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Living in a Box or Call of the Wild?
Revisiting Lifetime Inactivity and Sarcopenia
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Abstract

Significance: The accepted effects of aging in mammalian skeletal muscle are progressive atrophy and weak-
ening, or sarcopenia. Canonical hallmarks of aging in skeletal muscle include a reduction in muscle fiber cross-
sectional area, a loss in muscle fibers through apoptosis and denervation, and infiltration of connective tissue or
fibrosis. Emerging thought suggests that pro-inflammatory signaling and oxidative stress may contribute to
sarcopenia. Critical Issues: Unfortunately, most of the mammalian models used to examine and understand
sarcopenia are confounded by the pervasive influence of prolonged physical inactivity. Further, the potential for
underlying metabolic disorder and chronic disease (e.g., type II diabetes and cardiovascular disease) may ac-
celerate skeletal muscle wasting. Because physical inactivity may share elevated pro-inflammatory (tumor ne-
crosis factor-alpha and inducible nitric oxide synthase) and insufficient stress response (insulin-like growth
factor-1 [IGF-1], heat-shock protein 25 [HSP25], NAD-dependent deacetylase sirtuin-3 [SIRT-3], and peroxisome
proliferator-activated receptor-gamma coactivator 1[PGC-1a]) signaling with aging and chronic disease, it is
critical to distinguish true aging from chronic inactivity or underlying disease. Conversely, the efficacy of
exercise and caloric restrictive interventions against sarcopenia in aging populations appears highly effective
when (a) conducted across the lifespan, or (b) at higher intensities when commenced in middle age or later.
Recent Advances: While the prospective mechanisms by which exercise or daily activity provide have not been
elucidated, upregulation of HSPs, PGC-1a, and IGF-1 may ameliorate inflammatory signaling, apoptosis, and
sarcopenia. Limited data indicate that the aging phenotype exhibited by mammals living in their natural habitat
(Weddell seal and shrews) express limited apoptosis and fiber atrophy, whereas significant collagen accumu-
lation remains. In addition, aging shrews displayed a remarkable ability to upregulate antioxidant enzymes
(copper, zinc isoform of superoxide dismutase, manganese isoform of superoxide dismutase, catalase, and
glutathione peroxidase). Future Directions: It is possible that in healthy populations requiring daily activity to
thrive, fibrosis and weakness, more than atrophy, may be the predominant phenotype of muscle aging until
senescence. Elucidating the molecular mechanisms by which lifetime inactivity contributes to sarcopenia and chronic
disease will be critical in managing the quality of life and health costs associated with our aging population. Antioxid.
Redox Signal. 15, 2529–2541.

Introduction: Canonical View of Sarcopenia
and Clinical Ramifications

‘‘Sarcopenia’’ is derived from the Greek language and
means ‘‘poverty of the flesh.’’ It describes skeletal

muscle wasting that often accompanies the aging process.
Indeed, progressive loss of muscle mass, or atrophy, is a
consistent finding in humans as birthdays accumulate. Over
42 million Americans suffer from sarcopenia, including
10%–20% of the population under age 70% and 40% of those
over age 80 (27, 62). Sarcopenia compromises the ability to
perform the tasks of daily living necessary to maintain

quality of life, health, and independence (33, 59). Sarcopenia
and weakness lead to frailty, and are highly predictive of
falls, physical disability, morbidity, and mortality (68, 79,
127). Loss of skeletal muscle and lean body mass have been
linked with increased risk of heart disease, hypertension,
and type II diabetes (11, 41, 48, 65, 66, 72, 91). Further, the
presence of chronic disease exacerbates skeletal muscle
dysfunction (14, 65). In 2000, the healthcare costs of sarco-
penia tallied $18.5 billion and are expected to soar to $130
billion by 2030 (27).

Unfortunately, health issues related to sarcopenia will
continue to mount as U.S. and global populations are growing
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older. By the year 2040 up to 15 million Americans will be age
85 or older (117). Indeed, the number of persons aged > 65
years is expected to double from approximately 35 million in
2000 to an estimated 71 million in 2030. Correspondingly, the
population aged > 80 years is expected to increase from 9.3
million in 2000 to 19.5 million in 2030 (Centers for Disease
Control, MMWR, 2003).

Sarcopenia is traditionally defined as a degenerative loss of
muscle mass and strength. Muscle atrophy is considered a
central part of an age-related process of remodeling in skeletal
muscle, whereby changes in muscle architecture occur. These
include (a) loss in the number of muscle fibers via apoptosis
and necrosis, (b) reduction in cross-sectional area of remain-
ing muscle fibers, and (c) accumulation of fibrotic collagen
(18, 102). Sarcopenia appears to be progressive, as beyond age
50 muscle mass declines at an average rate of 1%–2% per year,
a 30%–40% reduction in both skeletal muscle mass, and fiber
number is typical by age 75 (27, 55, 98, 102). Further, atrophy
and loss of muscle fibers preferentially affects fast-twitch or
type II muscle fibers. Contractile force generation erodes with
aging due to the product of fiber atrophy coupled with a
diminishment of muscle quality, or active tension expressed
per cross-sectional area (99). Remodeling and fibrosis are
thought to play a substantial role in the impairment of muscle
quality in elderly populations. When muscle atrophy is cou-
pled with a reduction in muscle quality, joint torque pro-
duction by skeletal muscles through skeletal lever systems is
lessened over 30% by age 75, and in excess of 50% by age 85
(102). Muscle atrophy has been consistently documented in
the gerontology literature across human and gerontological
models. In humans, fiber cross-sectional area of vastus later-
alis (VL), a common target of sarcopenia studies, was up to
50% lower in septuagenarians than in young adults (84, 128).
A ‡ 30% decrease in muscle mass by age 75 has been a com-
mon occurrence in sarcopenia studies (62).

