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Quantifying behavior often involves using variables that contain
measurement errors and formulating multiequations to capture
the relationship among a set of variables. Structural equation
models (SEMs) refer to modeling techniques popular in the social
and behavioral sciences that are equipped to handle multiequa-
tion models, multiple measures of concepts, and measurement
error. This work provides an overview of latent variable SEMs.
We present the equations for SEMs and the steps in modeling,
and we provide three illustrations of SEMs. We suggest that the
general nature of the model is capable of handling a variety of
problems in the quantification of behavior, where the researcher
has sufficient knowledge to formulate hypotheses.
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Among the many problems in quantifying behavior are the
challenges presented by the multiple equations to study and

the difficulty of accurately measuring key concepts. For instance,
scientists might be interested in general arousal and how it relates
to more specific forms of arousal, or researchers might want to
analyze quality of sleep and it relationship to different forms and
intensities of pain. Arousal, quality of sleep, pain intensity, and
numerous other variables are difficult to measure without con-
siderable measurement error. Additionally, studying how several
or more of these difficult to measure latent variables relate to
each other is an even more arduous task when the multiequation
nature of the problem is included.
Ignoring these issues leads to inaccuracy of findings. Ignoring the

measurement error in arousal or pain data, for instance, leads to
inaccurate assessments of effects. Therefore, our assessment of
perception of pain on quality of sleep is unlikely to be correct if we
do not take account of the measurement error. We might have
several ways tomeasure the same latent arousal variable and not be
surehowto incorporate theseways into themodel.Also, ifwe ignore
the indirect effects of one variable on another variable and con-
centrate only on the direct effect, we are more likely to bemistaken
in our assessment of how one variable affects another variable.
Structural equationmodels (SEMs) refer tomodeling techniques

popular in the social and behavioral sciences that are equipped to
handle multiequation models, multiple measures of concepts, and
measurement error. This generalmodel incorporatesmore familiar
models as special cases. For instance,multiple regression is a special
form of SEM, where there is a single dependent variable and mul-
tiple covariates and the covariates are assumed to be measured
without measurement error. ANOVA is a another specialization
where the covariates are assumed to be dichotomous variables.
Factor analysis is yet another special form of the latent variable
SEM. Here, we assume that we have multiple indicators that mea-
sure one or more factors and that the factors are permitted to cor-
relate or not correlate. Recursive models, nonrecursive models,
growth curve models, certain fixed and random effects models, etc.
can all be incorporated as special cases of the general latent variable
SEM. However, the structural component in SEM reflects that the
researcher is bringing causal assumptions to the model, whereas
multiple regression, ANOVA, etc. might be applied purely for de-
scriptive purposes without any causal assumptions (1).

The purpose of this work is to give a brief overview of latent
variable SEMs and to illustrate them with several hypothetical
examples. It is meant to give the reader a sense of the potential
of these procedures for research on the quantification of be-
havior. The next section explains SEMs with a brief verbal de-
scription followed by a more formal model of latent variable
SEMs and its assumptions. This section is followed by a section
that contains three illustrations. These illustrations are examples
meant to give the reader a flavor of the type of applications
that might be done. The section on illustrations is followed by
the conclusions.

What Are SEMs?
SEMs are traceable at least back to the path analysis work of
Wright (1, 2). SEMs did not receive much attention until they
were introduced into sociology in the 1960s by Blalock (3) and
Duncan (4). From sociology, they spread to the other social sci-
ences and psychology. A turning point was the development of the
LISREL model by Jöreskog (5) and the LISREL SEM software.
There have been numerous contributors to SEM from several
disciplines, and we cannot fully describe these here. However,
historic reviews are available from several sources (6, 7). SEMs
have continued to diffuse through numerous disciplines and are
reaching beyond the social and behavioral sciences into bio-
statistics, epidemiology, and other areas. Furthermore, there are
a variety of SEM software packages, including LISREL (8),Mplus
(9), AMOS (10), EQS (11), and the SEM procedure in R (12).
SEMs are marked by typically including two or more equations

in the model. This process differs from the usual single equation
regression model that has a single dependent variable and mul-
tiple covariates. In SEMs, it is not unusual to have a number of
equations with several explanatory variables in each equation.
The usual terms of dependent variable and independent variable
make less sense in this context, because the dependent variable
in one equation might be an independent variable in another
equation. For this reason, the variables in a model are called
either endogenous or exogenous variables. At the risk of over-
simplifying, endogenous variables are variables that appear as
dependent variables in at least one equation. Exogenous varia-
bles are never dependent variables and typically, are allowed to
correlate with each other, although explaining the source of their
associations is not part of the model.
Another division among the variables is between latent and

observed variables. Latent variables are variables that are im-
portant to the model but for which we have no data in our
dataset (13). Observed variables are variables that are part of our
analysis but for which we have values in our dataset. For in-
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stance, sharp pain might be a latent variable of interest, and the
self-reports of perceived sharp pain would be an observed vari-
able to measure it. We recognize that the subjective measure is
a less than perfect measure of the latent variable of sharp pain.
Indeed, we could devise several differently worded questions to
try to tap the latent sharp pain variable. With SEMs, we would
build a measurement model of the relationship between each
indicator and the latent sharp pain variable. This model would
enable us to estimate the relationship between each indicator
and the latent variable and determine which measure is the most
closely related to the latent variable.
Similarly, if interest lies in another latent variable such as

quality of sleep, then we could follow a similar procedure to de-
velop several indicators of sleep quality and build a measurement
model with each indicator related to the sleep quality latent
variable. Combining the measurement model of sleep quality with
that for sharp pain, we could construct a latent variable model
that examines whether the latent sharp pain variable influences
the latent sleep quality variable while controlling for the mea-
surement error in the indicators.
The preceding discussion illustrates that the latent variable

SEM permits us to study the relationships of latent variables to
each other and between latent and observed measures of these
latent variables. By so doing, the analysis can study the relation-
ships among the theoretical variables of primary interest without
having the effects confounded with measurement error. In addi-
tion, the analysis permits assessment of which measures seem to
be most closely related to the latent variables.

