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Abstract

Every year, ovarian cancer kills approximately 14,000 women in the United States and more than 140,000 women
worldwide. Most of these deaths are caused by tumors of the serous histological type, which is rarely diagnosed before it
has disseminated. By deep paired-end sequencing of mRNA from serous ovarian cancers, followed by deep sequencing of
the corresponding genomic region, we identified a recurrent fusion transcript. The fusion transcript joins the 59 exons of
ESRRA, encoding a ligand-independent member of the nuclear-hormone receptor superfamily, to the 39 exons of C11orf20,
a conserved but uncharacterized gene located immediately upstream of ESRRA in the reference genome. To estimate the
prevalence of the fusion, we tested 67 cases of serous ovarian cancer by RT-PCR and sequencing and confirmed its presence
in 10 of these. Targeted resequencing of the corresponding genomic region from two fusion-positive tumor samples
identified a nearly clonal chromosomal rearrangement positioning ESRRA upstream of C11orf20 in one tumor, and evidence
of local copy number variation in the ESRRA locus in the second tumor. We hypothesize that the recurrent novel fusion
transcript may play a role in pathogenesis of a substantial fraction of serous ovarian cancers and could provide a molecular
marker for detection of the cancer. Gene fusions involving adjacent or nearby genes can readily escape detection but may
play important roles in the development and progression of cancer.
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Introduction

Ovarian cancer is estimated to kill more than 140,000 women

every year [1]. Like most cancers, ovarian cancer has a dismal

prognosis once the disease has spread beyond the site of origin [2].

The histological subtypes of ovarian cancer differ substantially in

their molecular features and natural history and can be considered

distinct diseases. Ovarian carcinomas of the serous histological type

are responsible for the majority of deaths from ovarian cancer; they

typically progress to an advanced stage while the tumor is still much

too small to be detected by any presently available screening

method [3]. Discovery of truly tumor-specific molecular markers

may be essential for effective early detection of these tumors.

Recurrent gene fusions are among the most tumor-specific

molecular markers known. Investigations of oncogenic gene

fusions, including BCR-ABL in chronic myelogenous leukemia,

have provided critical insights into pathogenesis and led to

important therapeutic advances [4].

With a few notable exceptions, however, recurrent gene fusions

have rarely been identified in commonly occurring carcinomas,

which often have multiple, complex chromosomal rearrangements

that are difficult to analyze by traditional cytogenetic approaches.

A recurrent gene fusion, TMPRSS2-ERG, with an estimated

prevalence of ,50% in prostate cancer was discovered by a

targeted search for cancer-associated genes with anomalous

expression patterns, in a large database of DNA microarray data

[5]. An ex vivo functional screen of cDNA from a non-small cell

lung carcinoma (NSCLC) led to identification of EML4-ALK as a

recurrent gene fusion in ,5% of NSCLCs [6,7].

Ultra High Throughput Sequencing (UHTS) is a powerful

method for discovery of novel RNA sequences, including cancer-

specific gene fusions. Tumor-specific genomic rearrangements and

fusion transcripts have been discovered in individual tumors by

UHTS (see for example [8–10]), including in high-grade serous

ovarian cancer [11], but none of those reported to date have been

recurrent. For example, a UHTS survey of genomic aberrations in

24 breast cancers found more than 2,000 rearrangements; 29 of

these were predicted to generate in-frame gene fusions, but none

occurred in more than one individual [12]. Similarly, a UHTS

analysis of RNA from 10 melanomas identified 11 gene fusions,
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none of which were recurrent either in the original set or 90

additional cases [10].

We combined deep, paired-end sequencing of tumor RNA with

a statistical bioinformatic approach to search for gene fusions in a

pool of mRNA isolated from 12 primary serous ovarian cancers.

Our analysis identified a novel recurrent gene fusion, ESRRA-

C11orf20, resulting from a chromosomal rearrangement. The

methods we used have important differences from previous

algorithms for identifying gene fusions and novel splice variants

[8–10], mainly in the use of statistical models for fusion discovery,

and may be useful for discovering gene fusions in other cancers.

(Note: since the algorithm used to identify the ESRRA-C11orf20

fusion was built, other algorithms for detecting fusions with RNA-

Seq have been published [11,13] with methods related to but

algorithmically distinct from ours.)