The etiology of sarcopenia in human populations is con-
sidered to be multifactorial and includes (a) endocrine alter-
ations, (b) loss of alpha motorneurons, (c) repeated damage/
repair cycling, and (d) reduction in physical activity (97).
Endocrine-related changes with aging include impaired re-
lease of androgens, growth hormone, thyroxine, elevated
cortisol, and increased insulin resistance (33, 59, 114). In-
sufficiency of androgens and growth hormone/insulin-like
growth factor-1 (IGF-1) signaling exacerbate wasting and
impeded repair and growth (33, 34). In addition, poor nutri-
tional status exacerbates skeletal muscle wasting and weak-
ness in the elderly (20).

Progressive muscle wasting and remodeling has also been
demonstrated in rodent and nonhuman primates. Gastro-
cnemius mass decreased by 23% between 6- and 27-month-old
Fischer-344 rats (105). The Fischer-344X Brown Norway (FBN)
hybrid rat exhibits a large reduction in muscle mass (- 45%),
fiber cross-sectional area (- 30%), and muscle fiber number
(- 27%) between 18 and 38 months (77, 105). Muscles in older
FBN rats also displayed a more heterogeneous muscle mor-
phology, characterized by fibrosis and fat infiltration (105). In
C57BL/6 mice, skeletal muscle mass also decreased with aging,
with percent atrophy ranging from 15% to over 30% (10). Thus,
the relative progress of sarcopenia in old rodent models ap-
pears to be comparable with aging human subjects (21).

Skeletal muscles in aging populations also are susceptible
to injury as a result of repetitive eccentric contractions. Re-

modeling is a likely explanation for age-associated weakness
and enhanced risk of damage induced as muscle fiber size
diminishes, and accumulation of connective tissue and fat in-
creases. Encroaching fibrosis increases internal work of the
muscle and suppresses muscle quality (98). Therefore, mecha-
nistic approaches designed to unravel the mysteries of sarco-
penia must focus on the process of skeletal muscle remodeling,
in addition to atrophy. A number of molecular and cellular
candidates have been linked to sarcopenia and remodeling,
including IGF-1 and its splice variant mechano-growth factor
(MGF) (38), disrupted mechanotransduction (94), alterations in
satellite cell signaling (39, 98), mitochondrial dysfunction (53),
oxidative stress (118), apoptosis (68), autophagy (126), insulin
resistance (121), and dysregulation of the ubiquitin/proteo-
some pathway (5). Satellite cells as pluripotent nuclei may
differentiate into adipocytes or fibroblasts, particularly with
advancing age or disease (98). In addition, underlying mech-
anisms contributing to fibrosis and remodeling may include
elevation of inflammatory cytokines (22, 96).

Based upon cell signaling commonalities, in this review we
will address the concept that a significant portion of age-
related sarcopenia may be related to chronic inactivity and
underlying chronic disease.

Living in a Box

The human genome supported a hunter-gatherer lifestyle
and physiology 40,000 years ago and predominates our
healthy phenotype, designed to cover large distances in ac-
quiring and transporting food and water. Thus, it is designed
to facilitate physical activity throughout the lifespan. Post-
modern, Westernized societies from Japan to New York to
Texas have become increasingly sedentary over the last cen-
tury, ‘‘living in a box’’ at home, commuting, and in the office.
Indeed, it has been argued that inactivity encompasses a
discrete pathology that alters the expression of critical genes
involved in pro-inflammatory signaling (14, 15). As a con-
sequence, inactivity induces a phenotype that promotes the
etiology and prevalence of 25 chronic diseases, including
coronary artery disease, hypertension, type II diabetes, obe-
sity, cancer, and Alzheimer’s (14), all affected by pro-inflam-
matory signaling. Indeed, inactivity elevates risk of coronary
artery disease (+ 45%), stroke (+ 60%), hypertension (+ 30%),
type II diabetes (+ 50%), breast cancer (+ 31%), colon cancer
(+ 41%), and osteoporosis (+ 59%), while contributing to
340,000 premature deaths, at a cost of $150 billion per year
(15). Importantly, the chronic diseases above may also elicit
muscle wasting. Indeed, emerging evidence indicates that
aging, inactivity, and chronic diseases may regulate an over-
lapping set of genes and proteins involved in oxidative stress,
inflammatory signaling, and stress protection (15, 16, 22, 95).

Although sarcopenia has been reported as a commonality
among the aged since the Greek civilizations, the vast majority
of inductive scientific studies involving human and mammalian
subjects have been collected with sedentary, aging populations
serving as the control group. Therefore, our understanding of
true aging in mammalian skeletal muscle has been, unfortu-
nately, limited by the focus on inactive human and caged ani-
mal models fed ad libitum. Logically, it could be argued that
many mammalian studies involving rodents, primates, and
humans have truly been evaluating the combination of aging
and chronic inactivity. Further, the incidence of numerous
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pathologies that can elicit muscle wasting and/or weakness
increases with age (37). These include insulin resistance, hy-
pertension, coronary artery disease, peripheral vascular disease,
infection, chronic obstructive pulmonary disease (COPD), and
cancer that impair muscle function, many of which elicit muscle
wasting, possibly distinct from the true aging process.