Model. The last section gave more of a verbal than formal de-
scription of the latent variable SEMs. In this subsection, we
present the model and assumptions more formally. The latent
variable SEM is conveniently divided into two parts: the latent
variable model and the measurement model. The latent variable
model (sometimes called the structural model) is (Eq. 1)

ηi ¼ αη þ Bηi þ Γξi þ ζi; [1]

where ηi is a vector of latent endogenous variables for unit i, αη is
a vector of intercept terms for the equations, B is the matrix of
coefficients giving the expected effects of the latent endogenous
variables (η) on each other, ξi is the vector of latent exogenous
variables, Γ is the coefficient matrix giving the expected effects of
the latent exogenous variables (ξ) on the latent endogenous
variables (η), and ζi is the vector of disturbances. The i subscript
indexes the ith case in the sample. We assume that E(ζi) = 0,
COV(ξi′, ζi) = 0, and (I − B) is invertible. As we stated, exoge-
nous variables are variables that are not explained within the
model and that are uncorrelated with all disturbances in the
system. Endogenous variables are variables that are directly
influenced by other variables in the system other than its dis-
turbance. Two covariance matrices are part of the latent variable
model: Σξξ is the covariance matrix of the exogenous latent
variables (ξ) and Σζζ is the covariance matrix of the equation
disturbances (ζ). The mean of ξ is μξ.
The latent variable model reflects the hypotheses about how

the different concepts such as perceived pain and quality of sleep
relate to each other. In its general form, it incorporates any
number of endogenous or exogenous latent variables.
The measurement model links the latent to the observed

responses (indicators). It has two equations (Eqs. 2 and 3),

yi ¼ αy þ Λyηi þ εi and [2]

xi ¼ αx þ Λxξi þ δi; [3]

where yi and xi are vectors of the observed indicators of ηi and ξi,
respectively, αy and αx are intercept vectors, Λy and Λx are ma-

trices of factor loadings or regression coefficients giving the
impact of the latent ηi and ξi on yi and xi, respectively, and εi and
δi are the unique factors of yi and xi. We assume that the unique
factors (εi and δi) have expected values of zero, have covariance
matrices of Σεε and Σδδ, respectively, and are uncorrelated with
each other and with ζi and ξi.
Using these equations, we can illustrate the generality of the

model. First, researchers can do all confirmatory factor analysis
models using only Eq. 3. This model includes the observed var-
iables or measures in the vector xi, the factor loadings are in the
Λx matrix, and the intercepts of the equation are in αx. The δi
vector contains the unique factors. We could have just as easily
used Eq. 2 to present the confirmatory factor analysis model.
Multiple regression provides another example. By introducing

the restrictions of assuming no measurement error in xi (αx = 0,
Λx = I, Σδδ = 0) and no error in yi (αy = 0, Λy = I, Σεε = 0), using
a single dependent variable (yi is a scalar), and setting B = 0, we
get a multiple regression model where the implicit assumption of
no measurement error is made explicit. ANOVA follows if we let
xi consist only of dummy variables.
Econometrics developed the idea of simultaneous equation

models, which is a multiequation model where a series of en-
dogenous variables are related to each other as well as to a series
of exogenous variables. Unlike regression, simultaneous equa-
tions have multiple equations rather than a single one. However,
like multiple regression, measurement error is assumed absent.
By assuming that there is a single observed variable for each
latent variable and that there is no measurement error (i.e., αx = 0,
Λx = I, Σδδ = 0, αy = 0, Λy = I, and Σεε = 0), the latent variable
model becomes (Eq. 4)

yi ¼ αy þ Byi þ Γxi þ ζi; [4]

and this equation is equivalent to the simultaneous equation
model from econometrics that is used in some of the other social
sciences as well. Furthermore, nonlinear models that relate di-
chotomous, ordinal, or censored observed variables to the latent
variables also are possible (14), although we do not cover these
models in this overview. Special cases of this model include fully
recursive and nonrecursive models that also assume no mea-
surement errors.
The general model also incorporates growth curve models,

random and fixed effects models, and a large number of other
models that are used in statistical modeling. Below, Illustrations,
Illustration 2 will show a growth curve model; however, other
applications of the general model are not shown here (6).

