
Real-Time Contrast Enhancement to Improve Speech
Recognition
Joshua M. Alexander1*, Rick L. Jenison2, Keith R. Kluender2

1 Department of Speech Language and Hearing Sciences, Purdue University, West Lafayette, Indiana, United States of America, 2 Department of Psychology, University of

Wisconsin-Madison, Madison, Wisconsin, United States of America

Abstract

An algorithm that operates in real-time to enhance the salient features of speech is described and its efficacy is evaluated.
The Contrast Enhancement (CE) algorithm implements dynamic compressive gain and lateral inhibitory sidebands across
channels in a modified winner-take-all circuit, which together produce a form of suppression that sharpens the dynamic
spectrum. Normal-hearing listeners identified spectrally smeared consonants (VCVs) and vowels (hVds) in quiet and in noise.
Consonant and vowel identification, especially in noise, were improved by the processing. The amount of improvement did
not depend on the degree of spectral smearing or talker characteristics. For consonants, when results were analyzed
according to phonetic feature, the most consistent improvement was for place of articulation. This is encouraging for
hearing aid applications because confusions between consonants differing in place are a persistent problem for listeners
with sensorineural hearing loss.
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Introduction

This report describes outcomes from normal-hearing (NH)

listeners of a real-time signal-processing algorithm, the Contrast

Enhancement (CE) algorithm, which was designed generally for

communication devices and specifically for hearing aids. The

Contrast Enhancement algorithm is so named because it was born

out of research that demonstrates how perception of speech is

contrastive to the spectral features of neighboring sounds [1].

Classic examples of these phenomena, known generally as contrast

effects, take advantage of severe context dependence created by

the spatial and temporal overlap of successive articulatory activities

that characterize coarticulated speech. It is well known that the

second formant frequency (F2) of vowels is highly influenced by its

context when produced between two consonants [2]. For example,

because F2 frequency is lower for [b] compared to [d] and [g],

vowels produced in a [bVb] context have consistently lower F2

frequency when compared to the same vowels produced in a

[dVd] or [gVg] context. Similar observations are made for

consonants that are articulated between two vowels [3].

Multiple studies provide evidence that simple processes that

perceptually enhance contrastive changes in spectral composition

over time can help serve to disambiguate coarticulated speech (for

review, see [i]). For example [4], reported that when NH listeners

identified synthesized vowels that varied along a series from /U/

to /I/, they were more likely to respond /I/ (higher F2) when

preceded and followed by transitions with a lower F2 onset/offset

that acoustically resembled the glide [w]. Conversely, listeners

were more likely to respond /U/ (lower F2) when preceded and

followed by transitions with a higher F2 onset/offset that

acoustically resembled the glide [j]. These authors wrote: ‘‘It is

worth reiterating… that mechanisms of perceptual analysis whose

operations contribute to enhancing contrast in the above-mentioned

sense [i.e., the perception of /U/ to /I/] are precisely the type of

mechanisms that seem well suited to their purpose given the fact

that the slurred and sluggish manner in which human speech

sound stimuli are often generated tends to reduce rather than

sharpen contrast (p. 842, italics added).’’ In other words,

undershoot in production is compensated for by overshoot in

perception, which effectively prolongs the transition slope. It is

precisely this sort of spectro-temporal exaggeration of the acoustic

spectrum that the CE algorithm attempts to mimic.

Contrast effects like the preceding example are ubiquitous in

speech, as they have been reported for a wide variety of phonemes,

a wide variety of speech and nonspeech contexts, and a variety of

subjects including nonnative listeners, prelinguistic infants, and

birds ([5], [6], [7], [8], [9], [10]).

While the specific neural mechanisms responsible for contrast

effects are unknown, converging evidence from multiple sources

(e.g, [11], [12], [13], [14]) suggests how suppression and

adaptation, or higher level processes with similar properties, can

support enhanced perception of spectral contrast within and

between successive speech segments. If this understanding can be

exploited by devices that improve communication, the hypothe-

sized mechanisms behind perceptual contrast need not provide a

complete account in order to be very useful. Because coarticula-

tion assimilates the spectrum across time, no matter what the

phonetic distinction, enhancement of the spectral differences
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between successive speech segments (i.e., the contrast) will serve to

partially undo such assimilation by perceptually moving sounds

away from their neighbors (in this preceding example, along the F2

dimension). The approach implemented here is to exploit these

simple contrastive processes across time through signal processing

in a fashion that expands the perceptual space, thereby making

adjacent speech sounds more perceptually distinctive.

