*
rs16861990 rs2239851 0.013 rs12074013 rs3766117 0.046*
rs1200131 rs16861990 0.013 rs9783117 rs7545236 0.047*
rs16861990 rs4524 0.015 rs9783117 rs3766117 0.049*

Table 5: Significance of control case p-value difference. *: Both SNPs have no
significant main effect
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5 Discussion

5.1 Choice of Renyi´ λ

We observed in our study that higher power can be achieved by properly choosing
the entropy parameter λ . The optimal λ should be the one that amplifies the true
difference between two populations, thus the choice of λ depends upon the true
population allele frequencies and the source of difference. Although such informa-
tion is usually not available, the family of entropy-based tests allow us to test the
association and/or interaction with a different emphasis.

Since most of the computational time is devoted to estimate the allele fre-
quencies of the permuted samples, once the frequencies become available, we rec-
ommend performing a series of Rényi entropy tests with multiple λ s. A p-value vs.
λ plot or a summary of multiple tests is usually recommended.

If one wants to make an interpretation based on tests of a fixed λ without
prior knowledge of the optimal λ , we would suggest using 1 ≤ λ ≤ 3. According
to our experience, the power of the entropy test is usually higher with λ in that
range. Also, the interaction test λ < 1 may sometimes be misleading due to poor
estimation of the distribution of the test statistics. A large number of permutation is
usually required to achieve reliable p-value of the test.

5.2 Deviation from iform

In probability theory and information theory, the Rényi divergence measures the
difference between two probability distributions. For probability distribution P and
Q of discrete random variables, the Rényi divergence of order λ of the two distri-
butions is defined as

Dλ (P‖Q) =
1

λ −1
log∑

i

pλ
i

qλ−1
i

.

The Rényi entropy and Rényi divergence are related by Hλ (P) = Hλ (U)−
Dλ (P‖U), where U represents the finite discrete uniform distribution which takes
equal probability at any possible value. The uniform distribution is special as it is
the one of maximum entropy, thus most unpredictable. We can rewrite the associa-
tion test statistic as:

SA
λ

= Hλ (P̂D)−Hλ (P̂N) = Dλ (P̂N‖U)−Dλ (P̂D‖U).

The statistic can then be interpreted as the difference between the two distributions’
deviation from uniform. The interaction test can be represented as

SE
λ

= Hλ (Q̂)−Hλ (P̂) = Dλ (P̂1‖U)+Dλ (P̂2‖U)−Dλ (P̂‖U ×U).

Parameter

Un
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The U ×U is uniform distribution over the nine genotypic combinations of the two
loci. The interaction test statistic compares the deviations from uniform of the sum
of marginal distributions and that of the joint distribution.

It is easy to show that D1(P‖Q) = H1(Q)−H1(P). However, this equation
does not hold for general λ . If we replace the reference distribution U in the test
statistics by some other distribution V , the equivalence between the entropy dif-
ference and the divergence difference does not hold except for λ = 1.0. Thus the
extension from Shannon’s case where λ = 1.0 to Rényi’s case with general λ allows
us to introduce other more reasonable reference distributions under various genetics
settings. For example, V can be the population allele frequencies or the theoreti-
cal allele frequencies under certain model. The tests based on Rényi divergence
with different reference distributions require further study and can be an interesting
future research direction.

6 Appendix
Assume the loci of interest have k genotypes G1,G2, . . . ,Gk, let p = [p1, p2, . . . , pk],
and ∑

k
i=1 pi = 1 be the distribution of those genotypes in population. Let X =

[X1,X2, . . . ,Xk] be the number of observations of each genotype in the sample and
n the sample size, then X has a multinomial distribution Mn(n, p). Note that
for sufficiently large n, the multinomial distribution is approximately a multinor-
mal distribution with mean E(Xi) = npi and variance-covariance matrix given by
Var(Xi) = npi(1− pi) and Cov(Xi,X j) =−npi p j (i 6= j).

For P̂ = X/n = [X1,X2, . . . ,Xk]/n = [p̂1, p̂2, . . . , p̂k] we define
E(P̂) = [p1, p2, . . . , pk] = p and the variance-covariance matrix of P̂ as

Var(P̂) = ΣP =
1
n


p1(1− p1) −p1 p2 . . . −p1 pk
−p2 p1 p2(1− p2) . . . −p2 pk

...
... . . . ...

−pk p1 −pk p2 . . . pk(1− pk)


First consider the Shannon’s entropy, H1(P̂) = −∑

k
i=1 p̂i log p̂i, and define

the function

h(P̂) = [h(p̂1),h(p̂2), . . . ,h(p̂k)] = [p̂1 log p̂1, p̂2 log p̂2, . . . , p̂k log p̂k].

The variance of h(P̂) can be approximated by the delta method as

V (n, p) ≈ [∇h(p)]T ΣP∇h(p)
= diag(1+ log p1, . . . ,1+ log pk)ΣP diag(1+ log p1, . . . ,1+ log pk).

Thus Var(H1(P̂)) is the sum over all V (n, p)’s elements.
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For the general Rényi’s entropy, Hλ (P̂) = 1
1−λ

log
(

∑
k
i=1 p̂λ

i

)
, define the

function h(P̂) = [h(p̂1),h(p̂2), . . . ,h(p̂k)] = [p̂λ
1 , p̂λ

2 , . . . , p̂λ
k ], have Z = ∑

k
i=1 p̂λ

i and
the function g(Z) = 1

1−λ
logZ. After applying the delta-method multiple times, we

obtain
Var(Hλ (P̂)) =

ΣZ

(1−λ )2z2 ,

where z = ∑
k
i=1 pλ

i and ΣZ is the sum over all elements of the following matrix
V (n, p), given by

V (n, p) = diag[λ pλ−1
1 , . . . ,λ pλ−1

k ]ΣP diag[λ pλ−1
1 , . . . ,λ pλ−1

k ].

Let n1 and n2 be the sample size of case group and the sample size of control
group, respectively. Under the null hypothesis of no association, the genotypic dis-
tributions of the disease population and the normal population are identical. Let the
overall genotype population distribution be p = [p1, p2, . . . , pk], and X1i be the num-
ber of cases with genotype Gi, then X1 = [X11,X12, . . . ,X1k] follows a multinomial
distribution Mn(n1, p). Similarly, let X2 = [X21,X22, . . . ,X2k] be the distribution of
controls over all genotypes, and X2 follows a multinomial distribution Mn(n2, p).
When the case group and the control group are independent samples, the variance
of the test statistics is simply the sum of the variance of the two entropies given by

Var(SA
λ
) = Var(Hλ (P̂D))+Var(Hλ (P̂N)).

If there is no additional information about the distribution of genotypes in the over-
all population, p is usually estimated by (X1 +X2)/(n1 +n2).
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