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Abstract

Chronological aging has been studied extensively in laboratory yeast by culturing cells into stationary phase in synthetic
complete medium with 2% glucose as the carbon source. During this process, acidification of the culture medium occurs
due to secretion of organic acids, including acetic acid, which limits survival of yeast cells. Dietary restriction or buffering the
medium to pH 6 prevents acidification and increases chronological life span. Here we set out to determine whether these
effects are specific to laboratory-derived yeast by testing the chronological aging properties of the vineyard yeast strain
RM11. Similar to the laboratory strain BY4743 and its haploid derivatives, RM11 and its haploid derivatives displayed
increased chronological life span from dietary restriction, buffering the pH of the culture medium, or aging in rich medium.
RM11 and BY4743 also displayed generally similar aging and growth characteristics when cultured in a variety of different
carbon sources. These data support the idea that mechanisms of chronological aging are similar in both the laboratory and
vineyard strains.
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Introduction

A model of post-mitotic cellular aging, referred to as

chronological aging, has been developed in the budding yeast

Saccharomyces cerevisiae [1,2]. In this system, cells are induced to

enter a non-dividing state and are maintained in this state for

several weeks. The viability of the population over time is

measured by quantifying the fraction of the cells that retain the

ability to re-enter the cell cycle in the presence of appropriate

growth cues.

The most commonly used protocol for measuring chronological

life span (CLS) involves culturing cells under aeration in liquid

synthetic defined medium with an initial glucose concentration of

2% [1,2]. The cells undergo a fermentative exponential growth

phase in which ethanol is produced from glucose, followed by a

metabolic shift to respiration upon glucose depletion. During the

shift to respiratory growth, expression of many different mito-

chondrial enzymes is enhanced to facilitate utilization of ethanol as

a carbon source. Within a few days, most of the ethanol has been

depleted and the yeast cells exit the cell cycle. Viability over time

can then be monitored by removing a small aliquot of cells and

plating for colony forming units (CFUs) on rich growth medium

(YEPD). A higher-throughput method for quantifying viability

during chronological aging has also been developed in which the

relative proportion of viable cells is determined based on

outgrowth kinetics in YEPD [3,4].

Several studies have indicated that chronological aging is

accompanied by an increasing burden of oxidative stress and an

induction of the yeast apoptotic-like response [5,6]. Damaged

proteins and macromolecules accumulate with chronological age,

and stress response pathways have been shown to play a central

role in chronological longevity [7,8,9,10]. At least some of the

genetic factors that modulate chronological life span play a similar

role in multicellular eukaryotes, suggesting that aspects of this yeast

aging model are conserved [11].

Recently, we reported that accumulation of acetic acid in the

culture medium limits the chronological life span of yeast cells

aged in synthetic defined medium [12]. Buffering the medium to

pH 6–7 significantly extends chronological life span under these

conditions [12,13] and reduces oxidative stress [14]. Growth in

rich YEPD medium also results in reduced acidification and

extended chronological life span in laboratory strains, relative to

strains grown in synthetic defined medium [15]. Life span

extension from dietary restriction by reducing the initial glucose

concentration can be explained, at least in part, by a correspond-

ing decrease in acetic acid production and medium acidification

[12].

Studies of chronological aging, including those described above

on acetic acid toxicity, have generally been performed in laboratory

yeast strains. The genetic history of such strains is often poorly

characterized and most have been subjected to evolutionary
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pressures to adapt to laboratory conditions that are substantially

different from the natural environment of a yeast cell. Evolution in

the laboratory could conceivably influence the aging properties of

these strains. We therefore set out to examine chronological aging in

a yeast strain more recently derived from the natural environment

and which has undergone fewer passages in a laboratory setting.

Figure 1. Adjusting synthetic complete medium to a pH of 6.0 extends chronological life span. Life span extension from buffering at
pH 6.0 using a citrate phosphate buffer was statistically significant (p,0.05) in (A) diploid, (B) haploid mating type a, and (C) haploid mating type a
of BY4743 (BY) and RM11 (RM). Error bars indicate standard deviation across biological replicates. Corresponding survival integral and p-values are
shown in Table 2.
doi:10.1371/journal.pone.0024530.g001

Table 1. Culture pH of laboratory and vineyard yeast in synthetic defined medium.