It has been suggested that their demonstration of vowel

aftereffects could be rooted in peripheral sensory adaptation

([11], [12]). One suggestion is that neurons adapt and that the

peripheral representation of the added harmonic is made more

prominent because neurons tuned to its frequency were not

adapted prior to its onset. A number of neurophysiological studies

by Delgutte and colleagues support the importance of adaptation

in speech perception, especially for enhancing the internal

representation of spectral contrast between successive speech

segments. [13] for example, notes that peaks in auditory nerve

discharge rate correspond to spectro-temporal regions that are rich

in phonetic information, that adaptation increases the resolution

with which onsets are represented, and that ‘‘adaptation enhances

spectral contrast between successive speech segments’’ (p. 512).

Likewise, some investigators, e.g. [14], have suggested that rapid

adaptation serves mostly to enhance onsets selectively, with

suppression being a process through which differences in level of

successive spectral regions in complex spectra (e.g., formants in

speech signals) are preserved and/or enhanced.

It is well established that listeners with sensorineural hearing loss

(SNHL) often do not process frequency-specific information

accurately because spectral detail is smeared by broadened

auditory filters (e.g., [15], [16], [17], [18], [19], [20], [21]). Loss

of sharp tuning in auditory filters generally increases with degree

of sensitivity loss and is due, in part, to a loss or absence of

peripheral mechanisms responsible for suppression ([22], [23],

[24], [25], [26]). Consequently, the peaks of speech for hearing-

impaired (HI) listeners are less perceptually distinct and harder to

resolve as their internal representations are spread out over wider

frequency regions (smeared). This results in less precise frequency

analysis, greater confusions between sounds with similar spectral

shapes, and subsequently poorer speech recognition ([17], [27],

[28], [29], [30]). In this respect, broadened auditory tuning results

in an assimilation of the spectrum that defines acoustic features.

Given the evidence that listeners with SNHL experience speech

signals with effectively reduced spectral resolution, several

attempts (e.g., [31], [32], [33], [34]) have been made to improve

speech recognition by sharpening spectral peaks, for example,

formant bandwidth narrowing and/or expanding the amplitude of

formant peaks relative to surrounding energy. While there are

some notable exceptions (e.g., [35]), one significant limitation to

most of these techniques is that they depend on block processing

which requires relatively long time segments (10–30 ms) and/or

significant computational complexity in order to have sufficient

frequency resolution for spectral sharpening to occur (see [36], for

a technical review). This is unacceptable for real-time applications

because research suggests that processing delays .10–15 ms begin

to result in disturbances in how hearing aid users perceive their

own voice and the speech of others ([37], [38]).

Most attempts at spectral sharpening peaks have met with

limited success at best (see [34], for review). For example, some

have found improvement for vowels but a decrease in consonant

identification (e.g.,[39]) or found significant improvement in vowel

identification, but never tested consonant identification ([40]).

Several others (e.g., [31], [32], [34]) tested words or sentences, so

in cases where no overall improvement was found, it is not clear

which parts of speech were improved and which were hindered by

the processing. What might be concluded is that spectral

sharpening by itself is not effective in alleviating the spectral

smearing that accompanies SNHL. Spectral sharpening in

isolation might provide limited improvement because enhanced

spectral peaks that are close together may still be processed within

the same auditory filter, in which case, a means of separating the

formants in frequency, enhancing the dynamic spectrum, might be

a better option.

The CE algorithm is one attempt to enhance the dynamic

spectrum and operates by manipulating both the peak frequency

and relative amplitude of moving formants. Perhaps, the most

novel feature of the CE algorithm is that it designed to work with

multirate filtering techniques to provide real-time signal processing

performance, and therefore offers a practical solution to address

the consequences of hearing loss. In order to understand how this

form of processing affects the perception of specific phoneme

classes, experiments in this paper tested the CE algorithm using

normal-hearing listeners who identified spectrally smeared conso-

nants (VCVs) and vowels (hVds) in quiet and in noise.

Methods

A. Signal Processing
1. Contrast Enhancement Algorithm. Four steps comprise

the CE algorithm as shown in Figure 1: (1) signal decomposition

into channels, (2) weighting of channel output as a function of time

via a dynamic compressive gain function, (3) weighting of channel

gain as a function of frequency neighborhoods via a winner-take-

all inhibitory network, and (4) signal synthesis. The algorithm

described here implemented a sampling rate of 22.05 kHz;

however, it can be varied without loss of generality.