In addition to aging and chronic disease, disuse and inac-
tivity in young or old animals also elicit substantial muscle
atrophy (1, 56, 57). Disuse or mechanical unloading models
are characterized by skeletal muscle atrophy and suscepti-
bility to damage (57). Mounting evidence indicates that oxi-
dative stress, NF-kappaB (NF-jB) activation, and impaired
stress response are important driving mechanisms behind
muscle wasting (1, 56, 57, 101). In addition, translocation of
important signaling proteins such as neuronal nitric oxide
synthase (nNOS), from the subsarcolemmal cytoskeleton,
may elicit muscle wasting during disuse and Duchenne
muscular dystrophy, possibly via activation of ubiquitin ligases
(111, and [Kim, et al., unpublished observation]). In addition,
there is accumulating evidence that unloading-induced
myopathy is redox sensitive (1, 28, 56, 57, and [Kim, et al.,
unpublished observation]).

Skeletal muscles that experience mechanical unloading are
also susceptible to damage upon reloading (57). Interestingly,
many of the signaling pathways (insulin/IGF-1, nNOS, in-
flammatory cytokines, NAD(P)H oxidase, NF-jB activation,
and apoptosis) contributing to muscle dysfunction during
disuse and mechanical unloading are also shared with long-
term physical inactivity (13), aging (94, 105, 106), and mus-
cular dystrophies (36, 124). However, lifelong inactivity
models will provide a more thorough understanding of
muscle remodeling during aging than those of extreme disuse
(casting, hindlimb unloading, denervation, and mechanical
ventilation), as extreme disuse results in increased fast-twitch
myosin isoforms and fiber-type, whereas aging is character-
ized by a shift from type I to type II fibers (103).

Upregulation of pro-inflammatory genes in aging skeletal
muscle have been associated with sarcopenia and impaired
muscle function (40). There is now substantial evidence that
oxidative stress, mitochondrial function, and pro-inflammatory
signaling are also central to insulin resistance (8). Mitochondria
are an important source of hydroperoxides, which in turn in-
terfere with insulin receptor substrate-1 (IRS-1) phosphoryla-
tion, and subsequent translocation of glucose transporter type 4
(GLUT4) receptors to the sarcolemma (8, 12). Disuse, sedentary
lifestyle, and aging all increase the likelihood of insulin resis-
tance, particularly as oxidative stress and pro-inflammatory
signaling rise (7). Insulin resistance may exacerbate endothelial
dysfunction and exert positive feedback on metabolism, thus
elevating oxidative stress (116). Moreover, commonly used
medications to increase insulin sensitivity such as angiotensin
II receptor blockers, angiotensin-converting enzyme inhibitors,
and peroxisome proliferator-activated receptor (PPAR) ago-
nists reduce pro-oxidant genes such as Nox2 (NAD(P)H oxi-
dase) in phagocytic and nonphagocytic cells (115). Therefore,
anti-inflammatory therapy may be efficacious in attenuating
sarcopenia in part by reducing insulin resistance.

Chronic Inactivity and Aging Skeletal Muscle

If many of the same genes and proteins expressed in disuse
and chronic diseases (e.g., type II diabetes and cardiovascular

disease) are also expressed with advancing age (13, 25), it is
likely that at an interaction between aging and disuse exists.
Elevated leakage of reactive oxygen species (ROS) from mi-
tochondria, for example, is commonalities for disuse and ag-
ing (80, 103). Recent investigations that have combined aging
and extreme disuse indicate that tumor protein53 (p53) and
mitochondrial B-cell lymphoma 2 (Bcl-2) pathway signaling
produce nonadditive effects (110). Interestingly, muscle at-
rophy with disuse or mechanical unloading is stimulated by
increased oxidative stress and impairment of stress proteins,
including heat-shock protein 70 (HSP70) and antioxidant en-
zymes (e.g., catalase and glutathione peroxidase) (101). Van
Remmen and colleagues demonstrated that knockout of the
copper, zinc isoform of superoxide dismutase (Cu,ZnSOD or
SOD1) gene increased oxidative stress, while reducing mus-
cles mass, and increasing damage in a manner mimicking
accelerated sarcopenia (82). In addition, SOD1 knockouts
displayed diminished contractile force, which was exacer-
bated with advancing aging (47, 82). It is uncertain whether
short-term unloading or disuse is influence by inflammatory
cytokines reported to be important in myopathy with mus-
cular dystrophies, cachexia (COPD, cancer, chronic heart
failure, and diabetes), and aging models of muscle wasting
(69, 101). However, chronic inactivity may indeed elevate
circulating and tissue-level inflammatory cytokines.

Underlying illness or pathology may exacerbate age-
associated sarcopenia or could play a contributory role to
muscle wasting associated with the aging process. The inter-
active nature of underlying disease and aging, particularly
when coupled with chronic inactivity, is possible because of
shared pro-inflammatory pathways. Indeed, Chung’s In-
flammatory Hypothesis of Aging, first articulated a decade
ago (22), postulated that increasing loss of homeostasis at the
tissue level was a function of increased pro-inflammatory
signaling. Pro-inflammatory mediators proposed included
inducible nitric oxide synthase (iNOS), NAD(P)H oxidase,
pro-inflammatory cytokines (e.g., tumor necrosis factor-
alpha [TNF-a] and interleukin-1beta), and NF-jB (22, 73, 75).
In addition, caloric restriction (CR) reversed age-related in-
creases in pro-inflammatory mediators in the kidney, heart,
and brain (22). TNF-a contributes to IRS-1 phosphorylation
and insulin resistance, possibly via AMP-activated protein
kinase (AMPK) and p38 mitogen-activated protein kinase
signaling (24, 35, 129). Chronic inflammation also increased
tissue damage, and has been noted with disuse and aging (71).