Strain SC 2% Glu SC 0.5% Glu SC 0.05% Glu SC 2% Glu+Cit-Phos Buffer YEPD

BY4743 2.62 3.26 6.06 4.99 4.18

BY4742 3.01 3.68 6.24 5.16 4.42

BY4741 3.41 4.66 6.18 5.66 5.04

RM11 diploid 2.65 3.18 5.36 5.14 4.52

RM11 MATa 2.68 3.34 5.26 5.11 4.47

RM11 MATa 2.67 3.34 5.41 5.13 4.51

Cells were grown in synthetic complete medium (SC) with the indicated carbon source or rich YEPD medium, and pH was determined after 48 hours. For growth in
buffered medium (Cit-Phos buffer), a citrate phosphate buffer (64.2 mM Na2HPO4 and 17.9 mM citric acid) adjusted to pH 6.0 was added to the medium prior to
inoculation. Initial pH values for synthetic complete and YEPD were 4.0 and 6.6, respectively.
doi:10.1371/journal.pone.0024530.t001
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Here we report an initial characterization of chronological

aging in the vineyard isolate, RM11, and compare it to a common

laboratory strain BY4743 [16]. RM11 is a diploid derivative of a

natural isolate collected from a California vineyard [17]. Similar to

BY4743, dietary restriction significantly increases the chronolog-

ical life span of RM11 cells in synthetic defined medium, as does

buffering the pH of the medium. Growth and aging in rich

medium attenuates the culture acidification and extends chrono-

logical life span of both strains, relative to synthetic defined

medium. Similar results were obtained with haploids of both

mating types derived from the vineyard and laboratory strain.

These data in combination with prior studies suggest that growth

under laboratory conditions has not significantly altered the way

that yeast chronologically age, at least under the standard

conditions currently used by most laboratories. They also suggest

that acidification of the medium and acetic acid toxicity limit

chronological life span to a similar extent in the vineyard and

laboratory strains.

Results

The diploid laboratory strain BY4743 acidifies the growth

medium during chronological aging in synthetic defined medium;

preventing acidification by buffering the pH of the medium to 6.0

significantly enhances chronological life span [12]. Like BY4743,

diploid cells of the vineyard isolate RM11 also acidified the growth

medium during chronological aging (Table 1). After 48 hours of

culture, the pH for both diploid strains had dropped from an

initial value of 4.0 to approximately 2.8. Also similar to BY4743,

buffering the synthetic complete medium with a pH 6.0 citrate-

phosphate buffer significantly extended the chronological life span

of diploid RM11 cells (Figure 1A). Buffering increased the

survival integral (SI), defined here as the area under the survival

curve between day 2 and day 45, from 2.5 to 23.1 (p = 2.061025)

for diploid RM11 and from 2.3 to 19.4 for BY4743

(p = 5.861025). Haploid isolates of both diploid strains behaved

similarly (Figure 1B, C).

Figure 2. Dietary restriction extends life span in both BY4743 (BY) and RM11 (RM) strain backgrounds. Glucose was reduced to either
0.5% or 0.05% in synthetic medium in (A) diploid, (B) haploid mating type a, and (C) haploid mating type a. Error bars indicate standard deviation
across biological replicates. Corresponding survival integral and p-values are shown in Table 2.
doi:10.1371/journal.pone.0024530.g002
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Dietary restriction by reducing the glucose concentration of the

culture medium from 2% to 0.05% causes the pH of the growth

medium to increase during chronological aging and increases

chronological life span in BY4743 [12]. This level of dietary

restriction had a similar effect on medium acidification (Table 1)

and chronological life span in RM11 (Figure 2A; Table 2). Both

diploid RM11 and BY4743 cells grown in 0.05% glucose synthetic

complete medium had culture pH of approximately 5.7 after

48 hours. Haploid isolates of both diploid strains behaved similarly

(Figure 2B, C; Table 2). An intermediate level of dietary

restriction (0.5% glucose) also reduced acidification of the culture

medium (Table 1) and significantly increased chronological life

span in all strains examined (Figure 2; Table 2).

It has been previously reported that cells aged in rich YEPD

medium live longer than cells aged in synthetic defined medium

[1,2]. Consistent with these data, we find that BY4743 and RM11,

as well as all of the corresponding haploid strains, have a longer

chronological life span in YEPD medium (Figure 3; Table 2).

