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Chemotherapy-Induced Weakness and Fatigue
in Skeletal Muscle: The Role of Oxidative Stress
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Abstract

Significance: Fatigue is one of the most common symptoms of cancer and its treatment, manifested in the clinic
through weakness and exercise intolerance. These side effects not only compromise patient’s quality of life
(QOL), but also diminish physical activity, resulting in limited treatment and increased morbidity. Recent
Advances: Oxidative stress, mediated by cancer or chemotherapeutic agents, is an underlying mechanism of the
drug-induced toxicity. Nontargeted tissues, such as striated muscle, are severely affected by oxidative stress
during chemotherapy, leading to toxicity and dysfunction. Critical Issues: These findings highlight the im-
portance of investigating clinically applicable interventions to alleviate the debilitating side effects. This article
discusses the clinically available chemotherapy drugs that cause fatigue and oxidative stress in cancer patients,
with an in-depth focus on the anthracycline doxorubicin. Doxorubicin, an effective anticancer drug, is a primary
example of how chemotherapeutic agents disrupt striated muscle function through oxidative stress. Future
Directions: Further research investigating antioxidants could provide relief for cancer patients from debilitating
muscle weakness, leading to improved quality of life. Antioxid. Redox Signal. 15, 2543–2563.

Introduction

By the end of 2010, the American Cancer Society expects
1.5 million new cancer cases will be diagnosed (220).

Cancer and its treatment compromises quality of life (QOL),
an important indicator of patient outcome and survival in
numerous cases (e.g., breast, colorectal, melanoma) (163). A
component of QOL is patients’ perceived fatigue, one of the
most common symptoms of cancer and its treatment (182).
Fatigue in cancer patients is a multifactorial condition defined
by the National Comprehensive Cancer Network as ‘‘a com-
mon persistent, and subjective sense of tiredness related to
cancer or to the treatment for cancer that interferes with usual
functioning’’ (157). This type of fatigue is not relieved by rest,
is exhibited by cancer patients through QOL self-assessments
(31, 193, 233, 270) and intensified with the aggressiveness of
chemotherapy (58, 108, 182, 193).

Pater and Loeb (181) were among the first to show that
perceived fatigue is an independent predictor of QOL and
survival in cancer patients. Numerous other studies have
followed confirming their results (14, 20, 38, 202). A compo-
nent of perceived fatigue could be a decline in cognitive
function. Evaluation of cognitive impairment involves func-
tionality of multiple domains, which include visuospatial
skill, memory, language, and motor function (258).

Over half of patients undergoing chemotherapy exhibit
cognitive impairment (109), which is associated with patients
perceived fatigue (18). This sense of tiredness can persist from
6 months to 2 years following remission, providing insight
into the debilitating, and sometimes long-term side effects of
cancer and its treatment (120, 132, 149).

While documenting perceived fatigue is useful clinically, it
is difficult to discriminate between a sense of tiredness (i.e.,
perceived fatigue) and physiological fatigue. Physiological
fatigue can be divided into two components, central and pe-
ripheral fatigue. Central fatigue involves the central nervous
system and the inhibition of neurological reflexes. Central
fatigue is a factor with cancer (275), however the interaction of
central fatigue and chemotherapy is unknown, limiting the
discussion of this component further. Peripheral fatigue is
muscle specific and involves the loss of muscle function, di-
vided into two components: muscle fatigue and muscle
weakness. Muscle fatigue is defined as the loss of force that is
reversible by rest, while muscle weakness is an impaired
ability to generate force and is not relieved by rest (177a).
Based on available data, this review will discuss the effects of
chemotherapy on muscle weakness.

Previous studies have used performance assessments to
document muscle weakness in cancer patients that have re-
ceived chemotherapy. Compared to healthy controls, patients

1Department of Physiology and 2Graduate Center for Toxicology, University of Kentucky, Lexington, Kentucky.

ANTIOXIDANTS & REDOX SIGNALING
Volume 15, Number 9, 2011
ª Mary Ann Liebert, Inc.
DOI: 10.1089/ars.2011.3965

2543



show a slower chair-rise time, indicating a decrease in muscle
strength (25, 85). Hand-grip force, another measurement of
muscle weakness, is decreased in cancer patients (25, 96, 230,
231, 269). These studies point to a prominent clinical problem
of debilitating muscle weakness with cancer treatment.

