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This article considers visual perception, the nature of the informa-
tion on which perceptions seem to be based, and the implications
of a wholly empirical concept of perception and sensory processing
for vision science. Evidence from studies of lightness, bright-
ness, color, form, and motion all indicate that, because the visual
system cannot access the physical world by means of retinal light
patterns as such, what we see cannot and does not represent the
actual properties of objects or images. The phenomenology of
visual perceptions can be explained, however, in terms of empirical
associations that link images whose meanings are inherently
undetermined to their behavioral significance. Vision in these
terms requires fundamentally different concepts of what we see,
why, and how the visual system operates.

Bayes’ theorem | empirical ranking | illusion | perceptual qualities |
visual context

A major obstacle in explaining how the visual system gen-
erates useful perceptions is that light stimuli cannot specify

the objects and conditions in the world that caused them. This
quandary, called the inverse optics problem, pertains to every
aspect of visual perception (Fig. 1). The evidence described in
this article all points to the same basic strategy for contending
with this biological challenge: visual perceptions arise by linking
retinal stimuli with useful behaviors according to feedback from
trial and error interactions with a physical world that cannot be
revealed by sensory information. In consequence, what we see is
a world determined by the behavioral significance of retinal
images for the species and the perceiver in the past rather than
by an analysis of stimulus features in the present.
Since the late 1950s, the focus of visual neuroscience has been

on the receptive field properties of neurons in the primary and
higher-order visual pathways in experimental animals (1, 2).
Implicit in this research is the idea that perception arises from
neural mechanisms that detect features and filter the charac-
teristics of retinal stimuli, analyze those features hierarchically
and in parallel, and eventually recombine this information in
visual cortex to represent external reality. Given the quandary
posed by the inverse optics problem, however, this paradigm is
not feasible. Here, we describe evidence that the visual system
relies on a fundamentally different strategy.

A Wholly Empirical Concept of Vision
To understand how vision can contend with the inverse problem,
consider how a player could behave successfully in a game of dice
when direct analysis (e.g., weighing the dice, taking them apart,
etc.) is precluded as a way to determine whether the dice are fair
or loaded. This scenario presents a problem similar to the one
confronting vision, where direct information about the physical
world is likewise unavailable.
Despite the exclusion of direct analysis, an operational eval-

uation of the dice and the implications for successful behavior
(betting advantageously) can nonetheless be made by tallying the
frequency of occurrence of the numbers that come up over the
course of many throws. Just as the properties of the physical
world determine the frequency of occurrence of different retinal
stimuli, the physical properties of the dice determine the fre-
quency of occurrence of the different numbers rolled. If the

numbers come up about equally, then a player should behave as
if the dice are fair and bet accordingly; conversely, if some
numbers appear more frequently than others, then the dice are
loaded and to succeed, the player’s betting strategy should
change. Note that, in this way of contending with the problem,
the physical properties of the dice are not represented.
Because two dice are involved, operational evaluation can im-

prove performance still further by taking advantage of the fact that
the numbers on one die are relevant to the numbers on the other. If
a particular number on one of the dice is taken as a “target” then
tallying how often that number comes up together with each of the
possible “context” numbers on the other die provides a more re-
fined guide to betting behavior. For example, if a 5 on the target die
were often associated with a 2 on the other contextual die, then
betting on a total of 7 would be a good strategy. The more fre-
quently a target number on one die is associated with a context
number on the other, the greater the chance that a given behav-
ioral response predicated on that combination will succeed.
The human visual environment is like loaded dice in that the

complex physical properties of the world ensure that stimuli do
not come up equally over time. By progressively modifying the
connectivity of the brain according to the frequency of occur-
rence of the targets and contexts in stimuli that the visual envi-
ronment provides, appropriate visual behavior can be generated,
despite the inverse problem. Over time, useful visually guided
behaviors can be generated even though the physical properties
that gave rise to retinal stimuli are not available in images as
such. In consequence, any attempt to explain vision in terms of
image analysis is not viable (Fig. 1).
Rationalizing vision based on the target–context associations