A brief description of the filter bank circuit used for contrast

enhancement is provided here, a more complete description of the

signal processing is provided in Appendix S1. The analysis and

synthesis components of the contrast enhancement process use

multirate polyphase decomposition and oversampled discrete

Fourier transformed (DFT) modulated filters to address problems

of aliasing. The input signal, x, is first decomposed into multiple

subband channels. Subband channels provide time-varying

spectral magnitudes as input to the intermediate processing. The

intermediate processing consists of a variant of a winner-take-all

(WTA) circuit ([41], [42], [43]), which simulates a biological

network of inhibitory sidebands using a form of leaky integration

(specifically, a dynamic compressive gain function) to enhance

instantaneous spectral contrast and to enhance spectral differences

across time within a restricted neighborhood of subbands.

Following intermediate processing the stored phase is restored

prior to synthesis.

The collective effects of the dynamic compressive gain function

and lateral interactions within channel neighborhoods result in a

form of energy suppression that progressively sharpens the

dynamic spectrum. When an individual channel is relatively high

in energy in the past, it will tend to suppress the neighboring

channels that are lower in energy. When multiple spectral peaks

are within specified neighborhoods of one another, the spectral

modes not only sharpen, but also expand with respect to one

another through the process of dynamic competition.

To illustrate the WTA dynamics, an additive pair of signals with

spectral Gaussian magnitude distributions across channels was

advanced through time across channels xj(t) as shown in Figure 2a.

The spectrally swept Gaussian functions with each mode (peak)

positioned at a location xj(t) had a constant dispersion (s.d.) of 6

channels with respect to the range of 101 channels. The rate of

change for both modes was 60 channel units per second. The

Contrast Enhancement
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Figure 1. Schematic of the contrast enhancement algorithm. The incoming signal, x(t), is first decomposed into 110.25-Hz wide frequency
channels using polyphase decomposition (see text). Intermediate processing incorporates a winner-take-all (WTA) strategy in which channel gain is
weighted in a way that simulates a lateral inhibitory network and sharpens spectral contrast. The output signal, y(t), is synthesized by an inverse of
the process used to analyze the signal.
doi:10.1371/journal.pone.0024630.g001

Figure 2. Simulated input to the WTA network. (a) Unenhanced spatiotemporal signal. (b) WTA enhanced spatiotemporal signal demonstrating
spectral sharpening and expansion of the position of the spectral peaks as a consequence of dynamic competition between subband channels. (c)
Cross-section of channels at 150 ms for unenhanced signals (blue), dynamically enhanced (red), and instantaneously enhanced (black) spatiotemporal
signals illustrating spatial (spectral) sharpening. (d) Cross-section of channels at 370 ms for unenhanced (blue), dynamically enhanced (red), and
instantaneously enhanced (black) spatiotemporal signals illustrating sharpening and expansion of spectral peaks.
doi:10.1371/journal.pone.0024630.g002

Contrast Enhancement
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modes advance toward one another and crossed at 500 ms. Each

image is shown in dB units with respect to the signal maximum.

The effects of contrast enhancement are clearly apparent in

Figure 2b, as well as the consequential expansion of relative peak

energy away from one another as the two modes approach near

the point of crossing.

To further visualize these effects, cross-sections are shown in

Figures 2c and 2d at 150 ms and 370 ms, respectively. When the

modes are within overlapping neighborhoods (Fig. 2c), the mutual

inhibition significantly decreased the energy between the compet-

ing spectral peaks (Fig. 2c). As the modal components approached

one another, the width of each peak in the enhanced signal was

further reduced at 370 ms compared to the width at 150 ms. The

width of the unenhanced signal 10 dB down from the peak at

150 ms was 18.5 channel units compared to the width of the

enhanced signal of 9.7 units. At 370 ms, the two unenhanced

modes were at the point of merging. However, the enhanced

modes were 8.3 units in width 10 dB down from peak. Not only

did the peak widths decrease, but also their frequencies were

moved apart. The peak in the unenhanced signal at channel #44

was moved down to channel #41 and the peak at channel #58

was moved up to channel #61.

The spectra represented by black lines in Figs. 2c and 2d

demonstrate how the dynamic component of the WTA compares

to simple instantaneous enhancement without any history (i.e.,

without leaky integration). At 150 ms, when the two modes are

outside of each other’s neighborhood, the dynamic WTA behaves

the same as instantaneous enhancement. However, at 370 ms

when the two modes begin to cross each other’s neighborhood, the

advantages of the dynamic circuit become apparent. As expected,

instantaneous enhancement is unable to shift the peak frequencies.