Modeling Steps. Latent variable SEM occurs in a series of steps.
These steps includemodel specification, model-impliedmoments,
identification, estimation, model fit, and respecification. We give
an overview of each step.
Model specification. Model specification is the term that refers to
the formulation of the model. It involves specifying the primary
latent variables and how they relate to each other. It also involves
constructing the measurement model that specifies the relation-
ship between the latent and observed variables and whether there
are any correlated unique factors predicted. Another way of un-
derstanding this step is that it gives the specific composition and
form of the matrices that are in the latent variable and mea-
surement models.
The information necessary for model specification comes from

the subject matter experts and their knowledge of theory and
prior research in this area. If the information in an area leads
to two or more different models, the researcher should use all
plausible models. Later in the process, the fit of these different
models can be compared to determine which is more consistent
with the data.
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The model specification step makes it difficult for statisticians
or biostatisticians to use SEM unless they have substantive
expertise or are collaborating with a colleague who has this-
knowledge.
Model specification is done using the latent variable and

measurement models from the SEM or sometimes, is represented
in a path diagram. A path diagram is a figure that represents the
latent variable and measurement models for a particular appli-
cation. Later, we provide examples of path diagram, and we will
explain their symbols.
Model-implied moments. After a model is specified, it has implica-
tions for the observed variables. One set of implications has to do
with predicting the means, variances, and covariances of the ob-
served variables using the parameters from the model specifica-
tion. These means, variances, and covariances are the moments of
the observed variables.
The parameters of the model are placed in a vector called θ. If

a model specification is valid, then the following mean and co-
variance structures hold (Eqs. 5 and 6):

μ ¼ μðθÞ and [5]

Σ ¼ ΣðθÞ: [6]

The implication is that if the model is true, then the parameters
(θ) of the model should enable us to exactly predict the means,
variances, and covariances of the observed variables. In other
words, there should be an exact match between the population
means, variances, and covariances and those values implied by
the parameters in the model.
These implied moments are useful in estimating and assessing

the fit of a model. They also are useful in establishing model
identification, a topic to which we now turn.
Identification. Identification concerns whether it is possible to
uniquely estimate values of all of the parameters in an SEM.
When we can, the model is identified. When we cannot, it is
underidentified. In multiple regression or ANOVA, the assump-
tions of the model lead to an exactly identified model, and
therefore, this issue is rarely discussed in these contexts. However,
when we are dealing with multiequation models with multiple
indicators and latent variables, we cannot assume that all model
parameters are identified. For instance, suppose that we had two
observed variables, y1i and y2i, that had a feedback relationship
such that y1i caused y2i and y2i caused y1i. The errors of these two
equations are correlated. Having just the means, variances, and
covariance of these two variables would be insufficient to identify
the coefficients in this feedback relationship. Even with data from
the population, we could not find the true coefficient values.
If a parameter in a model is not identified, then there will be

two or more values of the parameters that are equally consistent
with the data, and the researcher will not be able choose among
them empirically, even if population data were available. Hence,
knowing the identification status of a model is important to
proper estimation and interpretation of a model. In general, the
means (μ), variances, and covariances (Σ) of the observed vari-
ables are identified parameters for virtually all observed variables
that are part of a model. In the most common situation, the
identification question is whether the parameters of the model
(e.g., factor loadings, regression coefficients, and variances of
latent variables) can be written as unique functions of the known
to be identified means, variances, or covariances of the observed
variables. If yes, then the parameters and model are identified. If
no, the model is not identified, even if some equations or in-
dividual parameters are identified.
There are rules of identification that apply to some models

(15, 16). Empirical techniques for model identification are part
of nearly all SEM software. The empirical procedures generally

are accurate but not always, because they examine a more lim-
ited type of identification (17).
Models that are overidentified (that is, models that have more

than enough information to identify all parameters) provide
a way to test the overall model structure. However, before we
test the model, we need to estimate it.

Estimation. We review two classes of estimators for SEM. We
refer to these as the model-implied moment (MIM) and the
model-implied instrumental variable (MIIV) estimators. The
MIM estimators are the most common, and therefore, we treat
them first.
MIM estimators. In a previous section, we examined the MIMs,
means, variances, and covariances of the observed variables and
the fact that these values should equal the corresponding pop-
ulation means, variances, and covariances of the observed vari-
ables if the model is valid. The MIM estimators are based on this
relationship in that they choose values of the model parameters
such that, when they are substituted into the implied moments,
they will come as close as possible to reproducing the means,
variances, and covariances of the observed variables. These
estimators are also called full information estimators. They are
full information in that all relationships in the system, including
the covariances, variances, and means of exogenous variables
and disturbances, play a role in developing the estimates. There
are a number of full information estimators, but the dominant
full information estimator is the maximum likelihood (ML) es-
timator. The ML fitting function in SEMs is (Eq. 7)

FML ¼ lnjΣðθÞj− lnjSj þ tr½Σ− 1ðθÞS�−Pz

þ ðz– − μðθÞÞ′Σ− 1ðθÞðz– − μðθÞÞ; [7]

where S is the sample covariance matrix, z
–

is the vector of the
sample means of the observed variables (y

–
and x

–
stacked in

a vector), Pz is the number of observed variables, ln is the natural
log, |·| is the determinant, and tr is the trace of a matrix. The ML
estimator, bθ, is chosen so as to minimize FML. Like all ML
estimators, bθ has several desirable properties. It is consistent,
asymptotically unbiased, asymptotically efficient, and asymptot-
ically normally distributed, and the asymptotic covariance matrix
of bθ is the inverse of the expected information matrix.
The classic derivation of the ML estimator assumes that

all observed variables come from a multinormal distribution.
However, a variety of studies have proved that this estimator
maintains its properties under less restrictive assumptions. For
instance, the ML properties still hold if the observed variables
come from a continuous distribution with no excess multivariate
kurtosis (18). Robustness studies provide conditions under which
the significance tests based on the ML estimator maintain their
desirable asymptotic properties even when none of the preceding
conditions holds (19). Finally, there are bootstrapping methods
(20, 21) and corrected significance tests (22, 23) that enable
significance testing even when the robustness conditions fail.
Thus, there are numerous options to handle observed endoge-
nous variables that come from nonnormal distributions.
A negative consequence of being a full information estimator

such as ML is that, in the likely situation that there are structural
misspecifications in the model, there is a great potential for the
structural errors in one part of the system to spread their effects
elsewhere. This spread can happen even if the other parts of the
model are correctly specified. Given the high likelihood of at
least some structural error in models, this spread is a drawback
of full information MIM estimators. This potential for structural
errors or model misspecifications is motivation to use more ro-
bust estimators such as the MIIV estimators discussed below.