instantiated in the visual system according to behavioral re-
sponses to retinal stimuli rather than the properties of objects
themselves, however, predicts that visual perceptions will not
correspond to the actual properties of the physical world (just as
the associations among the numbers on the faces of each die do
not correspond to the physical properties of the dice). In this
framework, then, the basis for what we see is not the physical
qualities of objects or actual conditions in the world but opera-
tionally determined perceptions that promote behaviors that
worked in the past and are thus likely to work in response to
current retinal stimuli. Although no one would argue with the
idea that vision evolved to promote useful behavior, the theory
presented here relies entirely on the history of behavioral success
rather than on image analysis. We, therefore, refer to this
strategy of vision as “wholly empirical.”
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Testing the Theory
The merits of a wholly empirical strategy of vision can be
assessed by using the frequency of occurrence of stimuli to stand
in for the trial and error experience in the human visual envi-
ronment that would have linked retinal images to useful visually
guided behaviors, thus contending with the inverse problem. The
argument for this approach is much the same as the loaded dice
analogy: by tallying up the frequency of occurrence of different
targets and contexts in visual stimuli generated in nature and
instantiating this information in visual system connectivity, per-
ceptions arising on this basis should be predictable. The evidence
supporting a wholly empirical theory depends on whether such
predictions accord with perceptual experience.
The following sections provide examples of how this approach

works for three different perceptual qualities: lightness and
brightness, form, and motion (ref. 3 provides a full account of
how these and other basic visual qualities can be understood in
empirical terms).

Lightness and Brightness. The term “lightness” refers to the lighter
or darker appearance of objects because of the amount of light
that a surface returns to the eye; “brightness” refers to the
brighter or dimmer appearance of objects that are themselves
sources of light (e.g., the sun, fire, and light bulbs). Like all other
perceptual qualities, lightness and brightness are not subject
to direct measurement and can be evaluated only by asking
observers to report what they see.
Because increasing the luminance of a stimulus increases the

number of photons captured by photoreceptors and thus the
relative action potential output of the retina at any given level of
ambient light, a simple expectation would be that physical
measurements of light intensity and perceptions of lightness and
brightness are directly proportional. A corollary is that objects in
a scene returning the same amount of light to the eye should
appear equally light or bright. Perceptions of lightness and
brightness, however, fail to meet these expectations. For exam-
ple, two patches having the same luminance are perceived as
being differently light or bright when their backgrounds have
different luminance values (Fig. 2A). Moreover, as has long been
known (4, 5), presenting luminance targets in more complex
contexts makes these effects much stronger (Fig. 2B).
Rather than trying to explain these perceptual phenomena in

terms of analyzing and processing information in the retinal
stimulus, an empirical framework depends solely on visual his-
tory: natural selection would have instantiated random changes
in the structure and function of the visual systems of ancestral
forms according to how well the ensuing behavior served re-
productive success. Any configuration of neural circuitry that
better served the empirical link between visual stimuli and suc-
cessful behavior would tend to increase among the members of
the species, whereas less useful circuit configurations would not.
Similarly, experience-dependent refinements of connectivity
during postnatal development and adult life would allow indi-
viduals to contend with the challenge presented by the inverse
problem more successfully than could be achieved on the basis of
inherited circuitry alone.
To test the validity of this idea, templates similar to the pat-

terns in Fig. 2A were used to sample a database of images arising
from natural scenes; this method allows a determination of the
frequency of occurrence of different target luminance values in
particular luminance surrounds. These data, therefore, indicate
how often a target luminance embedded in a surrounding con-
text occurs in natural stimuli—the information that historically
successful behavior would gradually have encoded in the visual
system to contend with the inverse problem. Thus, the identical
targets in Fig. 2A look differently light or bright because the
frequency of occurrence of the retinal projections generated by
natural sources is different.
To take a specific example, the targets (T) with different lu-

minance values in Fig. 3A indicate possible target luminance
values in natural scenes in which the targets are surrounded by
differently luminant contexts. The probability distribution of
target luminance values co-occurring with the luminance pat-
terns of two different contexts is shown in Fig. 3B. As might be
expected, the values of the targets occurring most often are
similar to the mean luminance of the corresponding surrounds.
To predict the perceived lightness or brightness elicited by target
luminance values on wholly empirical grounds, the distribution
of co-occurring target and surrounding luminance values can be
expressed in cumulative form to define the summed probability
that a particular target luminance will have occurred in a given
surround (Fig. 3C). Thus, the perception of lightness or bright-
ness is predicted by the relative percentile rank (probability ×
100%) of each co-occurring target and surround in these cu-
mulative distributions, with a higher rank corresponding to
a greater perceived lightness or brightness relative to the sur-
round. For example, in Fig. 3C, the cumulative probability dis-