Furthermore, the spectral contrast (peak-valley difference) is only

half of that for the dynamic circuit (about 15 dB compared to

30 dB).

Figure 3 demonstrates the effect of the CE algorithm on some of

the speech stimuli used in this study. Spectrograms of unenhanced

and enhanced speech tokens (/aga/) as spoken by an adult male

talker are shown in Figures 3a and 3b, respectively. As with

Figure 2b, the increase in relative peak energy at the formant

frequencies and the inhibition of energy in between formants are

evident in Figure 3b. This is further illustrated in Figures 3c and

3d, which show spectra from 16-ms time segments centered at 135

and 152 ms (2 glottal pulses), during the formant transition from

the vowel to the stop closure. Figure 3c again shows how the

mutual inhibition of energy between the formants significantly

decreases the energy between the peaks. Less obvious is the

dynamic shift in formant peak location, with F1 slightly increasing

in frequency and F2 slightly decreasing in frequency (see following

paragraph). Figure 3d shows similar spectral sharpening and

formant peak shifting associated with the dynamic inhibitory

weighting function [i.e., the right-hand side of Eq. (S1.1) in

Appendix S1], but more importantly, also shows how the CE

algorithm is capable of separating formants that have merged (in

this example, F2 and F3). Figure 3e shows the consequence of

spectral smearing using a moderate degree of smearing (see next

section) on the spectra shown in Figure 3c. Smearing substantially

reduces spectral contrast in the signal because relative peak

amplitude decreases as the surrounding frequency regions fill with

energy. On the other hand, even after enhanced signals are

severely smeared, peaks corresponding to formants are modestly

preserved.

Figure 3f illustrates the dynamic behavior of the CE algorithm

on the speech signal. Formant peak locations of the speech in

Figures 3a and 3b, as derived from linear predictive coding are

shown. When formant frequencies are relatively constant

(,100 ms), the influence of the inhibitory weights tends to be

symmetric and spectral sharpening is about equal on the low and

high frequency sides of the spectral peaks. However, when the

formants change frequency during the transitions, the influence of

lateral inhibitory weights is strongest in channels where there was

preceding energy, so that spectral sharpening is greatest on the

side towards which the formant is moving. Therefore, a formant

that transitions from a higher to a lower frequency (in this

example, F1 and F3) is skewed toward a slightly higher frequency

and a formant that transitions from a lower to a higher frequency

(in this example, F2) is skewed toward a slightly lower frequency.

The net result is that a pair of diverging formants (in this example,

F1 and F2) are closer in frequency, which should not be a problem

for maintaining instantaneous spectral contrast since they are

already moving apart. Conversely, a pair of converging formants

(in this example, F2 and F3) will be ‘pushed apart’ in frequency,

thereby promoting spectral contrast in the dynamic signal.
2. Spectral Smearing. To simulate reduced frequency

selectivity associated with SNHL, a technique similar to that

described by [44] was used to spectrally smear contrast-enhanced

speech, which was then identified by NH listeners. Spectral

smearing followed enhancement because alterations of the

acoustic signal are ultimately disrupted by cochlear processing.

Two degrees of smearing were used: moderate and severe. See

Appendix S2 for full details. Spectral smearing followed contrast

enhancement.

B. Listeners and Ethics Statement
Across all conditions, 166 normal-hearing listeners were

recruited. Listeners for all experiments were undergraduate

students from the University of Wisconsin- Madison who

participated for course credit. Written consent obtained for all

listeners. Procedures and use of human subjects for this study were

approved by the Institutional Review Board of the University of

Wisconsin-Madison (protocol number SE-2004-0612). No listener

participated in more than one condition for each stimulus type

(consonants and vowels). All reported that they were native

speakers of American English and had normal hearing. Listeners

completed the experiments while seated in a double-walled sound

chamber.

C. Speech Material
Consonant recognition was tested using 60 vowel-consonant-

vowel (VCV) syllables formed by combining 20 consonants (/p,

t, k, b, d, g, f, h, s, #, v, z, , t#, m, n, l, r, w, y/) and

three vowels (/ , i, u/). The 60 VCVs were recorded with 16-bit

resolution and 22.05 kHz sampling rate from three adult male and

three adult female talkers, all with Upper Midwestern accents. To

simulate the bandwidth of a typical hearing aid, each VCV was

low-pass filtered at 4.8 kHz with a 100-order FIR filter.