Chronic elevation of pro-inflammatory as a purveyor of
skeletal muscle wasting has significant global importance, as
upregulation of inflammatory proteins such as TNF-a, iNOS,
and NF-jB is reflective not only aging and disuse, but also
disease and cachexia (2, 19, 37, 56, 57, 71 119). For example, in
a series of experiments, Reid and colleagues demonstrated
that elevation of TNF-a lead to mitochondrial dysfunction as
well as exacerbating release of ROS (63, 64, 81). Further, TNF-
a stimulated ubiquitin-driven proteolysis via Forkhead box
protein O4 (FoxO4) and impaired contractile function in
skeletal muscle (63, 64, 81).

While the etiology of cachexia has been categorized as
metabolic and inflammatory in nature (96), increasing rec-
ognition of shared pathways between bedrest (disuse) and
sarcopenia exists (34). Skeletal muscle dysfunction and
weakness during chronic heart failure has also been attributed
to TNF-a, NF-jB, iNOS, and oxidative stress (3, 42). In addition,
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recent data indicate that sepsis causes insulin resistance
via iNOS-induced nitration of IRS-1 (89). Indeed, disuse,
cachexia, and sarcopenia can all be argued as metabolic dis-
orders where inflammatory signaling, mitochondrial dys-
function function, endocrine regulation, and protein turnover
are shared (34), possibly distinguished by FoxO isoform ac-
tivation and alterations in mechanotransduction (86).

Support for pro-apoptotic signaling as a central mediator of
muscle wasting can be found in a host of pathologic condi-
tions, including chronic heart failure, mechanical ventilation,
muscle denervation, COPD, and muscular dystrophy (2, 19,
74, 100, 104, 114). Oxidative stress, disruption of Ca2 + ho-
meostasis, and insufficient stress response can activate pro-
apoptotic signaling (104, 105), a consistent outcome of aging,
inactivity, muscular dystrophy, as well as wasting observed
with chronic disease (104). For example, activation of apo-
ptosis with disuse is greatest in aging skeletal muscle (104),
such that a ‡ 25% decline in skeletal muscle mass is corre-
lated with elevated terminal deoxynucleotidyl transferase-
mediated dUTP Nick End Labeling (TUNEL)–positive nuclei
and DNA fragmentation.

Apoptosis is accomplished in skeletal muscle via caspase-
dependent and independent signaling (6). Pro-apoptotic
signaling (e.g., caspase-3 activation) may contribute to sarco-
penia not only by reducing the number of myonuclei and
satellite cells, but also by increasing proteolysis (6). There are 3
caspase-dependent pathways: the mitochondrial Bcl-2 path-
way dependent on caspase-9 activation, the caspase-8-
dependent fas ligand/cytokine pathway, and the Ca2 + /
endoplasmic reticulum (ER) stress pathway that activates
caspase-12. Caspase-3 cleavage serves as an integrating center
for the caspase-8, -9, and -12, pathways that ultimately induce
caspase-3 activation clearly respond to aging (67, 68). Clea-
vage of caspase-3 is elevated with aging in limb muscles, as-
sociated with a 35% reduction in mean fiber cross-sectional
area (105). Consistent with the ‘‘constant domain’’ model for
myonuclei, where each myonuclei governs its own cellular
volume or domain (4), apoptosis and removal of myonuclei
and satellite cells in a postmitotic tissue-like skeletal muscle
can result in fiber atrophy as well as fiber loss (4, 74).

Leeuwenburgh and colleagues suggested that mitochon-
drial damage and oxidative stress contribute to apoptosis and
sarcopenia (46). Pro-apoptotic Bcl-2-associated X protein
(Bax) was elevated with aging, whereas anti-apoptotic Bcl-2
protein expression declined in fast and slow-twitch skele-
tal muscle (105). Mitochondrial-dependent and caspase-
independent signaling in skeletal muscle was activated as well.
Translocation of caspase-independent endonuclease G (EndoG)
and apoptosis-inducing factor (AIF) from the mitochondria to
the nucleus was also present in old, but not in young animals
(31, 60, and [Kim, et al., unpublished observation]). ER stress is
also elevated with aging, and associated impairment of calcium
homeostasis activated caspase-12 and thus caspase-3 (54, 92).
ER stress may further promote cytochrome c release from the
mitochondria (27). Alway and colleagues reported that aging
and disuse may act in an interactive manner, with noncaspase-
dependent apoptosis (AIF) amplified with aging (104).

Receptor-mediated signaling, including TNF-a, induces
apoptosis by the activation of Fas-associated death domain
receptors (FADD), caspase-8, and thus caspase-3 activation
(90). TNF-a-driven apoptosis is believed to be critical in at-
rophy. Indeed, Degens and Alway proposed that low-grade

inflammation is the primary contributor to skeletal muscle
wasting with aging and chronic disease (25, 26). While human
data remain limited, an age-related increase in apoptosis,
coupled with a 60% decrease muscle fiber amounts, has been
documented (109, 125). TUNEL-positive nuclei in the VL
muscle stained for DNA fragmentation were 87% higher
compared with muscle in young adults (125).

