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Abstract
Studies of the health impacts of airborne particulates’ chemical constituents typically assume
spatial homogeneity and estimate exposure from ambient monitors. However, factors such as local
sources may cause spatially heterogeneous pollution levels. This work examines the degree to
which constituent levels vary within communities and whether exposure misclassification is
introduced by spatial homogeneity assumptions. Analysis considered PM2.5 elemental carbon
(EC), organic carbon matter, ammonium, sulfate, nitrate, silicon, and sodium ion (Na+) for the
United States, 1999–2007. Pearson correlations and coefficients of divergence were calculated and
compared to distances among monitors. Linear modeling related correlations to distance between
monitors, long-term constituent levels, and population density. Spatial heterogeneity was present
for all constituents, yet lower for ammonium, sulfate, and nitrate. Lower correlations were
associated with higher distance between monitors, especially for nitrate and sulfate, and with
lower long-term levels, especially for sulfate and Na+. Analysis of colocated monitors revealed
measurement error for all constituents, especially EC and Na+. Exposure misclassification may be
introduced into epidemiological studies of PM2.5 constituents due to spatial variability, and is
affected by constituent type and level. When assessing health effects of PM constituents, new
methods are needed for estimating exposure and accounting for exposure error induced by spatial
variability.
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Introduction
Ambient measurements of air pollution are commonly used as surrogates for exposure to
investigate the relationship between air pollution and human health end points. However
there exists spatial misalignment between the availability of pollutant data, typically at
points for monitor locations, and the spatial scale used to measure health, often aggregated
over a given area such as the county (Gryparis et al., 2009; Peng and Bell, in press).
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Community-wide concentration estimates are typically estimated through averaging monitor
measurements over a given spatial area (e.g., zip code, metropolitan area, county). This can
involve interpolation techniques such as kriging or inverse distance weighting, or applying
the levels measured by a single representative monitor to a broad area.

For individual-level health data where a study subject’s residence or other location, such as
school or work, is known, pollution exposure values are often estimated through
measurements from the nearest monitor or some interpolation of nearby monitors. Although
a smaller number of studies have used personal monitoring (Magari et al., 2002; Vallejo et
al., 2006) or individual indoor and/or outdoor monitors at the study subject’s location
(Belanger et al., 2006), such approaches are often cost prohibitive, and the vast majority of
epidemiological research continues to rely on ambient monitors to generate exposure
estimates. In ecologic studies, where aggregated pollutant levels are compared with
aggregated health data, the exposure estimate for a given community is typically estimated
as the spatially averaged ambient pollutant level (Zeger et al., 2000).

These approaches assume that pollution concentrations are spatially homogenous within the
spatial unit used for analysis (e.g., county) or for a given distance range (e.g., the distance
between the monitor(s) and the subjects). The assumption of spatial homogeneity of the
pollutant is important for allowing the ambient average to be estimated using just a small
number of monitors. However, a violation of the spatial homogeneity assumption in this
case could lead to poor estimates of the ambient average and potentially biased estimates of
risk parameters from regression models. Studies have shown that the choice of particulate
matter sites used in epidemiological analysis can affect results (Ito et al., 1995).

The spatial properties of air pollution concentrations can be affected by several factors such
as the relative contribution of local versus regional sources, atmospheric conditions (e.g.,
mixing height, atmospheric stability), and topography. The type of pollution can affect
atmospheric dispersion and deposition; hence, different spatial heterogeneity can be
expected for gaseous pollutants compared to particles, and among different particulates
based on particle size, density, and shape, as well as source patterns. Monitors in a given
region are more likely to have similar concentrations if the area’s pollution has larger
contributions from secondary pollution compared to primary pollution. Communities with
pollution from regional sources will have less spatial heterogeneity of pollution levels than
communities with a higher relative contribution of local pollution sources.

Uniformity among air pollution measurements from different locations in a community can
be considered in several ways, including temporal correlation and spatial similarity of
absolute values. The temporal correlation of measurements across multiple monitors reflects
whether levels rise and fall in similar patterns across time. However, two monitors could
have perfectly correlated measurements but different absolute values of concentrations.