Vowel recognition was tested using the twelve /h/-vowel-/d/

(hVd) syllables from the [45] database (/i, ı̂, e, e, æ, , , o,

, u, , /). Fourteen talkers (4 men, 4 women, 3 boys, and 3

girls) from the 139-talker database (Upper Midwestern accents)

were selected. Based on data from 20 NH adults [45], the chosen

talkers all had overall identification rates of at least 97.5% correct

and individual token identification rates of at least 90% correct.

The tokens were upsampled from 16.0 to 22.05 kHz and low-pass

filtered in the same manner as the consonants stimuli.

D. Procedure
Stimuli were presented monaurally with 24-bit resolution and

22.05 kHz sampling rate through BeyerDynamic DT150 head-

Contrast Enhancement
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phones. Consonant stimuli were spoken by two adult male and two

adult female talkers (80 total for each vowel context). Conditions

were blocked by vowel context, the order of which was determined

by a random number generator for each listener. Vowel stimuli

were spoken by 10 talkers (120 total): 3 men, 3 women, 2 boys, and

2 girls. The order of stimulus presentation for each condition and

for each listener was also random. Following the stimulus

presentation, listeners identified what they thought they heard

by using a computer mouse to click the place on a grid display that

corresponded to their response.

E. Conditions
Baseline performance for speech materials without spectral

smearing or enhancement was measured for 45 NH listeners (3

groups of 15) using the methods outlined above. One group of

listeners identified VCVs and hVds in quiet and another group

Figure 3. Example of how contrast enhancement and spectral smearing affect the speech spectrum. (a) and (b) Spectrograms of the
unenhanced and enhanced VCV /aga/ as spoken by an adult male talker. Vertical lines in the spectrograms correspond to time windows used in (c)
and (d), which show spectra for the unenhanced (thick-solid line) and enhanced (thin-dotted line) signals from 16-ms time segments centered at 135
and 152 ms, respectively. (e) Spectral smearing of the unenhanced and enhanced time segments in (c) with a moderate degree of smearing (thick-
solid and thin-dotted lines, respectively). (f) Formant peak locations of the stimuli shown in (a) and (b) as derived from linear predictive coding.
doi:10.1371/journal.pone.0024630.g003
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identified them in pink noise at 6 dB signal-to-noise ratio (SNR)

for the VCVs and at 0 dB SNR for the hVds. Approximately half

of the listeners identified VCVs first and half identified hVds first.

A higher SNR was initially used for VCVs because pilot testing

with spectral smearing indicated high error rates when SNR was

further decreased. A third group of listeners later identified hVds

at 6 dB SNR so that performance for the different speech

materials could be compared at the same SNR.

Ten groups of NH listeners identified spectrally smeared speech

materials. With one exception, each group consisted of 12

Figure 4. Scatter plots of percent correct for VCVs in quiet. Results for moderate and severe degrees of smearing are in panels (a) and (b),
respectively. Percent correct for unenhanced speech is represented along the abscissa and percent correct for contrast-enhanced speech is
represented along the ordinate. The red dashed box represents the percent correct for the control speech (no smearing, no enhancement). The mean
and standard errors for each condition are displayed on the graph. Asterisks indicate the significance level for paired t-tests [** for p#0.01 and *** for
p#0.001].
doi:10.1371/journal.pone.0024630.g004

Figure 5. Scatter plots of percent correct for VCVs in noise. See Figure 4 legend.
doi:10.1371/journal.pone.0024630.g005
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individuals. Half of the listeners in each group identified

unenhanced stimuli first followed by enhanced stimuli and the

other half identified enhanced stimuli first followed by unenhanced

stimuli. Four groups identified VCVs: two in quiet and two in pink

noise at 6 dB SNR, each with moderate and severe amounts of

smearing. Unintentionally, a thirteenth listener was recruited in

the group tested on VCVs in quiet with severe smearing. Six

groups identified hVds: two in quiet, two in pink noise at 6 dB

SNR, and two in pink noise at 0 dB SNR. As with VCVs, half of

the two groups identified stimuli with moderate smearing and the

other half with severe smearing.

Results

A. Consonant Stimuli
Scatter plots of percent correct for VCVs in quiet and in noise

are shown in Figures 4 and 5, respectively. Panels (a) and (b) of

each figure show results for moderate and severe degrees of

smearing, respectively. Results for unenhanced speech are

represented along the abscissa and results for contrast-enhanced

speech are represented along the ordinate. The red dashed box

represents the percent correct for the control speech (no smearing,

no enhancement). The mean and standard errors for each

condition are displayed on the graph. Asterisks next to the

descriptive statistics indicate level of significance corresponding to

paired t-tests with 11 degrees of freedom (12 for severe smearing in

quiet), [* for p#0.05, ** for p#0.01, and *** for p#0.001].