It is probable that some fiber loss with aging occurs in re-
lation to a-motor neuron denervation or mitochondrial dys-
function, whereby both mechanisms may lead to elevated
apoptosis and muscle dysfunction (18, 53, 104). Elevated oxi-
dative stress results in early degeneration of skeletal muscle,
producing a muscular dystrophy or amyotrophic lateral
sclerosis-like phenotype (94). For example, knockout of the
Cu,ZnSOD results in significant damage and atrophy of skeletal
muscle reminiscent of myopathy (82). In summary, distin-
guishing the effects of aging on skeletal muscle function from
underlying chronic inactivity and chronic disease may be chal-
lenging given their shared pro-inflammatory signaling, (114).

Exercise as a Sarcopenia Intervention
in Aging Populations

Conversely, long-term exercise training appears to reduce
the pro-inflammatory phenotype and reduce apoptosis (105,
106). While the mechanisms remain to be elucidated, exercise
training reduces iNOS and oxidative stress, while increasing
stress protective HSP70 in skeletal muscles in heart failure,
coronary ischemia, and aging models (37, 56, 106). In com-
bating sarcopenia, short- and long-term studies have largely
focused on the benefits of resistive training or moderate to
higher intensity level weight-bearing exercises. Indeed, the
human literature suggests that resistive training is the most
consistent method to combat sarcopenia in an aging popula-
tion with adequate protein intake. In 10-week to 12-month
intervention studies in rat and mouse models, endurance
training appears to positively impact apoptosis, muscle mass,
and muscle fiber cross-sectional area. Alway and colleagues
have shown that treadmill exercise training elevates anti-
apoptotic markers, including Bcl-2, X-chromosome-linked
inhibitor of apoptosis, and apoptosis repressor with a caspase
recruitment domain protein (ARC) (104). In concert, treadmill
exercise reduced DNA fragmentation and caspase-3 activa-
tion (104, 105). Recent findings from Rasmussen and col-
leagues indicate the importance of adequate protein intake
and mitigation of age-related changes in micro-RNA involved
in translation repression and gene silencing (29, 30).

Sirtuin and PPAR-c coactivator 1-alpha (PGC-1a) signaling
has recently been linked to improving insulin signaling and
slowing of the aging phenotype. Further, SIRT (Sirtuin) family
signaling may be inducible with exercise. New data indicate
that exercise training normalizes silent information regulator-
6 (SIRT-6) in skeletal muscles from old rats (52). In addition,
NAD-dependent deacetylase sirtuin-1 (SIRT-1) levels were
upregulated in old rats by a single bout of exercise, and cor-
responded to an improvement in phosphorylation of IRS-1,
tyrosine protein phosphatase nonreceptor type-1, and insulin
signaling (87). Upregulation of SIRT family proteins may in
turn elevate PGC-1a and thus may reduce oxidative stress and
apoptosis (87). For example, a recent study (85) reported that
knockout of NAD-dependent deacetylase sirtuin-3 (SIRT-3)
prevented exercise-induced upregulation of AMPK and PGC-
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1a. Conversely, high fat meals reduced SIRT-3 and AMPK
phosphorylation, whereas CR or fasting elevated SIRT-3 and
p-AMPK. In addition, Wenz et al. (122) recently showed that
overexpression of PGC-1a reduced markers of insulin resis-
tance and sarcopenia.

When begun in middle age or later, treadmill exercise
training appears to have a modest effect on reduction in

muscle mass and fiber cross-sectional area (49, 105). McArdle
and Jackson conducted a series of studies that demonstrated
the importance of HSP70 in reducing oxidative stress and
sarcopenia in aging muscles (5, 71). Starnes et al. also dem-
onstrated that HSP70 was inducible with treadmill exercise
training is retained in old age (108). While significant pro-
tection against muscle fiber atrophy has been noted in some
studies, muscle mass and strength loss may persist even with
maintenance of HSP70 (49).

Tarpenning et al. (112) concluded that endurance training
reduced age-related decline in muscle strength and sarcopenia
in human subjects. However, exercise intensity may be a crit-
ical factor when combating sarcopenia in the elderly (78). In-
deed, Evans and colleagues showed that resistive training was
most effective in alleviating muscle atrophy when used in ag-
ing populations, and this is still the consensus today (32, 78).
Interestingly, it is thought that anti-inflammatory drugs may
promote hypertrophy and strength gains in response to resis-
tance training in older populations (40). In contrast, chronic use
of anti-inflammatories blunt hypertrophy in response to resis-
tive training in young populations (40). Additional research
shows that weight training in combination with supplemen-
tation of branch-chain amino acids may be more efficacious in
older populations at risk of sarcopenia than resistive training
alone (99). In summary, while exercise training in an older
population appears to partially reduce apoptosis and augment
stress response proteins (e.g., HSP70 and SIRT-1), functional
effectiveness of these interventions has been equivocal with
lower-intensity exercise, unless begun at a young age.