One underlying mechanism of the muscle weakness expe-
rienced by chemotherapy-treated patients is a developed state
of oxidative stress, defined in this review as a disruption of
redox signaling and control (112). Numerous chemothera-
peutic agents directly or indirectly produce a state of oxida-
tive stress. Drugs that include a quinone moiety in their
chemical structure can directly produce a state of oxidative
stress by interacting with molecular oxygen and undergoing
redox cycling, leading to the generation of reactive oxygen
species (ROS) (40). Other chemotherapeutic agents can indi-
rectly produce a state of oxidative stress by decreasing anti-
oxidant levels, crippling the cell’s defenses against elevated
oxidants (7, 158).

Circulating biomarkers are a nonspecific systemic index of
oxidative stress in the body. In cancer patients under going
treatment, circulating markers of oxidative stress, in the form
of lipid peroxidation and protein carbonyl content, are ele-
vated (44, 91, 105). These markers reflect events of oxidative
stress that may exist in various tissues, including skeletal
muscle. No current data exist to describe the level of muscle-
derived oxidants in cancer patients. However, circulating
biomarkers serve as an index about the level of oxidative
stress in the body and could signify an elevation in muscle-
derived oxidants (201).

In skeletal muscle, exposure to elevated oxidants are
known to cause muscle weakness and accelerate the rate of
fatigue (191, 235). Antioxidant exposure delays the rate of
fatigue, supporting this connection (118, 136, 165). Che-
motherapy-induced oxidative stress in cancer patients could
be a reflection of the elevated muscle-derived oxidants, an
underlying mechanism for the muscle weakness experienced
by patients. This article reviews how chemotherapy can affect
striated muscle, increasing muscle-derived oxidants and
leading to muscle weakness in patients.

Anthracycline Therapy

Numerous chemotherapy drugs have been approved by
the Food and Drug Administration to treat patients in the
clinic (97). For the purpose of this review we focused on a class
of chemotherapy drugs called anthracyclines. For over 50
years, anthracyclines have been used widely in the clinic to
treat multiple types of cancers (e.g., leukemia, lymphoma,
breast, prostate, ovarian, lung) (see Table 1; (86, 209)). Due to
the extensive literature available, the effects of chemotherapy
on muscle function are best defined in this class and accessible
for evaluation. The mechanisms by which anthracyclines kill
tumor cells are various, including: inhibition of DNA repli-
cation and RNA transcription, free radical generation leading
to DNA damage or lipid peroxidation, DNA alkylation, in-
terference with DNA unwinding or DNA strand separation
and helicase activity, and inhibition of topoisomerase II (209).
Some or all of these effects are responsible for inhibiting tumor
cell growth, preventing division and metastasis. Anthracy-
clines can also negatively affect noncancerous tissues, in-
cluding striated muscle, which contributes to the fatigue and
muscle weakness in patients treated with anthracycline-based

chemotherapy. A comprehensive literature search over the
past 5 years (2005–2010) was performed to document fatigue
reports associated with each drug in the anthracycline group
(Table 1). Two anthracycline drugs (teniposide and valrubi-
cin) were not included in the table due to the absence
of current data documenting associated fatigue with drug
administration.