Bollen and Noble PNAS | September 13, 2011 | vol. 108 | suppl. 3 | 15641



MIIV estimators. The MIIVs come in a couple of different forms.
Here, we concentrate on the MIIV two-stage least squares
(MIIV-2SLS) estimator from Bollen (24, 25).
The main requirement of this MIIV-2SLS estimator is that each

latent variable have a scaling indicator such that (Eqs. 8 and 9)

y1i ¼ ηi þ ε1i and [8]

x1i ¼ ξi þ δ1i; [9]

where y1i contains the scaling indicators of ηi and x1i contains the
scaling indicators of ξi. These equations imply that ηi = y1i − ε1i
and ξi = x1i − δ1i, and by substituting the right-hand sides of
these equations, we can eliminate the latent variables from Eqs.
1–3, resulting in Eqs. 10–12:

y1i ¼ αη þ By1i þ Γx1i þ ε1i −Bε1i −Γδ1i þ ζi; [10]

y2i ¼ αy2 þ Λy2y1i −Λy2ε1i þ ε2i; and [11]

x2i ¼ αx2 þ Λx2x1i −Λx2δ1i þ δ2i: [12]

This simple substitution transforms a system of latent and ob-
served variables into a system of observed variables and a more
complex error structure. The end result is a system of equations
that consists of observed variables and composite disturbance
terms. Generally, most of the equations in this model cannot be
consistently estimated with ordinary least squares regression, be-
cause one or more of the variables in the composite disturbances
correlate with the right-hand side variables. An instrumental
variable (IV) approach is used to take account of this problem.
We illustrate an IV using a simple regression equation, y1i =

α1 + β11x1i + ε1i, where COV(x1i, ε1i) ≠ 0. The ordinary least
squares (OLS) estimator of this equation would result in an in-
consistent and biased estimator of β11. However, if there were
another variable (x2i) that had a moderate to strong correlation
with x1i but no correlation with ε1i, then we could regress x1i on x2i
and form the predicted value of bx1i. The OLS regression of y1i onbx1i would provide a consistent estimator of β11. The resulting
estimator would be the IV estimator where x2i is the IV.
In the general latent variable SEM, the researcher chooses the

first equation to estimate from the transformed system that
eliminates the latent variables (Eqs. 10–12). The researcher then
chooses the MIIV for this equation. The MIIVs are observed
variables that are part of the model and based on the model
structure, should not correlate with the disturbance of the equa-
tion but do have a significant association with the problematic
explanatory variable(s). The MIIV selection contrasts with the
more typical applications of IV, where the selection of IVs is
somewhat ad hoc. In the MIIV-2SLS latent variable approach in
the work by Bollen (24), the model comes first, and the observed
variables that satisfy the conditions of IVs follow from the model
structure. Bollen and Bauer (26) describe an algorithm that finds
the MIIVs for a specific model structure, or the researcher can
determine theMIIVs by inspection of the model. After theMIIVs
are determined for an equation, a 2SLS estimator is applied. The
estimator is consistent, asymptotically unbiased, and asymptoti-
cally normally distributed, and an estimate of the asymptotic co-
variance matrix of the coefficients is readily available. As stated
above, this estimator seems more robust to misspecified struc-
tures than the MIM estimators and could prove helpful when
structural misspecification is likely. The works by Bollen (24, 25)
have the formula and more technical details.
Both the MIM and MIIV estimators are justified based on

their asymptotic properties. Asymptotic refers to large sample
properties. It is impossible to give a single sample size N at which

these properties take hold, because they depend on many things,
such as the complexity of the model and the strength of rela-
tionships. However, most SEM researchers would consider an N
less than 100 small for all but simple models and an N of 1,000 as
sufficiently large for most models. However, even here, there can
be exceptions depending on the estimator, distribution of vari-
ables, number of parameters, and strength of relationships.
Model fit. After estimation, the researcher turns to assessing the
fit of the model. It is convenient to describe model fit as having
two aspects. One concerns the component fit of the model.
Overall model fit is the second aspect of fit. In evaluating the
component fit of the model, the MIM and MIIV estimators are
similar in that both produce asymptotic SEs of the coefficients
and intercepts so that the researcher can test individual param-
eters for statistical significance. In addition, groups of parame-
ters can be tested using, for example, Wald tests. The MIIV-
2SLS estimator also has a test of individual equations for all
equations that are overidentified in that they have more than the
minimum number of MIIVs needed for identification. The Sar-
gan test (27) is a good test to use for this purpose. Its null hy-
pothesis is that all MIIVs are valid in that they are uncorrelated
with the disturbance of the equation. The alternative hypothesis
is that at least one MIIV is correlated with the disturbance,
signifying a problem with the model structure.
Overall fit is a second way to gauge model fit. When using ML