Lifelong voluntary exercise in ameliorating sarcopenia

While exercise interventions in aging populations yield
positive, modest results in alleviating sarcopenia, emerg-
ing data suggest that lifelong voluntary exercise provides

FIG. 1. Lifelong wheel running and mild caloric restric-
tion alleviate age-associated reduction in muscle fiber
cross-sectional area (51). Plantaris muscle fiber cross-
sectional area in young (6 months) Fischer-344 rats fed ad
libitum (YAL), old (24 months) rats fed ad libitum (OAL), old
rats that underwent lifelong 8% caloric restriction (OCR),
and old rats that participated in lifelong voluntary wheel
running plus 8% caloric restriction (OExCR). Values are
means – SEM. (a) indicates significant difference from YAL
group. (b) indicates significant difference from OAL group.
SEM, standard error of the mean.

FIG. 2. Protection of skele-
tal muscle morphology by
lifelong mild caloric restric-
tion and wheel running (51).
Plantaris hematoxylin-stained
cross sections from young (6
months) Fischer-344 rats fed
ad libitum (YAL), old (24
months) rats fed ad libitum
(OAL), old rats that under-
went lifelong 8% caloric re-
striction (OCR), and old rats
that participated in lifelong
voluntary wheel running
plus 8% caloric restriction
(OExCR). Standard bar =
100 lm.
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substantially greater protection against age-associated apo-
ptosis, muscle fiber atrophy, and remodeling (51, and [Kim, et
al., unpublished observation]). Further, some of the cell sig-
naling pathways modulated by lifelong activity and CR may
be shared (55). Lifelong wheel running significantly protected
against age-associated reduction in fiber cross-sectional area
(51) (Figs. 1 and 2). In addition, lifelong wheel running also
reduced remodeling, as visualized by attenuation of accu-
mulation of extracellular space and collagen I (51). Wheel
running also ameliorated age-associated elevation of oxida-
tive stress. However, protection against fiber atrophy and
remodeling was not related to any changes in either Cu,Zn-
SOD or manganese isoform of superoxide dismutase (MnSOD)
protein expression. While IGF-1 levels were lowest in old, sed-
entary rats fed ad libitum, the most effective protection against
age-related suppression of IGF-1 was provided by wheel run-
ning (Fig. 3). This is in agreement with lifelong protection of
skeletal muscle mass by IGF-1 studies by Rosenthal and col-
leagues using mice that overexpress the IGF-1 gene (120). In
addition, Goldspink presented evidence that MGF, the splice
variant of IGF-1 specific for skeletal muscle, is critical in satellite
cell activation and preservation of muscle mass with aging (38).

We recently demonstrated that lifelong wheel running
ameliorates age-related elevation and translocation of pro-
apoptotic EndoG to the nucleus (Kim, et al., unpublished
observation). In contrast, wheel running had little effect on

FIG. 3. Lifelong wheel running provides partial protec-
tion against age-associated downregulation of IGF-1 (51).
IGF-1 protein expression in young (6 months) Fischer-344
rats fed ad libitum (YAL), old (24 months) rats fed ad libitum
(OAL), old rats that underwent lifelong 8% caloric restriction
(OCR), and old rats that participated in lifelong voluntary
wheel running plus 8% caloric restriction (OExCR). Values
are means – SEM. (a) indicates significant difference from
YAL group. (b) indicates significant difference from OAL
group. IGF-1, insulin-like growth factor-1.

FIG. 4. Aging elevates col-
lagen I staining (A, C) with-
out an increase in collagen
III isoform (B, D). Im-
munohistochemical staining
for collagen subtypes in pec-
toralis muscle biopsies of
female Weddell seals, Lepto-
nychotes weddelli (7–9 lm
transverse sections; 200 ·
magnification). Samples are
presented for young (collagen
type I and III isoforms shown
in A and B) and old (collagen
types I and III shown in C
and D) individuals (43).
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elevation of AIF. Further, lifelong wheel running resulted in
higher levels of HSP25 and phosphorylation of HSP25 at
Ser82 in the plantaris muscle of old rats that participate in
lifelong, voluntary exercise. HSP25 may protect against apo-
ptosis via death receptor pathways. However lifelong wheel
running did not have a protective effect for HSP70. Lack of
HSP70 response may be related to low-intensity exercise
levels. Interestingly, Murlasits et al. reported that resistive
training upregulated HSP25, but not HSP70 in rats (83). In
contrast, Jackson and colleagues demonstrated that lifelong
overexpression of HSP70 reduces muscle damage and my-
opathy (17, 70). Therefore, lifelong upregulation of HSPs may
be a critical mechanism in reducing age-associated sarcopenia
via HSP25 and HSP70.

Lifelong wheel running also reduced apoptosis and im-
proved autophagy signaling (microtubule-associated protein 1
light chain 3, lysosomal membrane protein-1) in old Fischer-344
rats (126). In the heart long-term wheel running reduced apo-
ptosis mediators, including cell-cycle-checkpoint kinase 2
(Chk2) and p53 via Chk2, p53, IGF-1, and endothelial nitric
oxide synthase (123). Recently, Leick et al. (61) demonstrated
that PGC-1a was necessary to retain exercise protection in
skeletal muscle against (a) downregulation of MnSOD and
citrate synthase and (b) attenuation of elevated Bcl-2 pathway
signaling. Reynolds et al. (93) reported that wheel running
might protect the Akt/mTOR (mammalian target of rapamy-
cin) pathway of protein synthesis against age-related decline.
In summary, lifelong exercise may limit sarcopenia and apo-
ptosis, mediated by preservation of key stress proteins, in-
cluding HSP25, IGF-1, and PGC-1a. While the efficacy of and
mechanisms underlying protection by lifelong, habitual exer-
cise are beginning to emerge, exercise may be very effective in
reducing the risks of sarcopenia regardless of intensity levels
when practiced over significant portions of the lifespan.