Most studies observing fatigue with anthracycline chemo-
therapy use the National Cancer Institute Common Toxicity
Criteria for Adverse Events (CTCAE) to grade the severity of
patients perceived fatigue (173a). This method allows re-
porting of adverse events with descriptive terminology. The
grade refers to the severity of the adverse event with a nu-
merical scale: (1) Mild, (2) Moderate, (3) Severe, and (4) Dis-
abling. The adverse event fatigue has specific descriptions
associated with the numerical scale: (1) Mild fatigue relieved
by rest, (2) Fatigue not relieved by rest—difficulty performing
activities of daily life, (3) Fatigue not relieved by rest—
interfering with activities of daily life, and (4) Disabling
fatigue. In Table 1, each study lists the cancer population
and the range of the grades of fatigue associated with the
chemotherapy drug. A few studies used a standard QOL
questionnaire the European Organization for Research and
Treatment of Cancer QLQ-C30 (EORTC QLQ-C30) to report
chemotherapy-associated fatigue. This questionnaire has
three multi-item symptom scales measuring fatigue and glo-
bal health status (3, 228). Studies that assessed fatigue using
a QOL questionnaire are also included. Table 1 documents
the grades of fatigue in cancer patients treated with a spe-
cific anthracycline. In studies assessing patient fatigue with
anthracycline-based chemotherapy, 47% document grade 4
fatigue, categorized as disabling and effecting physical cap-
abilities of the patients. This table also illustrates that fatigue is
a common problem with anthracycline chemotherapy occur-
ring independent of the drug type.

Aside from the antitumor effects, anthracyclines are known
to have toxic side effects in normal tissue, including oxidative
stress (86). Anthracyclines can generate oxidants through two
mechanisms: interaction with the mitochondrial respiratory
chain and through a nonenzymatic reaction with ferric iron
(103). Numerous drugs in the anthracycline class cause oxi-
dative stress in both humans and rodents.

Elevated oxidants in circulation have been reported in
cancer patients following administration of the anthracycline
epirubicin (28, 134, 150). Following epirubicin administration
in rodents, oxidants are elevated and antioxidants are de-
creased in both cardiac (54) and hepatic tissue (117). Ir-
inotecan is another example of an anthracycline that causes
oxidative stress. Markers of lipid peroxidation are elevated in
both plasma and intestines of rodents following irinotecan
administration (259, 264). In human breast cancer cells, to-
potecan exposure causes a decrease in glutathione, along with
an increase in lipid peroxidation (7, 243). This drug-induced
oxidative stress is a potential mechanism underlying the
documented fatigue experienced by cancer patients.

Chemotherapy is generally a combination of drugs ad-
ministered in a standardized treatment regimen, specific
for the cancer type. Various interactive effects of different
drugs could occur, leading to collateral damage of non-
targeted tissues. The current reductionist approach in the
literature provides some clarity on the negative effects of a
single chemotherapeutic agent on nontargeted tissues. The
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available studies offer valuable information on the drug’s
mechanism of action and potential interventions that could
offset the negative side effects. The next step for the field is to
move toward a more clinically relevant approach, in order to
directly apply the findings to patients. The existing data fo-
cuses on a single chemotherapeutic agent, which provides
foundational knowledge about the individual drug and lays
the groundwork for future studies in patients. Based on
available data involving chemotherapy effects on striated
muscle, this review will focus on a single chemotherapy
agent, doxorubicin, a representative anthracycline.

Doxorubicin as the Prototype

Doxorubicin is an antibiotic that exerts its antitumor ac-
tivity by inhibiting DNA Topoisomerase II, thus preventing
DNA replication (240). Other antitumor activities of doxoru-
bicin include: generation of ROS leading to DNA damage and
apoptotic cell death, stimulation of p53-DNA binding, acti-
vation of the caspase cascade, and DNA cross-linking (76,
155). The Farmitalia Research Laboratories of Milan discov-
ered the drug in the early 1960s (11). Since its discovery,
doxorubicin has been used widely in the clinic, seen as one of
the most effective anticancer drugs (43, 263). Early on in the
clinic, reports of doxorubicin causing severe fatigue (174, 175)
and affecting cardiac muscle function (124) were documented.
Further investigation into the mechanism of the drug revealed
elevated oxidants in noncancerous tissues were a likely cause
of the cardiotoxicity (40, 49, 60).

Cardiac muscle

Doxorubicin-induced cardiotoxicity is well known in the
field of chemotherapy drug research, and has been reviewed
widely in the literature (39, 40, 155, 162, 237, 244). The first
observations of doxorubicin cardiotoxicity were by Lefrak
and colleagues (124). They documented the deterioration of
cardiac muscle function by echocardiography, and assessed
postmortem cardiac muscle tissue of two patients after
doxorubicin administration. Since that first report, numerous
studies over the past 30 years have investigated the mecha-
nisms behind doxorubicin-induced cardiotoxicity (237).