Here, and throughout, identification rates were transformed to

rationalized arcsine units [46] before statistical analyses were

conducted (plots show un-transformed values). Contrast-enhanced

speech was correctly identified at a significantly higher rate than

unenhanced speech for each degree of smearing, in quiet and in

noise. For VCVs in quiet, a mixed-design analysis of variance

(ANOVA) with enhancement as the within-subjects variable and

degree of smearing as the between-subjects variable (Table 1)

revealed significant main effects for contrast enhancement and for

degree of smearing, but no significant interaction. Outcomes for

VCVs in noise yielded the same pattern. Lack of an interaction in

each case indicates that benefit from enhancement did not depend

significantly on the degree of spectral smearing.

To see if benefit of contrast enhancement depended on the

addition of noise, a between-subjects ANOVA was conducted with

the difference in performance between enhanced and unenhanced

conditions as the dependent variable and quiet vs. noise as the

independent variable (collapsed across both degrees of smearing).

There was no significant difference in benefit between the quiet

conditions (M = 7.3%, SE = 1.33%) and the noise conditions

(M = 10.3%, SE = 1.69%) [F(1,47) = 2.3, p.0.05].

To understand how the CE algorithm influenced the perception

of different phonetic features, feature errors of the consonant

stimuli were analyzed using sequential information transfer

analysis or SINFA [47], [48]. Confusion matrices and a list of

distinctive features (voicing, nasality, manner, and place of

articulation) associated with each phoneme serve as input to

SINFA. SINFA output includes proportion of information

transferred, IT, for each feature (information received divided by

information transmitted). Tables 2 and 3 show IT for each

distinctive feature for the quiet and noise conditions, respectively.

Spectral smearing was effective at degrading most features of the

speech signal. For all four experimental conditions, contrast-

enhanced speech improved IT for place of articulation in quiet

and in noise and improved IT for manner in the noise conditions

only.

To evaluate if the benefit of contrast enhancement depended on

talker gender, differences in error rates between unenhanced and

enhanced speech for each gender were submitted to a repeated-

measures ANOVA. For each feature and each condition, there

was no significant difference in benefit of enhancement between

men and women talkers (p.0.05).

B. Vowel Stimuli
Figures 6, 7, and 8 show percent correct for hVds in quiet and

in the two noise conditions in the same format as the VCVs.

Contrast-enhanced speech was correctly identified at a signifi-

cantly higher rate than unenhanced speech for each degree of

Table 2. Feature analyses for speech in quiet.

Condition Voicing Nasality Manner Place Total IT

Control 0.80 0.93 0.82 0.74 3.56

Unenhanced
Moderate

0.77 0.77 0.68 0.49 2.94

Enhanced
Moderate

0.85 0.72 0.68 0.58 3.10

Unenhanced
Severe

0.76 0.67 0.58 0.35 2.57

Enhanced
Severe

0.79 0.71 0.62 0.53 2.88

Proportion of information transferred, IT, for each phonetic feature (information
received divided by information transmitted) for the VCVs presented in quiet.
doi:10.1371/journal.pone.0024630.t002

Table 3. Feature analyses for speech in noise.

Condition Voicing Nasality Manner Place Total IT

Control 0.66 0.52 0.54 0.47 2.55

Unenhanced
Moderate

0.48 0.41 0.24 0.15 1.49

Enhanced
Moderate

0.47 0.38 0.32 0.30 1.76

Unenhanced
Severe

0.34 0.24 0.15 0.10 1.06

Enhanced
Severe

0.36 0.28 0.21 0.21 1.35

Proportion of information transferred, IT, for each phonetic feature (information
received divided by information transmitted) for the VCVs presented in noise.
doi:10.1371/journal.pone.0024630.t003

Table 1. Anova results.

Condition Enhancement Smear Interaction

VCVs in Quiet F(1,23) = 35.4*** F(1,23) = 6.9* F(1,23) = 3.6, N.S.