Fig. 1. The inverse optics problem. (A) The conflation of illumination, re-
flectance, and transmittance in retinal images. Many combinations of these
physical characteristics of the world can generate the same retinal stimulus.
(B) The conflation of physical geometry in images. The same image can be
generated by objects of different sizes, at different distances from the ob-
server, and in different orientations. (C) The conflation of speed and di-
rection in images of moving objects. The same projected motion on the
retina can be generated by different objects with various orientations
moving in different directions and at different speeds in the physical world.
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tributions are given by P(<LT> | LS), where <LT> represents the
full range of the possible luminance values of a target patch that
have occurred in conjunction with the specific luminance value of
the surround (LS). The distribution P(<LT> | LS), therefore,
provides an empirical scale that ranks all the target luminance
values that have co-occurred with the surround in question:
among all of the physical sources of a target patch that have co-
occurred with the surround in human experience, the distribu-
tion indicates the percentage that generated target patches
having luminance values less than T and the percentage that
generated target patches with luminance values greater than T.

For any particular target luminance (T) along the abscissa, the
corresponding rank along the ordinate (T*) predicts the relative
perception of the target. As shown in Fig. 3C, the higher that T*
ranks on this empirical scale, the lighter or brighter the per-
ception of that particular patch.
Without a context, predicting the lightness or brightness eli-

cited by different luminance values according to their percentile
rank would only have shown that a higher luminance value would
always have a higher rank than a lower value. However, once
context is introduced, which it always is in natural stimuli, the
relationship between a luminance value and its rank is no longer
a simple one. Because the empirical scales associated with vari-
ous surrounds can be quite different, the same target luminance
value can have very different rankings when embedded in dif-
ferent contexts and thus can generate quite different perceptions
of lightness or brightness, as is apparent in Fig. 2.
It follows from this strategy of vision that calling any percep-

tion of lightness or brightness a “visual illusion” is incorrect.
Rather, the perceptions that arise are simply the signature of
how the visual brain generates all subjective responses to lumi-
nance. In these terms, then, the conventional distinction between
veridical and illusory perception is false; by the same token,
making inferences about the physical properties of objects or
states of the world is not how vision seems to work. Notice as
well that, in this framework, experience with a series of images as
such is insufficient to generate useful visual perceptions. Because

Fig. 2. Discrepancies between luminance and perceptions of lightness and
brightness. (A) Standard demonstration of the simultaneous brightness
contrast effect. A target (the diamond) on a less luminant background (Left)
is perceived as being lighter or brighter than the same target on a more
luminant background (Right), even though the two targets have the same
measured luminance; if both targets are presented on the same background,
they appear to have the same lightness or brightness (Inset). (B) Although
the gray target patches again have the same luminance and appear the
same in a neutral setting (Inset), a striking perceptual difference in lightness
is generated by contextual information that one set of patches is in shadow
(those on the riser of the step) and another set in light (those on the surface
of the step). [Reprinted with permission from ref. 6 (Copyright 2003, Sinauer
Associates)].

Fig. 3. Predicting the perception of lightness or brightness by the frequency
of target and context luminance values in stimuli generated by the world
[explanation in the text; adapted from Yang and Purves (7)].
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the mechanisms for instantiating the needed visual circuitry are
natural selection and activity-dependent neural plasticity, feed-
back from the success or failure of ensuing behaviors is essential
to complete the biological loop underlying a wholly empirical
visual strategy.
Finally, we emphasize that any counterargument maintaining

that the perceptions elicited by the stimulus in Fig. 3A could also
be explained by a visual strategy that statistically assesses the
physical properties of objects (their surface reflectance values in
this case) and the relative probabilities of their co-occurrence is
undermined by the fact that the visual system cannot make such
determinations. Even if predictions from such models were to
conform to some set of psychophysical data, they would fail to
meet a necessary criterion for any explanation of visual percep-
tion (i.e., contending with the fact that the inverse problem
prevents direct access to the environment).