The principal mechanism of doxorubicin cardiotoxicity is
an increase in oxidative stress, manifested through elevated

oxidants, markers of protein oxidation, and decreased anti-
oxidant activity (39). Elevated oxidant activity is observed in
cardiomyocytes following doxorubicin exposure (52, 208, 224,
242, 274). A similar response is observed in rodent cardiac
tissue, localized to the mitochondria and sarcoplasmic retic-
ulum (59). This elevation in oxidants comes from multiple
sources in the cell. The mitochondria are thought to be the
primary source of doxorubicin-induced oxidants (34, 37, 48,
60, 261). Complex I (NADH dehydrogenase) of the electron
transport chain is the specific site of doxorubicin reduction,
forming an unstable semiquinone (49). The doxorubicin
semiquinone is then oxidized to the stable quinone form,
transferring an electron to oxygen to produce the superoxide
anion (O2

-) (162).
The elevation of oxidants caused by doxorubicin is pro-

tected with the overexpression of mitochondrial specific
antioxidants. Figure 1 illustrates how overexpression of
manganese superoxide dismutase protects against mito-
chondrial and myofilament damage caused by doxorubicin
(276). Overexpression of other antioxidants such as glutar-
edoxin 2 (57) and glutathione peroxidase (GpX) (271) also
protect against doxorubicin-induced cardiotoxicity, pointing
to the involvement of mitochondria.

Other secondary sources of oxidants include NADPH oxi-
dase and altered Fenton chemistry. Doxorubicin-induced
oxidant activity was blunted in cardiomyocytes treated with
an inhibitor of NADPH oxidase (223). Mice deficient in gp91, a
required subunit for NADPH oxidase activity (123), are pro-
tected from doxorubicin-induced cardiotoxicity (268). Altered
Fenton chemistry occurs during the redox cycling of doxo-
rubicin. During this process aglycone metabolites are pro-
duced that alter iron homeostasis, leading to elevated
oxidants (155).

Based on its chemical structure, doxorubicin can directly
stimulate an increase in oxidants by undergoing redox cy-
cling. However, a secondary, indirect method for doxorubicin
to stimulate oxidants is via an inflammatory response. One
potential secondary mediator of the inflammatory response is
tumor necrosis factor alpha (TNF), a pro-inflammatory cyto-
kine produced by many cell types, including cardiac and
skeletal myocytes. Circulating levels of TNF are elevated in
cancer, with chemotherapy exacerbating this response (24).
Doxorubicin-treated animals and patients exhibit a stress

FIG. 1. Overexpression of
the mitochondrial-specific
antioxidant MnSOD protects
against doxorubicin-induced
cardiotoxicity. Electron mi-
crographs of mouse heart 5
days after a single injection of
doxorubicin (25 mg/kg). The
nontransgenic mouse treated
with doxorubicin (control,
left) shows variations in mi-
tochondria shape and size,
loss of cristae, and exhibits
focal swelling. Myofilaments show disarray with loss of Z-bands. The transgenic mouse (transgene, right) that overexpresses
human manganese superoxide dismutase (MnSOD) shows uniform mitochondria and intact cardiac myofilaments. Asterisks
indicate damaged mitochondria, and M denotes intact mitochondria. The arrow points to intracytoplasmic vacuoles, a
nonspecific indicator of cell injury. [From Yen et al. (276); reprinted with permission from the American Society of Clinical
Investigation].
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response, characterized by an increase in serum levels of in-
flammatory cytokines, especially TNF (87, 167, 238, 250).
Doxorubicin not only stimulates an increase in circulating
TNF, but also increases the production of TNF by cardiac
muscle (169) and upregulates the TNF receptor subtype 1
(TNFR1) in cardiomyocytes (41). Inhibition of TNF prevents
doxorubicin-induced cardiotoxicty and diminishes glutathi-
one depletion and lipid peroxidation (158). TNF is known to
elevate ROS in striated muscle (95, 135), mediated through
TNFR1 signaling (95). Elevated levels of TNF caused by
doxorubicin are an indirect method to increase oxidants and
lead to cardiac muscle dysfunction.