Research on particulates uses many different size distributions, such as particles with an
aerodynamic diameter ≤10 or ≤2.5 µm (PM10 and PM2.5, respectively). Regional and spatial
patterns in PM2.5 and PM10 health effects estimates, as well as a limited number of studies
using PM2.5 chemical constituents and sources, suggest that the chemical composition of the
particle mixture has a role in toxicity (Laden et al., 2000; Dominici et al., 2006; Ostro et al.,
2007; Bell et al., 2009; de Hartog et al., 2009; Peng et al., 2009). Here we use the term
“constituent” to refer to one of the chemical components of PM2.5, which is a mixture of
many pollutants. Several previous studies have explored spatial variation among pollution
levels, including many studies that examined particles; however, most focused on the total
mass of particles of a given size distribution (Kim et al., 2008). A limited number of studies
investigated this issue for chemical composition. Spatial variation of 14 PM2.5 constituent
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levels from 1988 to 1998 was assessed for 18 monitors in the northeastern United States
(Athanassiadis and Rao, 2003). Other studies examining this issue focused on a single city
(Röösli et al., 2001; Ito et al., 2004; Martuzevicius et al., 2004; Venkatachari et al., 2006; So
et al., 2007; Moreno et al., 2008) or small number of cities (Nerriere et al., 2007).

We investigated the spatial relationship of PM2.5 chemical constituent concentrations for the
period 1999 to 2007 for 480 monitors in the United States for seven chemical constituents of
PM2.5. This work builds on previous research that used a version of this data set for fewer
years (2000– 2005) to investigate the chemical composition of PM2.5 on a national and
regional scale based on daily county-wide averages, but did not investigate spatial
heterogeneity at the community scale (Bell et al., 2007). The database contains information
for over 50 chemical constituents. We examined the daily levels of the various constituents
and examined how relationships by monitor pairs (i.e., levels of pollutants at two different
locations) are affected by the distance between location of monitor pairs, pollutant levels,
and population density.

Methods
We used daily measurements of PM2.5 chemical constituents for the continental United
States based on ambient monitoring data collected by the US Environmental Protection
Agency (US EPA) from January 1999 to December 2007. Data were obtained from the US
EPA’s Office of Air Quality Planning and Standards and include information from the
PM2.5 Chemical Speciation Network, State and Local Air Monitoring Stations, Integrated
Monitoring of Protected Visual Environments, and other monitoring networks. The
analytical methods used are gravimetry for total mass; ion chromatography for nitrate

, sulfate , ammonium , and sodium ion (Na+); thermal optical analysis for
elemental carbon (EC) and organic carbon; and X-ray fluorescence for silicon (Si) (US
Environmental Protection Agency, 2001). More information on the sampling approaches,
analytical methods, and quality assurance procedures is available in US EPA reports (US
Environmental Protection Agency 2001, 2000). Although data are daily (i.e., 24-h averages),
they are not available every day for all sites. The median frequency of data measurement
was once every 3.7 days, and the average frequency was once every 4.6 days. We limited
analysis to the constituents that were identified in earlier work to either vary with PM2.5
total mass or contribute ≥1% to PM2.5 total mass (Bell et al., 2007). These constituents are

, EC, organic carbon matter (OCM), , Si, Na+, and .

We excluded data that were suspect (e.g., US EPA-coded “lab issues”) and monitors that
were not located in the continental United States. Organic carbon mass was estimated based
on field correction values with a k value of 1.4. Monitors were included in analysis if they
had data for at least 365 days in the study period and at least five observations in each
season. Of these monitors, data from monitor pairs were analyzed if they were < 100 km
apart and data were available for the constituent of interest for >90 observations days for
both monitors (i.e., ≥90 same-day observation days).

The final data set included data from 354 monitors, although not all monitors satisfied our
inclusion criteria for all constituents. The number of monitors was 324 for , 238 for

, 327 for EC, 224 for OCM, 346 for Si, 218 for Na+, and 345 for . The total
number of observation days (i.e., monitor days), summed across all monitors, was 159,107
in total: 144,772 for ; 92,851 for ; 84,522 for EC; 152,340 for OCM; 153,392 for
Si; 83,033 for Na+; and 152,340 for .
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The data include measurements that could be used to generate exposure estimates in
epidemiological studies. However, this incorporates a variety of areas and land-use types.
The location type varied with 23% of observations in urban locations, 55% in rural areas,
and 21% in suburban locations, based on US EPA coding of the monitoring locations. The
observations also covered several land-use types, including commercial areas (16%),
industry (3%), vegetation areas (e.g., forests) (42%), residential communities (26%),
agriculture (7%), and desert (4%).