This longer life span is associated with higher pH of the culture

medium after 48 hours (Table 1). Dietary restriction by reducing

the glucose concentration failed to increase chronological life span

in any of the strains aged in rich medium, and, in some cases,

reduced life span (Table 2).

In order to further explore the relationship between culture

acidification and chronological aging, we carried out chronological

life span assays for BY4743 and RM11 diploid cells aged for 26

days in synthetic defined medium with different carbon sources.

The following carbon sources were tested: glucose, galactose,

sucrose, fructose, maltose, raffinose, ethanol, and glycerol, and the

relative ability of each strain to utilize each carbon source was

determined by measuring doubling time in rich medium (YEP)

supplemented with that carbon source (Figure 4, Table 3). In

general, RM11 showed a slightly faster doubling time and slightly

longer chronological life span than BY4742 across the different

carbon sources, and the effect of alternative carbon sources on life

span was similar between the two strains in most cases: relative to

glucose, galactose shortened chronological life span; sucrose and

fructose had little effect on life span; maltose, raffinose, and

glycerol all significantly extended life span (Figure 5, Table 3).

In most cases, dietary restriction, by reducing the amount of

carbon source present in the medium, significantly extended life

span in both strains. Two notable differences between the strains

were the effects of maltose and ethanol on chronological life span.

Even at control levels, BY4743 cells aged in maltose-containing

media were much longer-lived than cells aged in glucose (Table 3).

This effect might be explained by the poor utilization of maltose by

BY4743 relative to RM11 cells (Figure 4). In both strains,

however, a significant correlation was observed between chrono-

logical life span and culture pH after two days of growth across all

carbon sources (Figure 5). A similar correlation was observed at

day 4 of the experiment (Table 4).

Discussion

The primary goal of this study was to determine whether a yeast

strain more recently derived from the wild would undergo

chronological aging in a manner similar to a laboratory yeast

strain. The results presented here suggest that this is the case. In all

of the aging conditions examined, the vineyard strain RM11 and

its haploid derivatives showed similar chronological aging

properties as the laboratory strain BY4743 and its haploid

derivatives. This includes significant extension of chronological

life span from dietary restriction, buffering of the culture medium,

or growth in rich YEPD medium.

Prior studies in nematodes and mice have shown that wild-

derived strains can have life spans that differ significantly from

laboratory strains, and at least one wild-derived mouse strain fails

to have its median life span extended by dietary restriction [18,19].

Such differences may result from evolution in the laboratory

strains, which are subjected to selective pressures different from

those in the wild. In particular, selection for maximal growth and

reproduction under nutrient rich conditions is a common hallmark

of laboratory life. It is interesting therefore that RM11 and

BY4743 had generally similar chronological aging properties

across a variety of different conditions. One possibility is that

RM11 has already undergone substantial laboratory selection

since its isolation from the vineyard. Arguing against this are the

substantial differences between RM11 and BY4743 at the

nucleotide, mRNA, and proteomic levels [20,21,22,23]. Also

arguing against this is the report that RM11 has a replicative life

span that is significantly greater than BY4743 and several other

laboratory yeast strains [24].

We have previously reported that acidification of the culture

medium and accumulation of acetic acid can limit chronological

life span for laboratory strains aged in synthetic defined medium

[12]. Dietary restriction or buffering of the culture medium to

Table 2. Survival integral (SI) values for BY and RM haploid
and diploid strains aged in different medium compositions
with glucose as the carbon source.

Medium Strain SI (SD) p-value Strain SI (SD) p-value

SC 2% BY4741
(MATa)

8 (0.8) RM11
(MATa)

3.4 (1.3)

SC 0.5% 17.4 (1.7) 1.0E-03 15.4 (0.4) 1.1E-04

SC 0.05% 27.6 (2) 9.6E-05 38.0 (3.6) 8.2E-05

SC pH 6.0 21.2 (1) 5.8E-05 35.9 (1.5) 9.2E-06

YEP 2% 28.6 (1) 9.9E-06 24.9 (12.5) 4.0E-02

YEP 0.5% 7.8 (0.3) 4.4E-06 17.5 (0.6) 0.4

YEP 0.05% 15.6 (1.9) 4.7E-04 19.7 (2.9) 0.5

SC 2% BY4742
(MATa)