This increase in oxidants can modify vital proteins, leading
to cardiac muscle dysfunction. Markers of protein oxidation,
such as nitrotyrosine and protein carbonylation, are increased
in cardiac muscle with doxorubicin exposure (34, 129, 217).
Alterations of vital proteins can alter cardiac structure, lead-
ing to impaired contractile function. Cardiac tissue exposed to
hydrogen peroxide results in altered myofibrillar proteins:
troponin I, tropomyosin, actin, and myosin-binding protein-C
(16, 30). The post-translational modifications of myofibrillar
proteins leads to a decrease in maximal force and compro-
mises cardiac function (16). Oxidative modifications of myo-
fibrillar proteins can alter myofilament structure, resulting in
dysfunction of striated muscle.

Doxorubicin can also cause oxidative stress by altering
cellular antioxidant expression and activity. In the literature,
discrepancies exist between whether doxorubicin inhibits in-
herent antioxidants, or stimulates an increase in antioxidant
activity. In rodent cardiac muscle, data exist in both groups.
In vivo doxorubicin administration decreases the content of
antioxidants: superoxide dismutase (SOD) (93, 158), catalase
(CAT) (158), and glutathione (GSH) (106, 125, 158). Activity of
SOD is also diminished with doxorubicin (67, 125, 154). These
studies hypothesize one mechanism doxorubicin stimulates
oxidants is by diminishing cellular antioxidants. However,
other studies show an increase in SOD (4, 6, 73), CAT (6, 73,
93, 106, 158), and GpX (4) activities with doxorubicin treat-
ment. These data support the hypothesis of a cellular adaptive
response to doxorubicin, elevating antioxidant activity to
combat the doxorubicin-induced increase in oxidants.

Studies involving the administration of antioxidants in
combination with doxorubicin support oxidant involvement.
Rodents administered N-acetylcysteine (NAC) before doxo-
rubicin exposure were protected from doxorubicin-induced
cardiotoxicity and myocardial lesions (61). The same results
were observed in a canine model of doxorubicin treatment
(97). NAC is a nonspecific reduced thiol donor that increases
muscle cysteine and GSH availability (78). Doxorubicin is
known to decrease GSH content (106, 125, 158), a vital anti-
oxidant in striated muscle. Infusion of glutathione prevented
the cardiac contractile impairment caused by doxorubicin
(256). Other antioxidants also protect cardiac muscle function
in doxorubicin-induced cardiotoxicity. Vitamin E, a lipid
soluble antioxidant, protected against doxorubicin-induced
left ventricular dysfunction (195) and prevented elevated
oxidant activity (19).

Cardiotoxicity limits the amount of doxorubicin given in
the clinic (43, 236). However, on this limited dose, numerous
reports show patients receiving doxorubicin-based chemo-
therapy experience debilitating fatigue, often in the moderate
to severe category (Table 1). This persistence of weakness

indicates that other striated muscles, involved in exercise and
daily activity, may be affected.

Skeletal muscle

Individual case reports document physician-observed
lower extremity muscle weakness in patients undergoing
doxorubicin-based chemotherapy (94, 110). Schwartz docu-
mented weakness and fatigue in breast cancer patients
through four cycles of doxorubicin chemotherapy (213). Fol-
lowing doxorubicin exposure, patients exhibited a decline in
functional ability (12 min walk test) and a rapid increase in
fatigue (Visual analogue scale). Weakness and fatigue are
evident 1–5 years after doxorubicin exposure in lymphoma
and leukemia patients (68, 248, 255). These studies suggest
skeletal muscle weakness caused by doxorubicin exposure.

Existing studies in both rodents and humans show the
negative effects of doxorubicin on skeletal muscle. The tox-
icity of doxorubicin is used in the clinic for the treatment of
blepharospasm and cervical dystonia, causing permanent
muscle necrosis in patients. Direct injection of doxorubicin
into skeletal muscle causes loss of muscle mass, altered
myofilament structure and depressed force in rodents (45, 46,
74, 75, 139–143, 145), nonhuman primates (138, 139, 144, 146),
and patients (147, 267). Doxorubicin is also administered
through isolated limb perfusion in patients with limb sarcoma
tumors. This therapy leads to loss of limb muscle function and
reduction in size of both Type 1 and Type 2 muscle fibers (21).
Pfieffer and associates used a canine model of isolated limb
perfusion with doxorubicin, observing a significant increase
in doxorubicin concentrations in the quadriceps, along with
muscle atrophy and weakness (187).