VCVs (6 dB SNR) F(1,22) = 40.6*** F(1,22) = 14.3*** F(1,22),1.0, N.S.

hVds in Quiet F(1,22) = 19.6*** F(1,22) = 9.7** F(1,22) = 2.7, N.S.

hVds (6 dB SNR) F(1,22) = 60.9*** F(1,22) = 7.5** F(1,22),1.1, N.S.

hVds (0 dB SNR) F(1,22) = 37.7*** F(1,22) = 8.6** F(1,22),1.0, N.S.

For VCVs and hVds in quiet and in noise, outcomes for mixed-design ANOVAs
with enhancement as the within-subjects variable and degree of smearing as
the between-subjects variable. Asterisks indicate level of significance [* for
p#0.05, ** for p#0.01, and *** for p#0.001] and N.S. indicates a non-significant
result.
doi:10.1371/journal.pone.0024630.t001
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smearing, in quiet and in both noise conditions. For hVds in quiet, a

mixed-design ANOVA (Table 1) revealed significant main effects

for contrast enhancement and for degree of smearing, but no

significant interaction. Outcomes for hVds in both noise conditions

yielded the same pattern. As with VCVs, lack of a significant

interaction in each hVd condition indicates that benefit from

enhancement did not depend on the degree of spectral smearing.

To learn whether the benefit of contrast enhancement

depended on the addition of noise, a between-subjects ANOVA

was conducted with the difference in performance between

enhanced and unenhanced conditions as the dependent variable

and the amount of noise (quiet, 6 dB SNR, and 0 dB SNR) as the

independent variable (collapsed across both degrees of smearing).

There was a significant difference in benefit between the

conditions [F(2,69) = 5.5, p,0.01]. Tukey post-hoc tests revealed

that benefit for the 0 dB SNR condition, (M = 21.2%, SE = 3.48%)

was significantly greater (p,0.05) than benefit for the quiet

condition (M = 7.9%, SE = 1.99%). Benefit for the 6 dB SNR

Figure 6. Scatter plots of percent correct for hVds in quiet. See Figure 4 legend. Asterisks indicate the significance level for paired t-tests [* for
p#0.05 and ** for p#0.01].
doi:10.1371/journal.pone.0024630.g006

Figure 7. Scatter plots of percent correct for hVds in 6 dB SNR noise. See Figure 4 legend.
doi:10.1371/journal.pone.0024630.g007
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condition (M = 14.3%, SE = 1.98%) was not significantly different

from that for the other two conditions.

To determine whether the benefit of contrast enhancement

depended on talker group, differences in error rates between

unenhanced and enhanced speech for each group were analyzed

using a repeated-measures ANOVA with talker group as the

within-subjects variable. There was no significant effect of talker

group for any condition (p.0.05). Lack of a significant effect in

every case indicates that benefit from enhancement for vowel

stimuli did not depend substantially on talker characteristics,

namely, fundamental frequency and formant spacing.

Discussion

Large impairments in consonant identification associated with

spectral smearing were improved when speech in quiet and in

noise was first processed with the CE algorithm. The most

consistent improvement across all four conditions (two degrees of

smearing in quiet and in noise) was for place of articulation. This

finding is encouraging for hearing aid applications because, as [49]

point out, ‘‘The frequency of place errors among hearing-impaired

listeners is a consistent finding throughout the literature, despite

differences in materials, talkers, and experimental procedures’’

(p. 147). The large increase in place errors associated with spectral

smearing and the resultant improvement associated with contrast

enhancement is consistent with the importance of spectral

information (e.g., second formant transitions) for cueing differenc-

es in place of articulation. A significant decrease in manner errors

with enhancement occurred only for VCVs in noise. Noise

contributes to the reduction of spectrally specific information and

disrupts other cues used to distinguish manner (e.g., frication,

temporal envelope). Therefore, information preserved by contrast

enhancement, specifically formants and formant transitions, might

have been of additional benefit to listeners when noise was present.

A comparison of feature errors between unenhanced and

enhanced speech across talker gender did not reveal any

significant differences. A similar comparison across vowel context

did not reveal any consistent pattern. It is important to note that,

while there might have been significant differences in absolute

error rates across talker gender or vowel context (e.g., higher error

rates for female talkers and for the /i/ context), when unenhanced

and enhanced spectrally smeared speech were compared to the

control or to each other, these differences were not statistically

significant.