The spatial variability among monitor measurements was estimated in several ways. For
each monitor pair and constituent, we calculated the distance between monitors, the Pearson
correlation across time, the coefficient of divergence (COD), and the long-term average of
constituent levels calculated as an average across both monitors based on days in the study
period with data available for both monitors for a given constituent. The COD for monitor
pairs for each constituent were calculated as:

where  and  are the concentration of constituent j on day t at monitors i and k,

respectively, and  the number of days with data for constituent j for both monitors i and k.

The COD reflects the variability of concentrations among monitor measurements, and is
self-normalizing, so that if the coefficient approaches 0, the measurements have high
similarity, whereas if the coefficient approaches 1, the measurements have low similarity. If
measurements were identical, the COD would equal 0.

Although correlation results are useful to determine if concentrations covary across time, the
COD provides insight into whether the overall concentrations across monitors are similar.
The measures of correlations and CODs provide information that may be more relevant for
some epidemiological study designs than others. For example, a time-series study that
explores how day-to-day variation in pollutant levels is associated with day-to-day variation
in health response could be affected by spatial heterogeneity that affects the temporal
variation in exposure levels. However, an ecological study that compares health responses
and exposure levels across communities could be affected by spatial heterogeneity related to
the absolute levels.

A second-stage analysis was conducted with linear modeling to evaluate whether
correlations were associated with the distance between monitors, the long-term averages of
the constituents over the study period for each monitor pair, and the average population
density for each monitor pair. Long-term averages were constructed based on the average
across both monitors’ values for the subset of days for which data were available for the
constituent of interest for both monitors in the monitor pair. Population density was
calculated as the average of the number of persons/mile2 for the counties in which the
monitors were located based on the 2000 US Census (US Census Bureau, 2000). The linear
models included centered variables for distance, long-term average, and population density,
simultaneously. The linear model was repeated for each constituent.

The majority of sites had a single monitor; however, some sites had colocated monitors.
These function as duplicate samples, under which observations would be identical without
measurement error. Here we use the term “site” or “location” to refer to the specific place
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where measurement occurs, and “monitor” to refer to a single instrument producing a series
of measurements. Thus, a single site may have more than one monitor. We investigated in a
separate analysis the data at colocated monitors (distance = 0 km). Colocated monitors
existed for all constituents. For , , and Si, there were sites with three colocated
monitors. Investigation of differences in constituent levels at colocated monitors explores
measurement error, rather than spatial variability. For colocated monitors, we calculated the
correlation, COD, and root mean squared error (RMSE). The RMSE represents the standard
error of colocated measurements. Lower values indicate more similarity among
measurements, and RMSE would equal 0 with perfect agreement. RMSE is calculated as
follows:

where  and  are the concentration of constituent j on day t at monitors i and k,

respectively, and  the number of days with data for constituent j for both monitors i and k.

Results
Table 1 shows the correlation of daily data for monitor pairs for each chemical constituent,
categorized by the distance between monitors. These results indicate that levels of some
constituents are more localized than others. The correlations of constituent levels at monitor
pairs were generally higher for , , OCM, and  than the other constituents. For
all constituents, correlations were lowest at the highest distance category (50–100 km) and
highest at close distances (< 10 km), and followed a general decline in correlations with
increasing distance. Figure 1 shows correlation versus distance for each monitor pair for
each constituent. Each circle represents a monitor pair, and the circle’s diameter is
proportional to the number of observation days for a given monitor pair and constituent.
Table 2 provides the CODs for monitor pairs by distance categories. Constituent levels were
similar (COD closer to 0) for  and  at smaller distances. The absolute levels
generally became more divergent (larger COD) as distance increased.

Table 3 provides information on the correlation coefficients and CODs by region. The
number of monitors varied greatly by region with the most monitors (235–296 depending on
constituent) in the northeast region. Spatial heterogeneity varied little by region, although

 was more heterogeneous in the northeast and southwest than other regions.  was
most homogenous in the northeast, whereas Na+ was the least homogenous in this region,
compared to other regions.