and other full information estimators, a χ2 test of overall fit is
generally available. For instance, for the ML estimator, the test
statistic, TML, is (N − 1)FML, where FML is evaluated at the final
estimates ðbθÞ of the parameters. When the assumptions of
the ML estimator are satisfied, TML follows an asymptotic χ2

distribution with degrees of freedom of df ¼
�
1
2

�
PzðPz þ 3Þ− t,

where Pz is the number of observed variables and t is the number
of free parameters estimated in the model. The null hypothesis
of this χ2 test is Ho: μ = μ(θ) and Σ = Σ(θ). A statistically sig-
nificant test statistic casts doubt on the implied moment structure
and the model that gave rise to it. A nonsignificant test statistic
is consistent with the model structure. One aspect of overall fit
to be mindful of is the existence of equivalent models. These
equivalent models are models that have different structures but
the same overall model fit (28). For instance, a factor analysis
model that has four indicators depending on a single latent
variable with uncorrelated errors has the same overall fit as the
exact same model, except that the first indicator causes rather
than depends on the latent variable. Subject matter expertise
must be relied on to discriminate between such models, because
their χ2 fit and degrees of freedom are the same.
In practice, Ho: μ = μ(θ) and Σ = Σ(θ) is too strict for most

models, because the test is intolerant of even slight misspec-
ifications, and hence, in situations with sufficient statistical power
(e.g., when N is large), the null hypothesis is nearly always
rejected. This finding has given rise to a wide variety of fit indices
that supplement the χ2 test and to controversy about the best ways
to assess overall fit. Works by Bollen and Long (29) and Hu and
Bentler (30) have rationales, formulas, and discussions of these
additional fit indices. Current practice is to report the χ2 test
statistic, degrees of freedom, and P value along with several other
fit indices when assessing a model’s overall fit. Alternative
methods for model evaluation are available as well (31). If the
overall fit or component fit of a model is judged to be inadequate,
then this finding suggests the need to respecify the model.
Respecification. It is common that researchers’ first specified
model is found wanting and in need of modification. Respecifi-
cations refer to revisions of an initial model. These revisions can
range from minor (e.g., introducing a secondary path) to major
(e.g., changing number of latent variables and their relation-
ships). Subject matter expertise is the best guide to respecifica-
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tions. A researcher who had considered alternative structures
before choosing the tested one could turn again to these struc-
tures to see if fit improves.
Empirical procedures also exist to suggest respecifications of

the initial model. For the MIM estimators, the Lagrangian
Multiplier (modification indexes) test statistic is the most pop-
ular empirical guide. It is an estimate of the decrease in the χ2
test statistic that would result by freeing a previously fixed pa-
rameter in the model. It considers freeing just a single parameter
at a time, which can be misleading when multiple modifications
are required. Reliance on the modification index can lead to the
introduction of nonsense parameters and difficulty in recovering
the true generating model (32, 33). The modification index is most
useful if used in conjunction with substantive expertise. Other
diagnostic tools include covariance residual analysis (34) and in-
dividual case diagnostics (35, 36). There also are recent develop-
ments in exploratory SEM that might prove useful (37). The
MIIV-2SLS test of IVs for an equation is another alternative (38).
Empirically based respecifications move the analysis more in

the direction of exploratory than confirmatory analysis. The sig-
nificance tests from such an approach must be interpreted cau-
tiously, because they do not consider that modifications were
made in response to patterns found in a specific sample and might
not replicate in a new sample from the same population. When
possible, replication of the models on fresh data provides some
protection against capitalizing on a specific sample. Another
desirable strategy is to start the analysis with several plausible
models for the same data and compare their fit in a more con-
firmatory manner. This method contrasts with starting with
a single model and modifying it several times in response to its
empirical fit. We also note that a researcher approaching mod-
eling from a purely confirmatory perspective would not neces-
sarily respecify a model. The researcher might be more interested
in determining whether the model fits or not and regardless of the
outcome, would not attempt to modify the original model; the
researcher would just report the results of the initial specification.

Illustrations
In this section, we provide several hypothetical examples of
SEMs as a way of illustrating the types of structures that are part
of this model.

Illustration 1. The first illustration is a confirmatory factor analysis
(CFA), a special case of an SEM that only includes the re-
lationship between a latent variable (or factor) and its measures.
This example is taken from Friedman et al. (39); it concerns
childhood sleeping patterns and executive functioning at late
adolescence and includes three latent variables, each repre-
senting a different executive function: inhibiting, updating, and
shifting. Each of these executive functioning latent variables is
measured by three manifest variables derived from performances

on tasks designed to tap into the concepts represented by the
latent variables. Using any one of these measures as a covariate
in a regression would lead to bias because of the measurement
error in each indicator. The benefit of using a latent variable for
each of these three executive functioning skills over a single
measure is that the degree of measurement error can be esti-
mated and controlled in the model.
The first model is a measurement model. Measurement

models can inform the researcher about the degree of mea-
surement error in each indicator and whether all of the indica-
tors behave as hypothesized in relation to the latent variable.
Furthermore, the measurement model permits us to determine
the closeness of association of different latent variables after we
take account of measurement error and see whether the latent
variables are empirically separable from each other. Here, we
have three correlated latent variables representing different
aspects of executive functioning, each with a latent variable
measured with three indicators. The latent variables from this
measurement model will appear as endogenous (dependent)
variables in Illustration 2.
The latent variable for the executive function, inhibiting,