Contrast enhancement also significantly improved identification

of spectrally smeared vowels in quiet and in noise. As with

consonants, improvement did not depend on the degree of spectral

smearing or talker characteristics. The latter is an important

finding because it indicates that success of the CE algorithm does

not depend on harmonic spacing or formant separation in the

vowel space, both of which increase with women and child talkers

owing to higher fundamental frequencies and shorter vocal tracts,

respectively. Improvement in vowel identification did depend on

the amount of noise, with significantly greater improvement for

hVds in noise at 0 dB SNR than in quiet. This result is expected

because noise effectively reduces the amount of spectral contrast in

the signal by filling the valleys between the peaks with energy. In

addition, noise reduces the salience of other speech cues, which

increases the importance of spectral cues made more salient with

CE. Because VCVs in noise were only tested at 6 dB SNR, it is

unknown whether benefit from the CE algorithm for consonant

identification would likewise increase with more challenging noise

levels.

The increased benefit from the CE algorithm with decreasing

SNR is encouraging because several noise reduction algorithms in

hearing aids rely on modulation depth and/or modulation

frequency for estimating the presence of speech in a noisy signal,

and both indicators decrease in sensitivity and specificity as SNR

decreases. This suggests that another application of the CE

algorithm could be the front-end of a two-stage noise reduction

scheme. That is, the CE algorithm could be used to improve the

representation of speech in the acoustic signal, which would feed

into a noise reduction algorithm that selectively attenuates

frequency bands with detrimentally low SNR.

Figure 8. Scatter plots of percent correct for hVds in 0 dB SNR noise. See Figure 4 legend.
doi:10.1371/journal.pone.0024630.g008
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One limitation of this study is that the reduction of spectral

contrast by employing a fixed-window FFT analysis does not fully

represent what the auditory system actually does. As mentioned in

the Introduction [2], another important factor that determines

spectral contrast is temporal dynamics, such that slurred and

sluggishly produced formant transitions are effectively prolonged

by perceptual mechanisms operating in time. It is unknown what

effect SNHL has on these mechanisms beyond simple filter

broadening. Furthermore, for the auditory system, the contrast

between spectral peaks and valleys is different from what is visually

apparent in the spectral analysis. One reason for this is that peaks

mask not only valleys but also nearby peaks, and they do so in an

asymmetric way. Therefore, differences that are visible when

comparing spectrograms of coarticulated utterances may be

diminished by mechanisms operating in time.

Some caution is warranted in extrapolating from NH listeners

with simulated hearing loss via spectral smearing, because there

are additional factors that contribute to SNHL. The decrease in

performance for NH listeners is primarily attributed to the

smoothing of the spectral envelope introduced by smearing and to

the addition of noise introduced by partial randomization of

phase. Moore and colleagues [50] identify at least two other

consequences of reduced frequency selectivity for listeners with

SNHL that are not mimicked by spectral smearing. The first is

that sinusoidal signals will generate broader excitation patterns,

thereby limiting the ability of HI listeners to resolve the harmonic

structure associated with voiced speech. The second is that the

timing information at the output of the auditory filters will be

distorted. While the most ecologically valid test will involve

hearing-impaired individuals listening to contextually meaningful

sentences, our methods were chosen in order to control for subject

variables (which vary tremendously with a heterogeneous clinical

population) and to provide the most analytically useful dataset.

One nice feature about the CE algorithm is the ability to

customize the time constants, degree of enhancement, and

frequency extent of lateral inhibition as a function of frequency.

Studies involving customization of the CE algorithm for individual

hearing-impaired listeners are underway.

Despite these limitations, the overall results of this study indicate

that when the speech spectrum is uniformly smeared across

frequency, the CE algorithm, which enhances spectral differences

within and across successive spectral segments, is successful in

partially restoring intelligibility for NH listeners. These results are

promising and, as discussed earlier, suggest that the CE algorithm

could be most beneficial when used to augment modern digital

hearing aid applications.

Supporting Information

Appendix S1 Contrast Enhancement Algorithm. Descrip-

tion of the signal processing for real-time contrast enhancement.

(PDF)

Appendix S2 Spectral Smearing. Description of the tech-

nique used to spectrally smear contrast-enhanced speech.

(PDF)

Author Contributions

Conceived and designed the experiments: JMA RLJ KRK. Performed the

experiments: JMA. Analyzed the data: JMA. Contributed reagents/

materials/analysis tools: JMA RLJ KRK. Wrote the paper: JMA RLJ

KRK. Designed the signal processing algorithm: RLJ.

References

1. Kluender KR, Coady JA, Kiefte M (2003) Sensitivity to change in perception of
speech. Speech Comm 41: 59–69.

2. Lindblom B (1963) Spectrographic study of vowel reduction. J Acoust Soc Am
35: 1773–1781.
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