We also examined constituent levels at the subset of monitors that were colocated (distance
= 0 km). Correlations, CODs, and the RMSE for colocated monitor pairs and the number of
colocated monitors for each constituent are provided in Table 4. All constituents exhibited
reasonably similar values (e.g., high correlations, low CODs) for colocated monitors;
however, there were differences among same-day colocated measurements, and these
differences varied by constituent. The highest correlations among colocated measurements
were for  and  (average correlations of 0.98 and 0.97, respectively). CODs were
lowest for , , and . For EC, colocated monitors had related but differing
measurements (correlation of 0.75, COD of 0.22), indicating measurement error. Na+ and Si

Bell et al. Page 5

J Expo Sci Environ Epidemiol. Author manuscript; available in PMC 2011 September 19.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



show somewhat higher COD values than other constituents (COD 0.31 and 0.41,
respectively). No constituent exhibited the lack of measurement error (correlation = 1.0;
COD and RMSE = 0.0), indicating that exposure error is introduced by measurement error,
unrelated to spatial heterogeneity.

As evidenced by Tables 1 and 2 and Figure 1, the relationship between constituent levels at
monitor pairs generally decreases with distance; however, there also exists variability for
correlation of constituent levels at monitor pairs at a given distance. For example, note that
the correlation of monitor pairs at any specific distance exhibits a wide range of values
(Figure 1), indicating that factors other than constituent type and distance have a role in
spatial variability of constituent levels. We examined the relationship between correlation of
monitor pair constituent levels and distance, long-term averages of the constituent levels,
and population density, which might partially explain differing correlations for multiple
monitor pairs at a specific distance. Across all included monitor pairs, the correlations
among these variables (distance between monitor pairs, long-term constituent levels, and
population density) were low (−0.28 to 0.22).

Higher distance between monitors was associated with lower correlations for all
constituents, and higher long-term constituent levels were associated with higher
correlations for all constituents, although results were not statistically significant for OCM.
Population density did not exhibit clear patterns with correlations, as higher population
density was associated with higher correlations for some constituents and lower correlations
for others. Figure 2 shows the percent change in correlation of constituent levels at monitor
pairs per interquartile range (IQR) increase in long-term constituent levels, an additional 20
km distance, or an additional 10,000 persons/mile2 for population density. These results are
for a model including variables for long-term constituent levels, distance between monitors,
and population density. This model was conducted separately for each constituent.
Correlations decreased with distance between monitors for all constituents, most
dramatically for , EC, and Na+. An additional 20 km distance between monitor
locations lowered correlations by 8.5% (95% interval 6.8, 10.2%) for , 8.8% (6.4,
11.3%) for EC, and 8.0% (4.9, 11.1%) for Na+. Correlations also were modified by long-
term constituent levels with higher correlations corresponding to higher constituent levels.
Results were statistically significant for all constituents other than OCM. An IQR increase in
long-term Na+ levels (0.1 µg/m3 ) increased correlations by 55% (47, 62%). For , an
IQR increase in long-term levels (2.8 µg/m3) increased correlations by 12.9% (11.0, 14.8%).

To examine the variation of monitor coverage and its potential impact on exposure estimates
for health studies, we calculated the average population-weighted distance between zip code
centroids and US EPA Speciation Trends Network (STN) PM2.5 monitors for US
continental counties with an STN monitor in 2006. Populations were based on the US 2000
census (US Census Bureau, 2000). Across the counties, the median population-weighted
distance from a monitor was 14 km, with a maximum of approximately 54 km.

Discussion
Our findings indicate strong spatial heterogeneity among PM2.5 chemical constituent
concentrations at the community level and that this variation is a function of the constituent
type, distance between locations, and long-term constituent levels. In particular,  and

 were the more spatially homogeneous pollutants, with correlations of 0.86 and 0.85,
respectively. Monitor-level measurement error also introduces uncertainty in exposure
estimates (e.g., correlation of 0.75 for colocated measurements of EC). All components
exhibited higher correlations with higher pollutant levels, with statistically significant

Bell et al. Page 6

J Expo Sci Environ Epidemiol. Author manuscript; available in PMC 2011 September 19.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



associations for all components other than OCM. These findings indicate that the
misclassification of exposure for constituents in epidemiological studies will differ by the
constituent, creating challenges for comparisons of results from different constituents.

In epidemiological settings, exposure misclassification will be impacted by the spatial area
and monitor coverage, which will affect the distance between each study subject and the
point location (i.e., monitor site) used to generate exposure estimates. The distance between
study subjects and monitors will depend on the number of monitors, their location (e.g.,
center versus edge of the community), and the size and shape of the spatial area to be
covered with respect to the monitoring locations. The variation in population-weighted
distance between zip code centroids and monitor locations within counties shows that even
if a uniform spatial unit is applied (e.g., a county), exposure misclassification can be greatly
influenced by monitor coverage and size of the spatial unit. In other words, because spatial
units (e.g., counties) have varying area, shape, population distribution, and monitoring
networks, these differences introduce another source of variation in exposure
misclassification for PM2.5 chemical constituents.