represents the concept of individual restraint while holding back
a dominant response, and it is measured here by the three var-
iables: antisac, stop-signal, and stroop. The updating executive
function latent variable represents the process of discarding less
relevant information as an individual acquires more relevant
information. Its three measures are keep track, letter, and
S2back. Finally, the executive function of shifting is the tran-
sitioning from one task to another efficiently and is measured by
the variables number, color, and category.
Either equations or path diagrams can represent the re-

lationship between the measures and latent variables. For in-
stance, the equations for the three indicators of inhibiting are
(Eqs. 13–15)

x1 ¼ ξ1 þ δ1;
x2 ¼ λ21ξ1 þ δ2; and
x3 ¼ λ31ξ1 þ δ3

; [13 –15]

where ξ1 is the latent variable for inhibiting and λ21 and λ31 are the
coefficients (factor loadings) that give the expected difference
in x2 and x3, respectively, for a one-unit difference in ξ1. The co-
efficient of the x1 is implicitly set to one to provide a metric for the
latent variable ξ1. An alternative way to scale the latent variable is
to set its variance to one rather than a factor loading. The
equations for the measures of updating and shifting are similar
but include their respective indicators and latent variables.
Fig. 1 is an alternative way to represent the CFA model—with

a path diagram that is equivalent to the equations. The path
diagram consists of three latent variables and nine observed
variables. The three unobserved or latent variables mentioned

Fig. 1. Confirmatory factor analysis of inhibiting, updating, and shifting behaviors.
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above, inhibiting, updating, and shifting, are represented by ovals.
Curved, double-headed arrows between each pair of these latent
variables allow for covariances between the latent variables in
recognition of their likely association with each other.
The indicators, also called observed or manifest variables, are

represented in the diagram by the nine boxes and include, for
example, antisac, stop-signal, and stroop for the first latent variable
of inhibiting. The single-headed straight arrows that originate with
the latent variables and terminate in the indicators represent direct
relationships from the latent to the observed variables. The small
arrow at the bottom of these boxes, whose origin is not pictured,
symbolizes the error’s effect on the indicator. The error or dis-
turbance includes all other variables that influence the indicator
besides its respective latent variable. Each observed variable has
a single error term. In the factor analysis tradition, this error term
has two parts, with the first part being purely random error and the
second part being the specific component. The specific component
is a systematic variable that is specific to the particular measure.
For simplification, we ignore this distinction and use the term error
or disturbance to refer to this variable. Furthermore, the lack of
any double-headed curved arrows between these errors identifies
that observed variables have no additional covariation beyond that
caused by their shared latent variable.
The path diagram in Fig. 1 represents pictorially the rela-

tionship between the three latent variables of executive function.
We see from the diagram that three latent variables are allowed
to covary, each latent variable has effects on only its three
indicators and none of the errors from these observed variables
covaries with other errors. Of course, more elaborate models are
possible where dictated by substantive hypotheses.

Illustration 2. Illustration 2 is an extension of Fig. 1 by including
this model with additional variables in a longitudinal application
of the SEM framework known as a latent curve model (LCM).
This model will test the hypothesis that a child’s sleep problems
from ages 4 to 16 y will be useful in predicting his/her executive
functioning at age 17 y. The purpose of the LCM is to determine
an individual trajectory of sleep problems for each child based on
the reported number of sleep problems at 11 different time
points in the development of a child. These 11 repeated meas-
ures of sleep problems serve as a window into the sleep problem
trajectory of a child between the ages of 4 and 16 y. Ultimately,
the parameters governing each individual child’s sleep trajectory

are then used as a predictor of the executive functioning of that
individual child at age 17 y. In practice, two unique parameters,
the intercept and slope for each child, are used to predict their
executive functioning at age 17 y. These two correlated param-
eters are called growth parameters, and the intercept for the
sleep problem trajectory is at age 4 y.
The path diagram in Fig. 2 shows the three latent variables

(inhibiting, updating, and shifting) from Fig. 1 in the lower part
of the diagram. The upper part of Fig. 2 includes 11 repeated
measures of sleep problems at different ages (4–16 y) of children.
Each child can have a different starting point or intercept, and
this variable is captured by the random intercept latent variable
labeled intercept. Each child also can have a different random
rate of change in sleep problems, and the random slopes are
represented by the latent slope variable. Together, the intercepts
and slopes represent the growth curves of sleep problems for the
children in the sample. The model in Fig. 2 shows the intercept
and slopes with direct effects on the three executive functioning
latent variables of inhibiting, updating, and shifting. The errors of
these latter three latent variables are allowed to correlate, which
is represented by the curved double-headed arrows that con-
nect them. The random intercepts and random slopes also are
allowed to correlate, which is represented by the curved double-
headed arrow that connects them.
This model illustrates an SEM approach to growth curve

models, where the parameters of the growth curves have effects
on other outcome variables (40). To avoid overcrowding the di-
agram, the Greek letters representing the latent variables and
coefficients are not shown. However, the ovals and boxes clearly
show which variables are latent and observed. Associated with
each path is a single-headed arrow from one variable to another.
The coefficients give the expected impact of the variable at the
base of the arrow on the variable at the head of the arrow while
holding constant any other variables affecting that target variable.
There are several benefits of using an LCM to predict exec-

utive functioning of children at age 17 y. It allows each child to
have a unique trajectory of sleep problems described by their
growth parameters. Researchers can test the functional form of
the growth trajectory of sleep problems to find the best repre-
sentation of the growth trajectory of sleep disruptions. Some-
times, nonlinear growth trajectories are better representations of
the underlying growth trajectory, and researchers can fit these as
well. This method also allows for the usual overall fit indices
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Signal Stroop 
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Keep 
Track Letter S2back 