Rodent models of systemic doxorubicin treatment consis-
tently reveal a negative affect of doxorubicin on skeletal
muscle function. The few studies in the field use an intra-
peritoneal route of administration for doxorubicin, adapted
from the cardiac literature and related to clinical treatment of
advanced ovarian cancer or peritoneal carcinomatosis (234,
252). Doroshow and colleagues observed skeletal muscle loss
of myofibrillar organization and interstitial edema following a
single intraperitoneal injection of doxorubicin (62). This
method results in skeletal muscle toxicity exhibited by nu-
cleolar segregation and altered distribution of the perinu-
cleolar chromatin in hindlimb skeletal muscle (151, 254).

Doxorubicin also causes a catabolic response leading to the
loss of muscle mass. Patients undergoing doxorubicin-based
chemotherapy show loss of muscle mass (21, 245). The skeletal
muscle atrophy induced by doxorubicin is thought to occur
through the upregulation of the E3 ubiquitin-ligase atrogin1/
MAFbx, suggesting catabolism through the proteasome
pathway (273). Doxorubicin is a known stimulator of apo-
ptosis in cardiac myocytes (237), with possible similar effects
on skeletal muscle that could contribute to catabolism.
Apoptosis is induced in C2C12 myotubes following exposure
to doxorubicin in vitro (98). Oxidant-mediated apoptosis is a
common signaling pathway in skeletal muscle atrophy,
leading to caspase activation and proteolysis (15). In striated
muscle, doxorubicin stimulates both the formation of ROS
(242) and activation of caspases (261), which could be linked
to apoptotic signaling pathways. We have documented sig-
nificant loss of muscle mass in both hindlimb (87) and respi-
ratory muscle (88) following doxorubicin treatment.
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In vitro contractile function preparations have been used to
determine the negative effects of doxorubicin on skeletal
muscle function. Daily injections of a low dose of doxorubicin
(1.15 mg/kg) depressed hindlimb muscle force, both fast-
twitch and slow-twitch muscles, 4 weeks following exposure
(71) (Fig. 2). The authors hypothesized the loss of force was
associated with a decrease in the muscle-specific isoform of
SERCA, an effect on calcium homeostasis (71). We have
shown a single injection of doxorubicin depresses force of
hindlimb and respiratory muscles (Fig. 3) (87). Most recently,
we established a model of doxorubicin-chemotherapy using
an intravenous injection, a method commonly used in the
clinic (33, 43). Our studies conclude that doxorubicin causes
respiratory muscle dysfunction, despite the route of admin-
istration (88).

Studies have shown doxorubicin accumulates in skeletal
muscle up to 24 h following administration (62, 187). This
accumulation of doxorubicin in the muscle suggests a direct
effect of doxorubicin on skeletal muscle function, however
the data are divided. In vitro doxorubicin experiments have
been conducted using varying concentrations of the drug (1–
175 lM). van Norren and colleagues observed a depression in
absolute force and an accelerated rate of fatigue in intact
hindlimb muscles exposed to doxorubicin (253). They ob-
served a dose-dependent depression in force, with impaired
relaxation. Parallel experiments using lower doxorubicin
bath concentrations (2 lM), similar to serum levels found in
patients (55, 188), found no change in skeletal muscle force
(87, 89).