Our results indicate that misclassification of exposure is also a function of long-term
pollution levels. This implies that even if two studies focus on the same constituent and the
distance between study subjects and monitors is identical across the two studies, the
exposure misclassification could still differ by study and is anticipated to be larger for
communities with lower constituent levels.

Other factors that may affect exposure misclassification include indoor/outdoor activity
patterns, mobility as a study subject moves throughout the community, wind velocity, and
topography. Buildings’ ventilation rates affect the infiltration of outdoor pollutants to the
indoor environment. These factors may in fact vary by community and may affect
subpopulations differently. For example, air conditioning use lowers penetration of outdoor
air and varies by region. As another example, if one population has lower mobility within a
city (e.g., infants, the elderly) their exposure is more accurately assessed by a fixed-point
monitor than a population with higher mobility (e.g., persons traveling between home, work,
and school). An understanding of the spatial heterogeneity of a given pollutant can help
provide information on whether exposure misclassification is introduced not only through
the use of a monitor or set of monitors, but also for those study subjects that have high
mobility and are thereby exposed at multiple locations.

Measurement error in the form of different values for concentration levels measured at the
same time period and location was observed in the analysis of colocated monitors (Table 4).
Both positive and negative artifacts can exist, meaning the actual concentration may be
higher or lower than the measurement. Such discrepancies can occur for many reasons, such
as inadequate handling or storage of field blanks, which can especially affect the
measurements of OCM, which are adjusted by filter blank values (Pun et al., 2004). The
artifacts caused by organic carbon adsorption onto filters can vary by monitor type and
season (Noll and Birch, 2008; Vecchi et al., 2009). Measurements from X-ray fluorescence
methods can be affected by analytical uncertainties and interference (Graney et al., 2004;
Flanagan et al., 2006). Other possible reasons for different measurements at colocated
monitors include the loss of water or semi-volatiles, which can change from particle and gas
forms. The impacts of these artifacts can be influenced by monitor and analysis methods,
which may differ with respect to detection limits and measurement error (Pun et al., 2004;
Chow et al., 2008; Hyslop and White, 2008). In most cases, colocated monitors are not
present, so researchers must use estimates based on a single monitor without the benefit of
duplicate sampling.
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The potential misclassification of exposure resulting from spatial heterogeneity has
implications for epidemiological studies, and these implications may vary depending on the
study design. As an example, consider two monitors measuring the same pollutant daily with
different absolute levels although those levels covary day to day. Such monitor values would
work well in a study design relying on variation in exposure, but not in a study relying on
variation in long-term levels. The reverse would apply to a situation in which two monitors
have similar absolute levels with low day-today covariance. Analysis that compares day-to-
day variation in pollution levels with day-to-day variation in health response rates, such as
time-series analyses and case-crossover approaches, will be affected by spatial heterogeneity
of pollution levels, but not by inaccuracies in the relationship between absolute levels at
different monitors. In such cases, the variation in exposure across time is of key interest.
Cross-sectional studies that compare effects across different communities would be affected
by differences in the absolute concentrations across monitors (Wilson et al., 2005).
Researchers should consider the spatial and temporal variation of PM2.5 chemical
component levels in relation to the study design used in health effects estimates. Our finding
that spatial heterogeneity varies by constituent has implications for studies that examine the
health effects of multiple pollutants simultaneously in regression models because
measurement error in some pollutants can affect risk estimates for pollutants measured with
little error (Carroll et al., 2006).

Spatial heterogeneity of PM chemical constituents is an important factor in studies of both
short- and long-term effects. In cohort studies that estimate long-term effects, typical
situations involve either predicting long-term exposure to a pollutant at a specific location
(i.e., a home or residence) or predicting the average community-wide exposure to the
pollutant. In the former case, spatial heterogeneity can introduce uncertainty to predictions
of constituent levels at a specific location; in the latter case, spatial heterogeneity can result
in exposure estimates taken from individual monitors that are unrepresentative of the
community-wide exposure. In both cases, spatial heterogeneity can increase the uncertainty
in prediction which, if ignored, can introduce bias in the risk estimation, as has been shown
elsewhere (Gryparis et al., 2009; Peng and Bell, in press).