CR Delays Skeletal Muscle Dysfunction

Prolonged, moderate CR of 30%–40% has been the most
consistent rodent and primate model used to increase lon-

gevity (67). Moderate (30%–40%) and mild (8%–10%) CR have
also been efficacious in preserving skeletal muscle function
(51, 67, and [Kim, et al., unpublished observation]). Although
moderate CR may initially elicit a small reduction in muscle
mass, further reduction in mass and fiber CSA with advanc-
ing age are substantially attenuated by CR (27, 76, and [Kim,
et al., unpublished observation]). Further, CR may also alle-
viate the age-related decline in contractile function (9, 88).
Interestingly, CR attenuates pro-inflammatory genes associ-
ated with oxidative stress in muscles from old and young
animals (23). Kim et al. (51) found that mild CR reduced
muscle fiber atrophy and partially limited reduction in IGF-1.
CR was also effective in attenuating loss in muscle fiber
number, oxidative stress, and mitochondria abnormalities
(67). Indeed, CR significantly reduced mitochondrial proton
leak and ROS generation, lipid peroxidation, and protein
damage in skeletal muscle (67) and increased the expression
of genes involved in ROS scavenging (107). CR also reduced
the incidence of age-related abnormalities in the electron
transport chain, and accumulation of mtDNA deletions in
mitochondria (9, 58). Recently, CR has been found to elevate
SIRT-3/PGC-1s signaling, and thus enhancing mitochondrial
function and muscle mass (85).

CR may limit sarcopenia by reducing age-associated apo-
ptosis. Activation of caspase-3 and fragmentation of DNA
were significantly reduced by CR (27, 88). Specifically, CR
attenuated fas/cytokine pathway signaling, reduced age-
associated elevations of TNF-a, FADD, and caspase-8 cleav-
age (88). Further, the ER/Ca2 + stress apoptotic pathway was
also downregulated by CR with a reduction in procaspase-12
and AIF (27).

FIG. 5. Upregulation of catalase and glutathione peroxi-
dase in terrestrial and water shrews. Protein content of
Mn-SOD (black bars) and CuZn-SOD (gray bars) isoforms,
expressed in arbitrary units, in skeletal muscle hindlimb
homogenate from two species of shrew (45). Mn-SOD,
manganese isoform of superoxide dismutase; CuZn-SOD,
copper, zinc isoform of superoxide dismutase.

FIG. 6. Interactive signaling pathways for chronic inac-
tivity with aging and underlying disease. Stress protective
pathways, including HSPs, IGF-1, and PGC-1, may be targets
of both aging and inactivity exacerbating sarcopenia and
myopathy. HSPs, heat-shock proteins; PGC-1, PPAR-gamma
coactivator 1; SIRT, sirtuin; ROS, reactive oxygen species;
AOX, antioxidant enzymes.
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Aging Mammals in Natural Habitat and Skeletal
Muscle Senescence

Unlike rodent models of aging housed in laboratory animal
facilities, wild mammals typically remain highly active and in
mild caloric deficit over much of their lifespan. Free-living
animals are susceptible to stressors such as predators, altered
environmental conditions, conflict-inflicted wounds, and in-
fectious disease. Therefore, stress protection and antioxidant
strategies are paramount in skeletal muscle integrity and
function. However, there is a paucity of data that characterize
the existence of a senescent phenotype in skeletal muscles of
aging mammals in their natural habitat.

We initially chose mammalian species of disparate size and
longevity to examine naturally occurring senescent pheno-
toypes. Two were diving mammals, and thus experience re-
peated hypoxia-reoxygenation during breath-hold over the
course of their lifespan. One such species was the Weddell seal
(Leptonychotes weddelli). In the Ross Sea region of Antarctica, a
local population of seals has been under scientific investiga-
tion since the 1980s, resulting in a high percentage of known-
aged, old (20 + years) individuals (113). We thought that these
initial experiments might shed light on the influence of
chronic inactivity, and ad libitum feeding on skeletal muscle
senescence, including sarcopenia. Seals were captured, se-
dated, and biopsies taken (43). A second breath-holding
mammal, the diminutive water shrew (Sorex palustris), was
obtained in woodlands of Manitoba, Canada. The third spe-
cies, the short-tailed terrestrial shrew (Blarina brevicauda), is
also a carnivore subjected largely to cold stress and altered
ambient gas partial pressures associated with underground
burrows, rather than breath-holding during hunting.

In the long-lived Weddell seal, muscle fiber cross-sectional
areas of longissimus dorsi and pectoralis major showed either
an increase or no change compared with muscle samples from
young adults (43) (Table 1). Collagen content increased by
115% in longissimus dorsi and 65% in pectoralis. In addition, a
shift of the collagen isoform profile from type III to the stiffer
type I also occurred with age, with an 79% increase of the
collagen type I/III ratio in pectoralis and 49% in longissimus
dorsi (Fig. 4). In older adult water and terrestrial shrews,
muscle fiber cross-sectional areas increased, rather than losing
size, whereas increases in extracellular space and collagen I
staining were observed (44). The ratio of type I/type III col-
lagen also was elevated with age in both species of shrews.
However, the ratio of muscle fiber to collagen levels was
lower in the terrestrial shrew compared with its aquatic
sympatric species. Thus, aging mammals that are active in
their natural habitat may exhibit fibrosis as a primary char-
acteristic of the aging phenotype in skeletal muscle.