Studies utilizing permeabilized skeletal muscle fibers have
observed how direct doxorubicin exposure alters calcium
homeostasis. Doxorubicin increases the rate of tension de-
velopment in calcium-activated fibers (50, 282). The doxoru-
bicin-induced tension development is blunted by ruthenium
red, an inhibitor of the ryanodine receptor, suggesting doxo-
rubicin alters calcium availability. Isolated skeletal muscle
sarcoplasmic reticulums exposed to doxorubicin show in-
creased calcium release (241, 282). This is in agreement with
another study showing increased calcium influx in C2C12
myotubes exposed to doxorubicin (253). The data suggests
doxorubicin acts similar to caffeine, sensitizing the ryanodine
receptor to activation calcium, and stimulating calcium re-
lease from the SR (5, 282). Intact single fibers exposed to
doxorubicin show an increase in tetanic intracellular calcium
that does not alter tetanic force (87). These studies investi-
gating doxorubicin-induced skeletal muscle dysfunction es-
tablish a negative effect at the molecular level that could be
related to weakness in patients undergoing chemotherapy.

One potential mechanism of doxorubicin-induced skeletal
muscle dysfunction is an induced state of oxidative stress,
similar to cardiac muscle. Few studies exist that analyze

FIG. 3. A single injection of doxorubicin depresses force
in hindlimb and respiratory muscles. Figure depicts data
replotted from recent reports (87, 88) and unpublished ob-
servations (L.A. Gilliam). Maximal specific force (N/cm2, Po)
of soleus (open bars), EDL (hatched bars), and diaphragm (solid
bars) was measured 72 h following a single injection of
doxorubicin (20 mg/kg) via an intraperitoneal (left) or in-
travenous (right) injection (n = 3–11 per muscle). Data ex-
pressed as a percent change of experimental control. Mean
values shown – SEM; *p < 0.01.

FIG. 2. Doxorubicin depresses skeletal muscle force.
Hindlimb muscles were obtained from rats 15 days after
daily injections of doxorubicin (1.15 mg/kg/day). Muscles
were placed in a tissue bath and isometric contraction mea-
surements were made with a force transducer. Doxorubicin
depressed force (N/cm2) in both the EDL (A) and soleus (B)
muscles. Open symbols represent the doxorubicin group,
closed symbols represent the saline injected controls (n = 6–9
muscles for each group). Data are mean – SEM. ap < 0.05,
bp < 0.01 vs. control. [From Ertunc et al. (71); reprinted with
permission from S. Karger AG, Basel].
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doxorubicin-induced oxidative stress in skeletal muscle. We
have shown doxorubicin increases oxidant activity in skele-
tal muscle, along with markers of protein oxidation (88).
Multiple sources where oxidants are produced exist in skeletal
muscle, including the mitochondrial electron transport chain,
NADPH oxidase, and phospholipase A2 (78, 107, 191). Ya-
mada and colleagues showed a decrease in complex I activity
in isolated mitochondria from skeletal muscle following
multiple low dose doxorubicin injections (272).

Similar to cardiac muscle, elevated TNF levels caused by
doxorubicin can lead to increased oxidants and muscle
weakness in skeletal muscle. Exposure to TNF depresses
both respiratory and hindlimb skeletal muscle force (95, 198),
shown to be mediated through TNFR1 (95). The accepted
mechanism by which TNF mediates contractile dysfunction
is through elevated ROS (95). Pretreating with Trolox, a
hydrophilic antioxidant, can prevent TNF-induced contrac-
tile dysfunction (95). Taken together, these results suggest
that elevated levels of TNF caused by doxorubicin could
exert an additive oxidant effect, leading to skeletal muscle
dysfunction. We have shown TNFR1 signaling is required
for doxorubicin-induced muscle weakness in both respira-
tory and hindlimb muscle (87, 89). TNF mediates the ma-
jority of signaling through TNFR1, leading to the activation
of cytotoxic cascades and elevated ROS (95, 260). Increased
levels of TNF following doxorubicin exposure lead to an
additive oxidant effect, contributing to doxorubicin-induced
muscle weakness.

In skeletal muscle, elevated oxidants are known to cause
muscle weakness and accelerate fatigue, reviewed previously
(191, 218, 235). Exposure to high concentrations of exogenous
oxidants results in muscle weakness (10, 29, 122, 173, 189,
190). The rate of fatigue is slowed with antioxidant exposure,
suggesting a prominent role for oxidants (119, 164, 165, 197).
In a state of oxidative stress, redox-sensitive proteins can be
modified, altering signaling and contractile function. Expos-
ing myofibrillar proteins, such as myosin and actin, to oxi-
dants can result in modifications that alter protein structure
and formation, and decrease force generation (17, 115, 192).