Form. In considering the merits of a wholly empirical theory of
vision, plausibly accounting for a single phenomenon or even
a category of phenomena like perceptions of lightness and
brightness will not suffice. To be considered an explanation of
vision, this or any theory must account for a wide range of per-
ceptions within the context of the inverse problem.
Perceived geometrical form is another broad category that can be

examined in empirical terms (3, 8). In addition to conflating the
physical parameters that determine the quantity and quality of light
reaching the eye from objects and conditions in the world, the
parameters that define the location and arrangement of the ob-
jects in space—their size, distance, and orientation—are also in-
extricably intertwined in retinal images (Fig. 1B). Thus, the inverse
problem is as much an obstacle in generating useful perceptions of
spatial relationships conveyed by light as it is in generating per-
ceptions of lightness or brightness from luminance values returned
to the eye, since the spatial characteristics of physical sources
cannot be determined by any operation on images as such.
Many discrepancies between measured and perceived geome-

try have been described, and attempts to rationalize these effects
have a long history (3, 8, 9). If vision operates empirically, then
these discrepancies should also be explainable in terms of the
frequency of occurrence of 2D images generated by 3D sources
and behavioral feedback from operating in the human visual
environment. In this case, the database that serves as a proxy for
human experience is acquired by laser range scanning of natural
scenes. This method relates the geometries in projected images
with their underlying sources in the world, allowing the frequency
of occurrence of geometrical forms on the retina to be measured.
These data can then be used to predict the geometries that
people should see if vision is empirically determined.
A simple example of how such information can explain the

perception of form is how we see the length of lines. In the ab-
sence of other contextual information, a line drawn on a piece of
paper or computer screen would be expected to correspond
more or less directly to the length of the line projected onto the
retina. If perception were determined by the detection and
processing of image features, then the perceived length of a line
should be directly related to its projected length. As it turns out,
however, vertical lines look 10–15% longer than horizontal lines
(10–14). Even stranger, the perception of line length varies
continuously as a function of orientation, with the maximum
apparent length being elicited by a line stimulus oriented about
30° from vertical (Fig. 4).
To explain these perceptions in empirical terms, a first step is

to determine from a database how often in the past a line with
a given length and orientation on the retina has been experi-
enced by human observers. In an empirical framework, the ap-
parent lengths of real-world lines elicited by projected lines in
different orientations should be predicted by the frequency of
occurrence of projected line lengths (length being the target in

this case) as a function of orientation (the context). This in-
formation can be extracted from the database by tallying the
frequency of occurrence of projected straight lines in different
orientations arising from geometrically straight lines in the world
(Fig. 5A). Each of the probability distributions derived in this
way can then be expressed in cumulative form to provide an
empirical scale of the frequency of occurrence of line lengths
projected at specific orientations (Fig. 5B). As in predicting
lightness or brightness perceptions, this information can be
expressed in terms of the percentile rank of the projected length
of a given line in relation to all other projected lines in that
orientation. The rank of any line in the cumulative probability
distributions indicates what percentage of projected lines in
a given orientation have been shorter than the line in question
over the course of human experience, and what percentage of
projected lines have been longer. As illustrated in Fig. 5B, the
percentile rank for projected lines of any given length varies as
a function of orientation.
If a wholly empirical strategy is correct, the apparent length of

lines as a function of their projected orientation on the retina
(Fig. 4B) should be predicted by the percentile rank of a given
projected line as its orientation changes. Analysis of the natural
scene database shows that, for lines near vertical, a greater
number of shorter than longer projected lines have occurred in
the sum of experience compared with horizontal line projections
of the same length (Fig. 5B). This fact means that the percentile
rank of a vertical line of any length on the retina will be higher,
and thus be seen as longer, relative to a horizontal line of the
same length. As indicated in Fig. 5C, the shape of the function
defined by the percentile rankings of a line on the retina in
different orientations closely follows the psychophysical function
of perceived length as a function of orientation (Fig. 4B).
Notice that these perceived line lengths do not arise because

there are more physically longer vertical objects in the environ-
ment than horizontal ones; in fact, longer horizontal objects are
more frequent (chapter 3 in ref. 8). Rather, the different per-
ceptions of length elicited by the same physical line in different
orientations are again an indication of how the visual system
contends with the inverse problem. Consequently, the relative
frequencies of occurrence of projected lines in different ori-
entations should predict perceptions of length, which they do.