Typically, time-series studies assume that the pollutant of interest is homogeneous in space
and that individual monitors are generally representative of community-wide ambient
average concentrations. If a pollutant is spatially heterogeneous, then using a single monitor
as a surrogate for a community-wide average concentration can induce classical
measurement error. In the classical error model, the surrogate is noisier than the true
concentration: wt = xt + ut, where wt is the surrogate (monitor value) on day t, xt true value
(community-wide ambient average), and ut a random measurement error uncorrelated with
the true concentration. Such a measurement error can occur when examining PM2.5
constituents, many of which we have shown to be highly spatially heterogeneous. The effect
of this classical measurement error, at least for simple linear models, can be to attenuate the
estimate of the pollutant’s regression coefficient so that model results systematically
underestimate the true risk. If s2 is the variance of the measurement error ut and υ2 is the
variance of the surrogate measure wt, then in a simple linear regression, the estimate of the
regression coefficient is attenuated by a factor of (υ2 − s2)/υ2, which is sometimes referred
to as the reliability ratio (Zeger et al., 2000). In multiple regression models, similar effects
can be observed, but the magnitude of attenuation will depend on correlations between the
multiple variables in the model.

Spatial variability in pollutant levels can induce measurement error in time-series models
that has not been thoroughly examined in detail in previous work, with a few exceptions. A
recent study examined how time-series health effect estimates for emergency department
visits in Atlanta, Georgia, the United States were affected by the spatial heterogeneity of
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pollution levels for PM2.5 total mass and several gaseous pollutants (Sarnat et al., 2010).
PM2.5 effect estimates were not largely affected by the location of the monitoring site used
to estimate exposure or the distance between the monitor and study population.

Table 5 summarizes studies that have examined spatial heterogeneity of PM total mass or
PM chemical constituent concentrations. Several studies found lower spatial heterogeneity
for secondary pollutants than primary pollutants. Results of the studies differed with respect
to whether levels of EC were spatially heterogeneous across the community. In general, the
single-community studies in Table 5 indicate less spatial variation for constituents that are
likely to be regional in nature, such as , which matches our results.

A few studies directly examined the association between PM constituents and health
outcomes. In a time-series study of six California counties, daily cardiovascular mortality
had statistically significant associations with EC, OCM, potassium, and zinc (Ostro et al.,
2007). In a study of 119 US counties, cardiovascular and respiratory hospital admissions
were associated with EC and OCM (Peng et al., 2009). Similarly, an association was
identified between PM mortality and morbidity with EC and OCM, as well as nickel and
vanadium (Bell et al., 2009). Higher PM2.5 total mass mortality effect estimates were
observed when the PM composition had higher fractions of aluminum, arsenic, , and
nickel (Franklin et al., 2008). Consistent associations have been found thus far for PM
constituents that we find to have higher levels of spatial heterogeneity and measurement
error. This suggests that although significant associations have been estimated, the
magnitude of the effects may be underestimated.

A key limitation of generating more accurate exposure estimates in epidemiological studies
is the lack of available data, given the expense and feasibility issues associated with personal
exposure monitoring. As many researchers wish to study health impacts in locations or time
periods without measurement data, several approaches to improve exposure estimates are
gaining use. Some approaches, including data imputation (Caffo et al., in press), primarily
are applied to estimate air pollution levels on days, or other time units, without
measurements and thereby improve estimation of exposure but do not contribute to
information on spatial variability. Other approaches can be used to estimate concentrations
at locations without monitors, thereby addressing spatial misalignment problems introduced
by use of ambient monitors. These methods include the use of air quality modeling (Bell,
2006; Touma et al., 2006; Pun and Seigneur, 2008; Hogrefe et al., 2009); land-use
regression and traffic modeling (Brauer et al., 2008; Karr et al., 2009; Von Klot et al., 2009;
Holford et al., 2010); and other approaches including biomarkers, proximity to sources, and
hybrid approaches (Zou et al., 2009; Baxter et al., 2010). Yet reliance on ambient
monitoring networks to generate exposure estimates is likely to continue given the
substantial resources already invested in developing these networks, the relative ease of their
use, and the benefit of using actual measurements as opposed to estimated values.