How doxorubicin effects skeletal muscle function is an
emerging field. Based on the cardiac literature and current
pool of data, the expected underlying mechanism is oxidative
stress, occurring via a two-fold pathway (Fig. 4). Doxorubicin
can directly stimulate ROS production through redox cycling,
or indirectly via TNF-signaling. These two mediators, ROS
and TNF, can then lead to the negative effects of doxorubicin
on skeletal muscle function. The documented weakness in
cancer patients undergoing chemotherapy is a significant
clinical problem, welcoming studies for interventions to alle-
viate these severe side effects.

Future Studies

The emerging field of skeletal muscle dysfunction with
chemotherapy warrants further investigation. The majority of
reports in the literature document perceived fatigue through
patient self-report or physician observations. Only a few
studies use quantitative measures to show a decrease in
muscle strength (21, 142, 230, 267). The process by which
chemotherapy drugs elevate oxidants and cause weakness is
also undefined. Documentation of skeletal muscle weakness,
along with the mechanism involved, are required.

Translational studies are needed to investigate interven-
tions that would prevent the debilitating weakness and fa-
tigue with chemotherapy. The majority of chemotherapy
drugs administered cause oxidative stress in noncancerous
tissues, making antioxidant interventions attractive. A recent
study published in this journal showed that a cysteine-rich
protein diet increased muscle strength (hand-grip force) and
quality of life in patients undergoing chemotherapy (245).
Control comparisons were made with patients receiving an
alternative protein diet that was equal in protein content with
only minimal quantities of cysteine, indicating a possible an-
tioxidant effect. Cysteine availability is vital in maintaining
adequate glutathione levels, an important cellular antioxi-
dant. Cysteine is the rate-limiting step in glutathione syn-
thesis, an amino acid that can replenish loss of glutathione
caused by doxorubicin (4, 106, 113). Rodent studies utilizing
the antioxidant NAC also support antioxidant therapy. Pre-
treatment with NAC prevented loss of body weight and car-
diotoxicity caused by doxorubicin (61, 97). NAC could also
benefit skeletal muscle dysfunction caused by chemotherapy.
In healthy individuals, NAC promotes endurance, improving
exercise performance, and slowing the rate of fatigue (136,
137, 148, 199). A few studies published in the early 1980s
assessed NAC protection against doxorubicin-induced car-
diomyopathy in patients. Dresdale and associates adminis-
tered NAC to disease-free cancer patients with documented
doxorubicin-induced cardiomyopathy (63). NAC did not re-
verse the abnormal cardiac function in patients, administered

FIG. 4. Hypothesized pathways for doxorubicin-induced
weakness in skeletal muscle. Illustration depicts the two
proposed mediators, ROS and TNF, along with hypothesized
downstream signaling involved in mediating muscle weak-
ness caused by doxorubicin. ROS, reactive oxygen species;
TNF, tumor necrosis factor-alpha; TNFR1, TNF receptor
subtype 1.
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over 2 years following chemotherapy. The acute and chronic
cardiotoxicity caused by doxorubicin, evident by an increase
in tubular area and mitochondrial damage, was not protected
with NAC (172, 249). These early studies did not address the
timing or dose dependency of NAC, necessitating further
studies of the drug, possibly with interventions given pre-
chemotherapy exposure.

NAC is not the only antioxidant available to use as a re-
search tool. Further research investigating antioxidants al-
ready approved for human use could provide relief for cancer
patients from debilitating muscle weakness. An emerging
field is developing that requires more systematic testing. As
shown in Table 1, patients report fatigue while exposed to
multiple different chemotherapeutic agents within the an-
thracycline class. Fatigue and weakness are common side ef-
fects in cancer treatment. These debilitating side effects not
only compromise quality of life in patients, but also limit the
effectiveness of the treatment. Studies investigating the
mechanistic link between chemotherapy-induced oxidative
stress and muscle dysfunction lay the groundwork for the
development of novel therapies that can lead to improved
quality of life and increased physical activity in patients.
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