2.9 (0.3) RM11
(MATa)

2.7 (0.1)

SC 0.5% 12.8 (1) 8.7E-05 13.6 (0.7) 1.1E-05

SC 0.05% 24.3 (1.4) 1.1E-05 35.3 (6.7) 1.1E-03

SC pH 6.0 27.6 (1.2) 3.9E-06 36.2 (1.3) 1.6E-06

YEP 2% 26.3 (2.3) 6.6E-05 27.8 (1.7) 9.1E-03

YEP 0.5% 8.9 (1.1) 3.1E-04 16.8 (0.3) 3.4E-04

YEP 0.05% 15.9 (1.6) 3.0E-03 23.1 (1) 1.4E-02

SC 2% BY4743
(diploid)

2.3 (0.3) RM11
(diploid)

2.5 (0.2)

SC 0.5% 9.8 (0.8) 1.4E-04 9.3 (0.8) 1.6E-04

SC 0.05% 28.1 (1.9) 2.0E-05 33.5 (3.8) 1.4E-04

SC pH 6.0 19.4 (1.5) 4.7E-05 23.1 (1.5) 2.0E-05

YEP 2% 17.9 (2.6) 5.1E-04 22 (7.1) 8.6E-04

YEP 0.5% 7.8 (0.4) 2.7E-03 9.5 (1) 4.0E-02

YEP 0.05% 12.4 (0.1) 2.2E-02 19.3 (2.2) 0.6

The % refers to the amount of glucose present in the culture medium. Survival
integral values represent the average of three biological replicates between
days 2 to 45 in the experiment. Values in parentheses are standard deviation. P-
value is calculated by Student’s T-test for each conditions relative to synthetic
complete (SC) 2% for that genotype, except for YEP 0.5% and YEP 0.05%, which
are calculated relative to YEP 2%.
doi:10.1371/journal.pone.0024530.t002
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pH 6.0 extended chronological life span in the diploid BY4743, as

well as the haploid W303AR5, PSY316AT, and DBY746 strains

in that study [12]. Here we have shown that similar effects are

observed in RM11 diploid and haploid cells. This finding is

consistent with a prior report in which it was shown that

maintaining the pH of the culture medium between 6.5–7

extended the chronological life span of cells isolated from grapes

that were morphologically similar to budding yeast [13].

This study also further strengthens the link between culture

acidification and chronological life span by finding a significant

inverse correlation between culture pH after either 2 or 4 days of

growth and chronological longevity for both BY4743 and RM11

cells aged in media containing different carbon sources. These

data are consistent with our recent report that deletion mutants

isolated from a screen for reduced culture acidification are more

likely to have extended chronological life span, relative to

randomly selected deletion mutants [25]. Our data also support

a prior study which reported that cells aged with galactose or

fructose as the carbon source have their life span extended by

dietary restriction, while cells aged in non-fermentable carbon

sources have extended chronological life span even under non-

dietary restriction conditions, relative to cells grown in glucose

cultures [26].

The data presented here strongly suggest that a similar

mechanism of aging limits the chronological life span of both

diploid and haploid versions of laboratory and vineyard yeast

strains. Although we have not examined additional features of

chronological aging, such as elevated levels of reactive oxygen

species and induction of the yeast apoptotic-like response, we

predict that these will also be similar in the vineyard and

laboratory yeast strains. Despite the fact that many questions

remain to be resolved regarding the optimal conditions for

performing chronological life span experiments in yeast and the

ultimate utility of this paradigm as a model for aging in

multicellular eukaryotes [12,14,27,28], this study suggests that

the processes governing chronological life span are shared between

laboratory and wild yeast and that conclusions drawn from yeast

chronological aging studies, at least under the conditions tested,

are unlikely to be the result of artificial selection for growth under

laboratory conditions.

Figure 3. Cells aged in YEPD medium are longer lived than cells aged in synthetic complete medium. Longer chronological life span was
observed in rich YEPD medium relative to synthetic complete (SC) in (A) diploid, (B) haploid mating type a, and (C) haploid mating type a for both
BY4743 (BY) and RM11 (RM) strain backgrounds. Error bars indicate standard deviation across biological replicates. Corresponding survival integrals
and p-values are shown in Table 2.
doi:10.1371/journal.pone.0024530.g003
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Materials and Methods

Yeast strains and media
The strains used in this study are described in Table 5.