Motion. The perception of motion provides another category that
must be explained in empirical terms. Physical motion refers to
the speed and direction of objects as they change location in the
world. In perception, however, motion is defined subjectively and
must again contend with the inverse problem: neither the speed

Fig. 4. Variation in apparent line length as a function of orientation. (A)
The horizontal line in this figure looks somewhat shorter than the vertical or
oblique lines, despite the fact that all of the lines have the same measured
length. (B) The apparent length of a line reported by subjects as a function
of its orientation in the retinal image (expressed as the angle between the
line and the horizontal axis). The maximum length seen by observers occurs
when the line is oriented ∼30° from vertical, at which point it appears about
10–15% longer than the minimum length seen when the orientation of the
stimulus is horizontal. The data shown here is an average of psychophysical
results reported in the literature (15, 16).
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nor the direction of moving objects is specified by motion in 2D
retinal projections (Fig. 1C). Vision scientists have long sought
to explain motion perception in terms of the receptive field
properties of visual neurons (17–20). At the same time, psy-
chologists have tried to account for apparent speed and direction
in terms of various ad hoc models (18, 21–25). A different con-
ception of the problem consistent with the explanations of
lightness, brightness, and geometry is that perceived motion is
also determined historically by the frequency of occurrence of
motion in retinal images and feedback from behavior in the
human visual environment.
There are many puzzling motion percepts. Preeminent among

these percepts are the odd way that the speed of motion is seen
(e.g., the flash-lag effect) (Fig. 6A) (22, 23, 25, 26) and the
dramatic changes in the apparent direction of motion that occur
when a moving object projects to the eye through an aperture
(27). These discrepancies between physical and perceived mo-
tion present another problem for the evolution and development
of useful vision: observers must respond to the speeds and
directions of objects in 3D space, but this information is not
available in the 2D speeds and directions projected on the retina.
For example, if perceived speed is determined empirically,

then the lag reported by observers for different object speeds
shown in Fig. 6B should be predicted in much the same way as
perceived line length in the previous section. Because any image
speed can be generated by a wide range of object speeds (Fig.
1C), perceived speed should correspond to the frequency of
occurrence of projected speeds arising from objects in the en-
vironment rather than to the actual speeds of objects. By con-
verting this probability distribution of projected image speeds
into cumulative form, the summed probability that moving
objects undergoing perspective transformation have given rise to

particular image speeds can be determined. If the flash-lag effect
is a signature of an empirical strategy of visual motion process-
ing, then the lag reported by observers for the different image
speeds in Fig. 6B should be predicted by the relative positions of
image speeds in the cumulative probability distribution. As in
predicting lightness, brightness, and form, a database—in this in-
stance, projections of moving objects in a virtual environment—
serves as a proxy for the frequency of occurrence of different
image speeds generated by moving objects in past human expe-
rience (28).
The predictions made from the motion database correspond

to the percentile rank (probability × 100%) of each image speed,
with higher rankings indicating perceptions of greater speed.
Because a stationary flash has an image speed of 0°/s (and
therefore, a percentile rank of 0%), any moving image (the
target) relative to a flash (the context) will have a higher ranking;
consequently, a flash should always be perceived to lag behind
a moving object. Moreover, because an increase in image speed
corresponds to a higher ranking, the perceived magnitude of the
flash-lag effect should also increase according to the nonlinear
function of Fig. 6B. As shown in Fig. 6C, a direct correlation of
the psychophysical results with the percentile ranking of image
speeds predicts perceived lag quite well (see also ref. 29). The
differences in the probability distributions generated by the ge-
ometry of the world also predict the variable directions of motion
people see when the light reflected from objects is projected
through apertures (30).

Discussion
Describing What We See on an Empirical Basis. If the physical
properties of objects in the world are not represented in vision,
then what is the proper way to describe what we see? An in-