Although hydroperoxide levels increased, markers of
oxidative damage (4-hydroynonenal) showed no increase
with aging in any shrew species (44). There was also no in-
crease in DNA fragmentation or TUNEL + nuclei in old
shrews (44). Interestingly, Cu,ZnSOD was dramatically up-
regulated with age, with particularly high levels discovered
in the water shrew (60%) compared with terrestrial shrew
(25%) (45). Protection against hydroperoxides was thus
augmented with age. Catalase levels doubled in the old
water shrews, whereas glutathione peroxidase was elevated
by 120% in its terrestrial counterpart with age (Fig. 5). It is
possible that the remarkable upregulation of stress protec-
tion and antioxidant enzymes in the shrews with aging may
limit oxidative damage and apoptosis, reflective of lifelong
activity and/or adaptation to their unique environments. In
short, these data suggest that senescence in muscles of old
mammals living in their natural habitats may not be char-
acterized by atrophy and apoptosis as much as by fibrosis.
Fibrosis elevates internal work of aging muscles, reducing
force production and increasing susceptibility to damage.
Because of the early stage of these studies and potential in-
fluence of natural selection and removal of weaker senescent
animals by predators or disease, extrapolation to senior
human patients is cautioned at this time.

Conclusion

We have taken an integrative approach to re-examining
the notion of understanding age-related sarcopenia in
mammals by using sedentary, caged rodents. CR, short-
term and lifelong exercise, human patients, and aging
mammals in the natural habitat were used as models to
provide a cell signaling perspective on the interactive na-
ture of aging and chronic inactivity. Given that much of the
cage-restricted rodent and human aging literature includes
inactivity as part of the aging approach, the use of such
subjects as control groups is cautioned. In addition to in-
activity, underlying disease (e.g., cardiovascular disease
and insulin resistance) may also impact the expression of
the aging phenotype observed in skeletal muscle. Indeed,
models that involved maintenance of lifelong activity ex-
pressed less muscle atrophy and apoptosis into old age,
consistent with an ability to maintain or increase key stress-
protective proteins (e.g., HSPs, IGF-1, SIRT-3, PGC-1a,
Cu,ZnSOD, and catalase). The literature also supports the
notion that lifelong activity is far more effective in miti-
gating the effects of sarcopenia than treatments commenc-
ing in middle age or beyond. A prospective integrative
model is found in Figure 6.

Table 1. Morphological Characteristics of Gracilis Muscle

Sampled from Two Species of Wild-Caught Shrew

Water shrew (Sorex palustris) Short-tailed shrew (Blarina brevicauda)

Old (n = 9) Young (n = 10) Old (n = 8) Young (n = 7)

Cross-sectional area (lm2) 1036 – 139* 829 – 62* 632 – 52 669 – 125
Extracellular space (lm2) 60236 – 5012 54467 – 3523 69225 – 4163 40398 – 9126**

Muscle was transversely sectioned at 7–9 lm and stained with hematoxylin before analyses. A single asterisk denotes significant differences
between species (a = 0.05); double asterisks indicate significant differences between age classes. Values are means – standard error.
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Abbreviations Used

AIF¼ apoptosis-inducing factor
AMPK¼AMP-activated protein kinase

AOX¼ antioxidant enzymes
ARC¼ apoptosis repressor with a caspase

recruitment domain protein
Bax¼Bcl-2–associated X protein

Bcl-2¼B-cell lymphoma 2
Chk2¼ cell-cycle-checkpoint kinase 2

COPD¼ chronic obstructive pulmonary disease

CR¼ caloric restriction
Cu,Zn-SOD¼ copper, zinc isoform of superoxide

dismutase
EndoG¼ endonuclease G

ER¼ endoplasmic reticulum
FADD¼ Fas-associated death domain receptor

FBN¼ Fischer-344X Brown Norway cross rats
FoxO4¼ Forkhead box protein O4

GLUT4¼ glucose transporter type 4
HSP25¼heat shock protein 25
HSP70¼heat-shock protein 70
IGF-1¼ insulin-like growth factor-1
iNOS¼ inducible nitric oxide synthase
IRS-1¼ insulin-substrate receptor-1
MGF¼mechano-growth factor

MnSOD¼manganese isoform of superoxide dismutase
NF-jB¼nuclear factor-kappaB, a transcription factor
nNOS¼neuronal nitric oxide synthase
Nox2¼NAD(P)H oxidase isoform containing

gp91phox subunit
p53¼ tumor protein53

PGC-1a¼PPAR-gamma coactivator 1
PPAR-c¼peroxisome proliferator-activated

receptor-gamma
ROS¼ reactive oxygen species
SEM¼ standard error of the mean

SOD1¼ copper, zinc isoform of superoxide dismutase
SIRT¼ sirtuin

SIRT-1¼NAD-dependent deacetylase sirtuin-1
SIRT-3¼NAD-dependent deacetylase sirtuin-3,

mitochondrial
TNF-a¼ tumor necrosis factor-alpha

TUNEL¼ terminal deoxynucleotidyl transferase
mediated dUTP Nick End Labeling

VL¼vastus lateralis

CHRONIC INACTIVITY, ROS, AND SARCOPENIA 2541