Chronological life span assays were performed as previously

described using the Bioscreen C MBR automated shaker/

incubator/plate reader [3,4,29]. All aging cultures were initiated

by seeding a 5 ml liquid culture of YEPD with a single colony

from a freshly streaked strain grown on YEPD agar at 30uC. A

1:100 dilution of the YEPD culture was made into synthetic

Figure 4. Growth rates of BY4743 and RM11 diploids in the presence of different carbon sources. BY4743 and RM11 were grown
overnight in YEPD, diluted 300-fold, and inoculated into YEP containing the indicated carbon source. Error bars represent the standard deviation of
five biological replicates.
doi:10.1371/journal.pone.0024530.g004

Table 3. Effect of different carbon sources on culture pH, growth rate, and chronological life span.

BY4743

Carbon source Doubling Time (min) Day 2 pH (control/DR) Day 4 pH (control/DR) SI (control/DR)

Glucose 87.31 2.66/3.21 2.54/3.28 4.14/11.90*

Galactose 123.55 2.21/2.52 2.26/2.66 2.27/5.21*

Sucrose 81.58 2.41/3.11 2.73/3.22 4.89/9.70*

Fructose 83.14 2.64/3.35 2.53/3.34 5.40/12.75*

Maltose 235.11 5.91/5.58 6.13/5.87 19.22/17.16

Raffinose 121.85 3.46/6.15 3.43/6.16 8.64/19.97*

Ethanol 292.22 2.71/2.63 2.53/2.60 5.88/7.63*

Glycerol 199.49 3.46/5.84 3.09/5.80 17.17/22.10*

RM11 diploid

Carbon source Doubling Time (min) Day 2 pH (control/DR) Day 4 pH (control/DR) SI (control/DR)

Glucose 70.81 2.50/2.88 2.79/2.93 6.33/14.97*

Galactose 112.62 2.17/2.57 2.272.60 3.89/9.50*

Sucrose 71.86 2.52/2.85 2.56/2.94 8.40/13.10*

Fructose 74.23 2.57/2.90 2.36/2.94 7.49/14.93*

Maltose 92.80 2.39/2.92 2.36/2.95 9.64/14.12*

Raffinose 92.59 2.83/5.54 2.75/5.60 14.24/20.31*

Ethanol 208.96 2.97/2.87 2.74/3.84 14.40/15.54

Glycerol 150.84 3.00/5.50 2.63/3.74 15.07/17.65

Cells were aged in synthetic complete medium supplemented with the appropriate carbon source and pH measurements were taken at both day 2 and day 4 of the
experiment. Control concentrations for all carbon sources were tested at 2% w/v, except ethanol and glycerol which were tested at 3%. Moderate dietary restriction (DR)
concentrations were at 0.5% for all sources except ethanol and glycerol, which were reduced to 1%. Survival integral (SI) values represent the area under the survival
curve between day 2 and day 26.
*Denotes a statistically significant increase SI in response to DR (p,0.05).
doi:10.1371/journal.pone.0024530.t003
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complete (SC) medium, containing 2% glucose, unless otherwise

noted. Basic medium is 1.7 g/L Yeast Nitrogen Base (2AA/2AS)

(BD DifcoTM) and 5 g/L (NH4)2SO4. Components of the synthetic

complete medium used in this study have been described

elsewhere in detail [4] and are shown in Table 6. All strain

auxotrophies were compensated with a four-fold excess of amino

acids. Cultures were grown and aged in a roller drum enclosed in a

water-jacketed incubator at 30uC. YEPD was 20 g/L Bacto

Peptone and 10 g/L Yeast Extract (BD DifcoTM), supplemented

with glucose at the indicated concentrations. For alternative

carbon source experiments, the glucose was replaced with the

indicated carbon source at the indicated concentration. For

growth in buffered medium, a citrate phosphate buffer (64.2 mM

Na2HPO4 and 17.9 mM citric acid, pH 6.0) adjusted to pH 6.0

was added to the medium prior to inoculation.

Table 4. Correlation between culture pH and chronological
life span.