Fig. 5. The frequency of occurrence of lines projected onto the retina in different orientations determined by laser range scanning of typical environments.
(A) Probability of the physical sources capable of generating lines of different lengths and orientations (θ) in the retinal image. (B) Cumulative probability
distributions calculated from the distributions in A. The cumulative values for any given point on the abscissa are obtained by calculating the area underneath
the curves in A that lie to the left of a line of that length in the relevant distribution. This value indicates how many lines in that orientation in retinal images
have been shorter than the projected line in question and how many have been longer. (C) The predicted function for projected lines 6 pixels in length in
different orientations derived from the cumulative probability distribution in B. The predicted function in C is similar to the psychophysical function of
perceived line lengths in Fig. 4B (15, 16).
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structive example is the sensory quality of pain. It is clear that
pain does not correspond to the physical objects or conditions
that cause it; rather, pain is a subjective quality that we evolved
to sense because such perceptions promote survival. In an em-
pirical framework, visual qualities bear this same relationship to
the world. Although we routinely attribute visual perceptual
qualities to objects and environmental conditions, our experi-
ences of lightness, brightness, color, form, and motion are like-
wise subjective qualities that simply promote useful behavior.
Accordingly, it would be best to describe visual perceptions in
terms similar to those used to describe pain, for which the con-
cept of representation makes no sense. Visual perceptions, like
the perception of pain, do not stand for the properties of objects
in the physical world, although the world, of course, generates
the relevant stimuli.
The distinction between visual perception conceived in terms

of the awareness of behaviorally useful qualities vs. conceiving
perception in terms of representations of the physical world
would be a philosophical point only, were it not for the associ-
ated neurobiological implications. If vision does not represent
the properties of objects and conditions in the world, then nei-
ther do its underlying anatomical and physiological mechanisms,
which must, therefore, be thought of, examined, and tested in
different terms.

Mechanisms. The biological mechanisms underlying a wholly
empirical theory of vision are worth restating. The driving force
that instantiates the links between light stimuli and visual
behaviors during the evolution of a visual species is natural se-
lection: random changes in the structure and function of the
visual systems of ancestral forms have persisted—or not—in
descendants according to how well they serve the reproductive
success of the animal whose brain harbors that variant. Any
configuration of neural circuitry that mediates more successful
responses to visual stimuli will increase among the members of

the species, whereas less useful circuit configurations will not.
The significance of this conventional statement about the phy-
logeny of any biological system is simply the existence of a uni-
versally accepted mechanism for instantiating and updating
neural associations between light stimuli and behavioral success.
Neural circuitry is, of course, further modified in postnatal life

according to individual experience by mechanisms of neural
plasticity. Taking advantage of experience accumulated during
childhood and adult life allows individuals to benefit from cir-
cumstances in innumerable ways that contend with the chal-
lenges in the world more successfully than would be possible
using inherited circuitry alone. Changes in neural connectivity
arising in phylogeny and ontogeny provide reasonably well-
understood mechanisms (natural selection and neural plasticity)
for instantiating neural circuitry on the basis of species and
personal history.

Perceptions as Reflex Responses. If vision operates by associating
retinal images with useful behaviors on the basis of past expe-
rience, then the mechanisms for perceptions and their genesis
are best understood as a reflex response. Although the concept
of a reflex is not precisely defined, it alludes to behaviors such
as the knee-jerk response that depend on the “automatic”
transfer of information through previously established circuitry.
The advantages of reflex responses are clear: after natural se-
lection and neural plasticity have done their work over evolu-
tionary and individual time, the nervous system can respond with
greater speed and accuracy.
It does not follow, however, that reflex responses are in any

sense simple or that they are limited to “lower-order” neural
circuitry. Sherrington, who worked out spinal reflex circuits in
the first part of the 20th century, was well aware that the concept
of a simple reflex is, in his terms, a “convenient . . . fiction” (31).
As Sherrington was quick to point out, “all parts of the nervous
system are connected together and no part of it is ever capable of

Fig. 6. Discrepancies between physical and perceived speeds. (A) The flash-lag effect. When a flash of light (asterisk) is presented in alignment with a moving
object (the red bar; Left), the flash is seen lagging behind the position of the object (Center). The apparent lag increases as the speed of the moving object
increases (Right). The amount of lag as a function of object speed can be determined by asking subjects to align the flash with their perception of the moving
stimulus at various object speeds. (B) Psychophysical function describing the flash-lag effect for image speeds up to 50°/s. The curve is a logarithmic fit to the
lag reported by 10 observers. Bars are ±1 SEM. (C) Plotting the perceived lag reported by observers in B against the percentile ranking of image speeds from
the motion database illustrates the correlation between both sets of data. The deviation from a linear fit (dashed line) indicates that >97% of the observed
data are accounted for on an empirical basis [adapted from Wojtach et al. (28)].
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reaction without affecting and being affected by other parts”
(31). If the framework offered here is right, then conceiving of
vision in terms of automatic responses that are fully determined
by existing circuitry whose function can nevertheless be influ-
enced by many brain regions seems appropriate.
An objection to the idea that vision is reflexive might be that,