Shifting 

Number Color Category 

  

Age 4 Age 5 Age 7 Age 9 Age 10 Age 11 Age 12 Age 13 Age 14 Age 15 Age 16 
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Fig. 2. Latent curve model of childhood sleep problems on inhibiting, updating, and shifting behaviors at adolescence.
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from the SEM framework to be incorporated in addition to in-
dividual component fit measures to assess how well this model
fits the data. Furthermore, it allows for estimation of the effect
that the trajectory of sleep problems has on the three executive
functioning tasks at age 17 y while controlling for the measure-
ment error in inhibiting, updating, and shifting. This model also
allows for an assessment of the correlation of the disturbances of
inhibiting, updating, and shifting after their prediction by the
sleep problem trajectory parameters.

Illustration 3. The third illustration of SEMs originates in the
literature on the relationship of sleep and pain (Fig. 3). The first
series of day 1–8 latent variables is the amount of sleep for each
person over 8 d. The latent sleep variable that influences all 8 d
represents the stable component of sleep across the 8 d.
Similarly, the second series of day 1–8 latent variables is the daily

reports of pain. The latent pain variable that influences all of the
daily pain reports is a stable component of the pain reports. The
higher-order latent sleep (η1) and latent pain (η10) variables are
allowed to correlate. The daily sleep and pain latent variables have
an autoregressive relation and some cross-lagged effects from sleep
to pain and pain to sleep with a 1-d lag. Prior values often influence
current values of the same variable, and this type of autoregressive
relationship is included (e.g., sleep on day 2 is regressed on sleep
from day 1, sleep from day 3 is regressed on the sleep from day 2,
etc.). A pure cross-lagged effect involves two variables and is when
a previous measure of one variable predicts a subsequent measure
of the other variable. Not shown in the diagram are the measures
of the sleep and pain daily latent variables.
This illustration is an adaptation of the SEM from the work by

Edwards et al. (41). Notice that this model permits stable in-
dividual differences in the latent sleep and pain variables that
hold across the days, but it also allows each day’s sleep to depend
on the prior day’s sleep and pain and vice versa. The model
hypothesizes that the number of hours that an individual sleeps
in one night predicts the daily reports of pain the following day.
This model also hypothesizes that both the previous night’s sleep
and the daily reports of pain during the day are predictors of
the amount of sleep that the individual will have that night.
Furthermore, this model hypothesizes that the pain reports of
a previous day help to predict the pain reports of the current day.

This model is a step to trying to untangle the finding that pain
and sleep seem to have a nonrecursive relationship (41). To il-
lustrate this model in equation form, consider the equation for
the latent sleep variable for day 2 (η3) (Eq. 16),

η3 ¼ β31η1 þ β32η2 þ β3;11η11 þ ζ3; [16]

or the equation for the day 5 pain variable (η15) (Eq. 17),

η15 ¼ β15;10η10 þ β15;6η6 þ β15;14η14 þ ζ15: [17]

In a similar fashion, all of the equations could be read from the
path diagram.
The whole model could be estimated simultaneously to answer

a number of questions about the sleep–pain relationship. Are
there individual differences in the overtime levels of pain or sleep?
What are the relative strengths of the autoregressive relations
among the daily sleep and daily pain variables after controlling
for individual differences in sleep and pain higher-order latent
variables? Are the lagged effects from sleep to pain and pain to
sleep both significant? These questions and others would be
addressed while controlling for the other variables in the model
and taking account of measurement error.

Conclusions.
Among the many challenges facing studies that quantify behavior
are the measurement errors in the behavioral and other meas-
ures, the need to formulate multiple equations to characterize
the behavioral system, and the desire to understand the direct
and indirect effects of variables as they work their way through
the equation system. Latent variable SEMs provide the tools to
address these challenges. They have the capability to allow quan-
tification and testing of the hypothesized relationships among
latent and observed variables. They provide tests of the consis-
tency and plausibility of the assumed model compared with the
observed data. Additionally, they enable a researcher to analyze
direct as well as mediated relationships. Although SEMs cannot
replace sound substantive knowledge in formulating a model,
they can provide information on the match between the model
and the data, and they do provide tools to further trace the
implications of this structure.

1. Wright S (1934) The method of path coefficients. Ann Math Stat 5:161–215.
2. Wright S (1918) On the nature of size factors. Genetics 3:367–374.
3. Blalock HM (1964) Causal Inferences in Nonexperimental Research (University of

North Carolina Press, Chapel Hill, NC).
4. Duncan OD (1966) Path analysis: Sociological examples. Am J Sociol 72:1–16.

5. Jöreskog KG (1973) A general method for estimating a linear structural equation
system. Structural Equation Models in the Social Sciences, eds Goldberger AS,
Duncan OD (Seminar Press, New York), pp 85–112.

6. Bollen KA (1998) Structural equation models. Encyclopedia of Biostatistics, eds
Armitage P, Colton T (Wiley, New York), pp 4363–4372.

Fig. 3. Structural equation model of repeated measures of sleep and pain over 8 d.

Bollen and Noble PNAS | September 13, 2011 | vol. 108 | suppl. 3 | 15645



7. Matsueda RL (2012) Key advances in the history of structural equation modeling.
Handbook of Structural Equation Modeling, ed Hoyle R (Guilford, New York).