Better understanding of spatial heterogeneity of PM2.5 chemical constituents is needed to
best interpret results from epidemiological studies. Our findings indicate that the pollutant,
distance from monitors, and long-term pollutant levels affect exposure misclassification,
which could hinder comparison of results across studies, even if they appear to use the same
study design (e.g., same PM2.5 constituent analyzed at the county level). Although a denser
monitoring network would be ideal, cost considerations may prohibit extensive additional
monitoring and even a network with very high coverage would not completely alleviate
issues of spatial heterogeneity. To date most studies of PM constituents, and in fact most
studies of air pollution more broadly, have not incorporated spatial modeling. Further
research is needed to develop statistical methods that account for the different spatial
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variation across the PM2.5 constituents in a location. Such methods could adjust risk
estimates obtained from regression models, making them comparable across locations and
across constituents.
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Figure 1.
Correlation of monitor pairs versus distance for PM2.5 chemical constituents. Note: Each
circle represents a monitor pair. The size of the circle represents the number of observation
days in each monitor pair; larger circles have larger sample sizes. EC, elemental carbon;
OCM, organic carbon matter.
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Figure 2.
Percent change in correlation of constituent levels at monitor pairs as a function of distance
between monitor pairs, long-term constituent levels, and population density. Note: The
circles represent central estimates and the horizontal lines the 95% intervals. Interquartile
range (IQR) values are 1.1, 2.8, 1.4, 3.5, 0.5, 0.1, and 0.1 µg/m3 for nitrate, sulfate,
ammonium, organic carbon matter, elemental carbon, sodium ion, and silicon, respectively.
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Table 5

Summary of studies examining spatial heterogeneity of particulate matter and PM chemical constituents.

Study Study location (time
frame)

Form of PM Selected findings

PM total mass studies.

(Ito et al., 1995) Cook County, IL Los
Angeles, CA (1985–1990)

PM10 Correlations for monitor pairs decreased with
distance for both sites, but were lower at all
distances for Chicago. Choice of monitoring sites
used to estimate exposure impacted relative risks for
PM10 and mortality.

(Burton et al., 1996) Eight sites in Philadelphia,
PA (summers 1992 and
1993)

PM10, PM25, PM coarse
(PM10–2.5)

Fairly uniform levels of PM10 and PM2.5 across the
study area based on ANOVA. Correlations of levels
between sites were higher for PM2.5 than for the
other PM forms. Levels more spatial heterogeneous
for PM coarse.

(Ito et al., 2001) Monitors in seven
contiguous central and
eastern US states (1988–
1990)

PM10 Strong trend of decreasing correlation between
monitor pair PM10 levels with increasing distance
between monitors. Different correlations depending
on location and land use.

(DeGaetano and
Doherty, 2004)

20 sites in New York, NY
(2000–2002, sampling
period differs by monitor)

PM2.5 Relatively homogenous levels across the
community, but lowest correlation in winter, which
was the season with lowest levels. Wind direction
did not greatly affect correlations of levels at
monitor pairs.

(Grivas et al., 2004) Four sites in Athens, Greece
(June 2001–May 2002)

PM10 Significant spatial variation in PM10 levels.
Correlation between monitor pairs ranged from 0.57
to 0.82.

(Pinto et al., 2004) 27 US urban areas (1999–
2000)

PM2.5 Correlations and COD of PM2.5 within communities
varied. For example, the range of between-monitor
correlations was −0.07 to 0.99.

(Ito et al., 2005) 48 contiguous US states
(1988–1997)

PM10 Distance between locations and regions affected
correlation of PM10 at different locations. Higher
correlations among PM10 in the eastern US than
western US.

(Wilson et al., 2006) One central site and 10
additional monitoring sites
in Christchurch, New
Zealand (July 2003 and June
2004)

PM10 High correlation of PM10 levels between central site
and other sites, but large differences in absolute
differences of levels.

(Grivas et al., 2008) Eight sites in Athens, Greece
(2001–2004)

PM10 Correlations between sites for PM10 levels ranged
from 0.55 to 0.85. The correlations were affected by
site type and were higher for urban areas. Site type
had a larger role than the distance between monitors.

PM chemical constituent studies.

(Wongphatarakul et
al., 1998)

Six monitors in Los
Angeles, CA (January 1986–
January 1987)

39 PM2.5 chemical
constituents, converted to
sources through cluster
analysis

Correlation analysis for source factors (crustal,
secondary, automobile, and residual oil PM2.5) used
to investigate spatial variation within Southern CA
air basin. Higher correlation for secondary PM2.5
than other sources (correlation coefficient range:
0.74–0.96). One monitor excluded due to levels very
different from other sites.