because perceptions can be elicited by stimuli that have never
been experienced, extant neural circuitry could not underwrite
vision. However, every natural visual stimulus is literally unique.
As long as a light stimulus is within the physical limits that
humans can react to, a visual system that evolved empirically will
rely on the sum total of previous experience with similar stimuli
to generate a perception in accord with the relative success of
past behavior.
In short, if visual system connectivity has been established on

a wholly empirical basis by natural selection and activity-
dependent plasticity, there is no reason to think that visual
perceptions are anything more than reflexive responses de-
termined by neural associations previously established according
to the relative success of species and individual behavior.

Other Empirical Approaches. The influence of past experience on
visual perception has played an important part in theories of
vision at least since Helmholtz drew a distinction between sen-
sation and perception, arguing that experience must resolve
ambiguity in visual stimuli by generating “unconscious infer-
ences,” which lead to perceptions more likely to accord with
reality (32). More recently, the role of past experience has played
an important role in gestalt (33) and ecological (34) theories of
perception, as well as in Bayesian models of vision (35–40).
Consider, for example, work predicated on Bayesian models.

Bayes’ theorem is used to assess the probability of an event, A,
given another event or condition, B. Because this conditional
probability depends on prior evidence about events A and B, it is
referred to as the posterior probability. Thus, Bayes’ theorem
states that the posterior probability depends on the probability of
B given A (called the likelihood) and critically, on the probability
of A absent information about B (the prior) divided by the
probability of B absent any information about A. This theorem is
expressed as (Eq. 1)

PðAjBÞ ¼ PðBjAÞ•PðAÞ
PðBÞ : [1]

In vision research, Bayes’ theorem has been used to assess the
most likely cause of an ambiguous or noisy retinal stimulus (35–
40). Typically, A would stand for a physical state of the world,
and B would be a retinal image. Assuming that representing the
most probable state of the world in perception would benefit
humans or other visual animals, a “Bayesian observer” would see
the most likely physical source of an image, as specified by the
highest value in a distribution of posterior probabilities of A, thus

taking into account image ambiguity (i.e., that more than one
source could have given rise to the image B).
If the theory that we have presented is right, however, the

inverse problem prevents a Bayesian approach from explaining
perception, much less speaking to the underlying organization of
the visual system. Because the inverse problem precludes an
assessment of physical properties of the world by the visual sys-
tem (see Fig. 1), the relative probabilities of the states of the
world as such are irrelevant to visual perception. For a Bayesian
framework of vision to work, the relevant Bayesian priors would
have to be useful behaviors, not states of the world. In theory,
a wholly empirical strategy could be formulated in Bayesian
terms; however, because the history of successful behaviors over
evolutionary and individual time cannot be known, this exercise
would have little use (SI Text).
Similar concerns apply to filter-based interpretations of vision.

According to this view, the visual system evolved to extract as
much information from the retinal image as possible, while
minimizing the circuitry, signaling, and metabolic cost needed for
efficient coding. Thus, rather than encoding the information at
each point in the retinal image independently (which would re-
sult in redundant neural responses), in this conception the visual
system filters images and extracts salient features like oriented
edges according to the statistical characteristics of images arising
from natural scenes at multiple spatial and temporal scales (19,
41–46). Although relying on filters to extract the salient features
of images has provided much insight into how image information
is likely to be related to receptive field properties and efficient
information transfer, these useful strategies do not address the
inverse problem and therefore, cannot explain visual perception.

Conclusion. The fundamental challenge for understanding bi-
ological vision is the inverse problem: light falling on the retina
inevitably conflates the contributions to the stimulus arising from
the physical features and conditions of real-world objects, thereby
precluding the sources of visual stimuli from being determined. As
a result, the significance of retinal images for visually guided be-
havior must be resolved empirically. The evidence briefly de-
scribed here implies that, as a means of contending with the
inverse problem, retinal stimuli trigger neuronal activity in circuits
that have been fully determined by accumulated species and in-
dividual experience with the behavioral success (or failure) arising
from interactions with the environment over time. The result is
circuitry that reflexively generates perceptions based entirely on
history. The evidence that the visual system operates in this
counterintuitive way is the ability of data drawn from proxies for
this history to explain what we actually see.
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