8. Jöreskog KG, Sórbom D (2001) LISREL 8: User’s Reference Guide (Scientific Software
International, Uppsala, Sweden).

9. Muthén LK, Muthén BO (1998) Mplus User’s Guide (Muthén and Muthén, Los
Angeles), 5th Ed.

10. Arbuckle JL (2009) Amos 18 User’s Guide (Amos Development Corporation,
Crawfordville, FL).

11. Bentler PM (1995) EQS Structural Equations Program Manual (Multivariate Software,
Encino, CA).

12. Fox J (2006) Structural equation modeling with the SEM package in R. Struct Equ
Modeling 13:465–486.

13. Bollen KA (2002) Latent variables in psychology and the social sciences. Annu Rev
Psychol 53:605–634.

14. Muthén B (1984) A general structural equation model with dichotomous, ordered
categorical, and continuous latent variable indicators. Psychometrika 49:115–132.

15. Bollen KA (1989) Structural Equations with Latent Variables (Wiley, New York).
16. Davis WR (1993) The FC1 rule of identification for confirmatory factor analysis: A

general sufficient condition. Sociol Methods Res 21:403–437.
17. Bollen KA, Bauldry S (2010) Model identification and computer algebra. Sociol

Methods Res 39:127–156.
18. Browne MW (1984) Asymptotically distribution-free methods for the analysis of

covariance structures. Br J Math Stat Psychol 37:62–83.
19. Satorra A (1990) Robustness issues in structural equation modeling: A review of

recent developments. Qual Quant 24:367–386.
20. Bollen KA, Stine RA (1990) Direct and indirect effects: Classical and bootstrap

estimates of variability. Sociol Methodol 20:115–140.
21. Bollen KA, Stine RA (1992) Bootstrapping goodness-of-fit measures in structural

equation models. Sociol Methods Res 21:205–229.
22. Arminger G, Schoenberg R (1989) Pseudo maximum likelihood estimation and a test

for misspecification in mean and covariance structure models. Psychometrika 54:
409–425.

23. Satorra A, Bentler PM (1994) Corrections to test statistics and standard errors in
covariance structure analysis. Latent Variables Analysis: Applications for Develop-
mental Research, eds von Eye A, Clogg CC (Sage, Newbury Park, CA), pp 399–419.

24. Bollen KA (1996) An alternative 2SLS estimator for latent variable models. Psy-
chometrika 61:109–121.

25. Bollen KA (2001) Two-stage least squares and latent variable models: Simultaneous
estimation and robustness to misspecifications. Structural Equation Modeling: Present

and Future, A Festschrift in Honor of Karl Jöreskog, eds Cudeck R, Du Toit S, Sörbum D
(Scientific Software, Lincoln, IL), pp 119–138.

26. Bollen KA, Bauer DJ (2004) Automating the selection of model-implied instrumental
variables. Sociol Methods Res 32:425–452.

27. Sargan JD (1958) The estimation of economic relationships using instrumental
variables. Econometrica 26:393–415.

28. Hershberger SL (2006) The problem of equivalent structural models. Structural
Equation Modeling: A Second Course, eds Hancock GR, Mueller RO (IAP, Greenwich,
CT.), pp 13–41.

29. Bollen KA, Long JS, eds (1993) Testing Structural Equation Models (Sage, Newbury
Park, CA).

30. Hu L, Bentler PM (1998) Fit indices in covariance structure modeling: Sensitivity to
underparameterized model misspecification. Psychol Methods 3:424–453.

31. Saris WE, Satorra A, van der Veld WM (2009) Testing structural equation models or
detections of misspecifications? Struct Equ Modeling 16:561–582.

32. MacCallum LC (1986) Specification searches in covariance structure modeling. Psychol
Bull 100:107–120.

33. MacCallum RC (2003) Working with imperfect models. Multivariate Behav Res 38:
113–139.

34. Costner HL, Schoenberg R (1973) Diagnosing indicator ills in multiple indicator
models. Structural Equation Models in the Social Sciences, eds Goldberger AS,
Duncan OD (Seminar Press, New York), pp 167–200.

35. Bollen KA, Arminger G (1991) Observational residuals in factor analysis and structural
equation models. Sociol Methodol 21:235–262.

36. Cadigan NG (1995) Local influence in structural equations models. Struct Equ
Modeling 2:13–30.

37. Marsh HW, et al. (2009) Exploratory structural equation modeling, integrating CFA
and EFA: Application to students’ evaluations of university teaching. Struct Equ
Modeling 16:439–476.

38. Kirby JB, Bollen KA (2009) Using instrumental variable (IV) tests to evaluate model
specification in latent variable structural equation models. Sociol Methodol 39:
327–355.

39. Friedman NP, Corley RP, Hewitt JK, Wright KP, Jr. (2009) Individual differences in
childhood sleep problems predict later cognitive executive control. Sleep 32:323–333.

40. Bollen KA, Curran PJ (2004) Latent Curve Models: A Structural Equation Perspective.
Wiley Series in Probability and Mathematical Statistics (Wiley, New York).

41. Edwards RR, Almeida DM, Klick B, Haythornthwaite JA, Smith MT (2008) Duration
of sleep contributes to next-day pain report in the general population. Pain 137:
202–207.

15646 | www.pnas.org/cgi/doi/10.1073/pnas.1010661108 Bollen and Noble

www.pnas.org/cgi/doi/10.1073/pnas.1010661108