(Blanchard et al.,
1999)

San Joaquin Valley, CA
(one area for 1–14
November 1995; three areas
for 9 December 1995–6
January 1996)

>10 PM10 chemical
constituents divided into
categories (carbon,
secondary, crustal species).
Not all sites had information
for all categories

Spatial representativeness of monitors generally
higher for secondary PM10 particle category and
lowest for crustal category.

(Suh et al., 1997) Six sites in Washington, DC
(June–August 1994)

Sulfate, nitrate, ammonium,
and H+ PM2.5

Uniform concentrations across space for sulfate and
H+. More variation in nitrate.
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Study Study location (time
frame)

Form of PM Selected findings

(Kim et al., 2000) Five sites in Southern CA
(January 1995–February
1996)

>40 constituents, a subset of
which were analyzed for
spatial variation

PM10 sulfate and EC levels exhibited low spatial
heterogeneity. PM2.5 nitrate and ammonium showed
higher spatial variation, whereas PM2.5 sulfate and
EC did not.

(Röösli et al., 2001) Basel area, Switzerland (4–
80 sampling days in January
1997–May 1999, sampling
days varied by constituent)

>10 PM10 constituents Lower spatial heterogeneity for sulfate, sulfur,
cadmium, chlorine, titanium, and potassium, with
higher heterogeneity for nitrate, organic matter,
bromine, chromium, iron, and lead.

(Athanassiadis and
Rao, 2003)

18 Sites in Northeastern US
(1998–1998)

14 PM2.5 constituents Identified spatial scales for the constituent levels,
with scales of 200–400 km for most constituents.
Higher correlation coefficients for industrial and
urban pollutants (aluminum, bromine, iron,
selenium, zinc) for distances up to approximately
350 km.

(Martuzevicius et al.,
2004)

11 sites in Cincinnati, OH
(15–94 days in December
2001–November 2002,
sampling days varied by
site)

>40 PM2.5 constituents Constituent levels showed high spatial
heterogeneity, especially for metals. Sulfur
exhibited less spatial variation.

(Ito et al., 2004) Three sites in New York,
NY (April 2001–December
2002)

>50 PM2.5 chemical
constituents

Highest correlations across monitoring sites for
sulfur, nitrate, sulfate, and ammonium. Of the seven
constituents used in our study, the correlations for
related constituents were ranked from highest to
lowest correlations as nitrate, sulfate, ammonium,
organic carbon, silicon, sodium, and EC.

(Martuzevicius et al.,
2005)

13 sites in the greater
Cincinnati and northern
Kentucky area (2000–2003),
3 with chemical constituent
data

12 PM2.5 constituents Lower spatial heterogeneity for sulfur, organic
carbon, and ammonium. High spatial heterogeneity
for trace elements (iron, lead, manganese, nickel,
vanadium, zinc).

(Venkatachari et al.,
2006)

Two monitoring sites in
New York, NY (12 January–
5 February 2004)

Black carbon Spatial heterogeneity, based on COD and
correlations, evident and larger for black carbon
than for PM2.5 total mass.

(Wade et al., 2006) Five monitors in Atlanta
MSA, GA (March 1999–
August 2002)

Sulfate, nitrate, ammonium,
EC, and organic carbon
PM2.5

Semivariogram analysis for constituents indicate
higher nugget values (reflecting measurement errors
at distance = 0) for EC and organic carbon than
other constituents. Lower sills (reflecting less spatial
heterogeneity) for the predominantly secondary
constituents (sulfate, nitrate, ammonium) than the
predominantly secondary constituents (EC).

(Vega et al., 2007) Six sites in central Mexico
(February–March 2003).
One urban, three suburban,
two rural

23 constituents. Spatial
variability examined for
some constituents

Large spatial heterogeneity for PM2.5 sulfate. Less
heterogeneity for PM2.5 nitrate, PM coarse nitrate,
or PM coarse trace elements.

This study 354 US sites (1999–2007) Ammonium, EC, nitrate,
OCM, sulfate, Na+, and
silicon PM2.5

Lower spatial heterogeneity for ammonium, sulfate,
and nitrate. Lower correlation associated with higher
distance between monitors and lower long-term
constituent levels.

Abbreviations: ANOVA, analysis of variance; EC, elemental carbon; MSA, Metropolitan Statistical Area.

Note: For studies that examined PM total mass and constituents, results for constituents are presented here. Studies are ordered by date of
publication.
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