Strain (day) Pearson coefficient (r) p-value (T-test)

BY4743 (day 2) 0.92 ,1025

BY4743 (day 4) 0.89 ,1025

RM11 (day 2) 0.74 0.001

RM11 (day 4) 0.73 0.001

BY4743 and RM11 cells were aged in synthetic complete medium with different
carbon sources as shown in Table 3 and Figure 5. Culture pH was measured
at either day 2 or day 4 of the experiment.
doi:10.1371/journal.pone.0024530.t004

Table 5. Strains used in this study.

Strain Genotype

BY4741 MATa his3D1 leu2D0 ura3D0 met15D0

BY4742 MATa his3D1 leu2D0 ura3D0 lys2D0

BY4743 MATa/a his3D1 leu2D0 ura3D0

RM11-1a MATa leu2D0 ura3D0 ho::KAN

RM11a MATa lys2D0 ura3D0 ho::KAN

RM11 Diploid MATa/a ura3D0 ho::KAN

doi:10.1371/journal.pone.0024530.t005

Figure 5. Effect of carbon source on chronological life span correlates with pH of the culture medium after 48 hours of culture. The
effect of different carbon sources on chronological life span is shown for diploid (A) BY4743 or (B) RM11 cells. Cells were aged in synthetic complete
medium with the indicated carbon source. Control concentrations for all carbon sources were tested at 2% w/v except ethanol and glycerol which
were tested at 3%. Dietary restricted (DR) concentrations were at 0.5% for all sources except ethanol and glycerol which were reduced to 1%. Survival
integral (SI) values represent the area under the survival curve between day 2 and day 26 and error bars represent the standard deviation across
biological replicates. The survival integral values for growth in different carbon sources correlates significantly with culture pH after 48 hours in
diploid (C) BY4743 or (D) RM11 cells. A similar correlation was observed for pH after 4 days of culture (see Table 4).
doi:10.1371/journal.pone.0024530.g005
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Growth rate analysis
Doubling times were determined using a Bioscreen C MBR

machine (Growth Curves USA) as previously described using the

Yeast Outgrowth Data Analyzer (YODA) [30]. Reported doubling

times in 30uC YEPD are taken from interval readings from the

OD420–580 = 0.2–0.6 range of maximum growth rate. Significance

was tested with a two-tailed Student’s t-test of mutant doubling

times compared to wild type doubling times. Each experiment was

performed in biological triplicates per run (three cultures, three

Bioscreen C Honeycomb Plate wells) and the runs were performed

on at least three biological replicate cultures (independently grown

from different colonies on different days).

pH Determinations
Aging cultures were prepared as described above, with a 1:100

dilution of a YEPD culture being inoculated into synthetic

medium containing the appropriate carbon source. Cultures were

left for either two or four days, and pH was determined using an

Accumet XL 15 pH meter (Fisher Scientific). Between readings,

the meter was rinsed with ethanol, sterile deionized water, and

patted dry with a laboratory tissue wipe.

Chronological lifespan analysis
Unless otherwise stated, chronological life span was determined

using a Bioscreen C MBR automated incubator/plate reader to

monitor the outgrowth kinetics of chronologically aged cultures in

a synthetic complete medium supplemented with 2% glucose, as

previously described [3,4,29]. Chronological viability was calcu-

lated from growth curves of aging cultures using the Yeast

Outgrowth Data Analyzer (YODA, www.sageweb.org/yoda) [30].

The survival integrals were calculated using the YODA ‘‘cleaned’’

algorithm on YODA and the doubling time was calculated by the

‘‘interval’’ method. The calculation parameters were as follows:

Threshold ODs (Min = 0.100, Max = 2.000); Doubling Time

Interval OD (Min = 0.200, Max = 0.500); Doubling Time Adjust-

ment (Delay OD = 0.500, Slope = 0.0261, Min Delay (sec) = 500);

Survival Time Shift (OD = 0.300). Survival integral (SI) is defined

as the area under the mortality curve and provides a quantitative

measure of the chronological life span that allows for statistical

analysis between experimental and control groups [3,29]. A

Student’s T-test was used to calculate p-values. For all experi-

ments, outgrowth data was normalized to the initial time point

collected on the second day of chronological aging. In all

experiments, data for at least 3 biological replicates are shown,

except for RM 0.05% glucose in both a and a mating types in

which only two biological replicates were analyzed due to

contamination of the third replicate.
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