Results

UHTS Analysis of RNA from Serous Ovarian Cancer
Identifies a Candidate Gene Fusion

To search for recurrent or highly expressed fusion transcripts,

we first prepared a cDNA library with an average insert size of

350 bp from a pool of 12 late-stage serous ovarian tumors. Using

Illumina GA II instruments, we determined 30 million pairs of 76-

nucleotide sequences and 80 million pairs of 38-nucleotide

sequences from the ends of these cDNA segments, a total of 111

million purity filtered (PF) reads.

Our RNA sequence analysis pipeline is diagrammed in Figure

S1. We began by identifying paired reads that mapped uniquely to

any two distinct genes (call them genes A and B). However, most

such paired reads are spurious, due to artifactual ligation during

library preparation, sequencing errors, or paralogous sequences.

We constructed a database of the sequences predicted for every

possible exon-exon junction that might result from a fusion

between such pairs of genes A and B in the RefSeq database. We

then searched our sequence data for individual reads that failed to

align to the RefSeq transcript database, but did align uniquely to a

sequence in our database of hypothetical gene fusion exon-exon

junctions (‘‘junction reads’’). To be considered further, we also

required that any such sequence have at least 10 bp aligning to

each side of the hypothetical junction and that its cognate paired-

end read align to one of the corresponding fusion partners in an

orientation consistent with the predicted A-B fusion (diagrammed

in Figure S2). Rather than introduce more stringent filters to

exclude potential artifacts, at the expense of discarding potentially

important results, we used statistical models to estimate the

distribution of falsely identified fusions and assess a false discovery

rate (see Text S1).

A transcript composed of exons from the ESRRA and C11orf20

genes was one of two putative fusion transcripts supported by more

than three junction reads. (The other appeared to be a read-

through transcript and has subsequently been annotated as RefSeq

gene LOC100630923. The full list of candidates is given in Table

S2.) Two distinct splice variants of a hypothetical fusion between

ESRRA and C11orf20, joining exon 2 of ESRRA to either exon 3

or exon 4 of C11orf20 (E2-C3 and E2-C4, Figure 1B), were

represented, E2-C3 with a low estimated false-discovery rate. We

confirmed both of these predicted fusion transcripts by using RT-

PCR to amplify the diagnostic exon junction sequences from pool

RNA, followed by Sanger sequencing (Figure S3).

ESRRA (Estrogen Receptor Related Alpha, also known as

ERR1) encodes a well-studied orphan nuclear receptor related to

the estrogen receptor, and implicated in regulation of energy

metabolism and thermogenesis, its expression level has been

positively correlated with breast cancer progression and angio-

genesis ([14–18]; review in [19]). In ovarian cancer, ESRRA

expression has also been associated with decreased survival [20],

and kaempferol, which inhibits angiogenesis by ovarian cancer cell

lines, acts at least partially by decreasing ESRRA expression [21].

Very recently, the ESRRA locus has been implicated in increased

risk of ovarian cancer [22]. By contrast, C11orf20 is a mostly

uncharacterized gene, though conserved in the mammalian

lineage.

Using single read count data [23], we estimated the expression

level of ESRRA to be roughly 2500th in abundance in our serous

ovarian cancer pool, similar to the abundance, for example, of

ESR1 (ranked ,2700th) and TP53 (ranked ,1700th). Based on a

statistical model for mRNA isoforms in paired-end data [24], we

estimated the relative abundance of the canonical ESRRA

mRNA, the fusion transcript E2-C3, the fusion transcript E2-

C4, and the canonical C11orf20 mRNA as 40:10:1:0, respectively.

The abundance of the fusion transcripts thus appeared to be

comparable to or greater than that of the ESRRA transcript itself,

in one or more tumors harboring the fusion. We found no

evidence for expression of either the reciprocal fusion product or

the predicted full-length C11orf20 transcript.

Recurrence and Alternatively Spliced Variants of ESRRA-
C11orf20

We evaluated the prevalence of the ESRRA-C11orf20 fusion in

a set of 68 patients with serous ovarian cancer, by RT-PCR

followed by Sanger sequencing. Nine of the 42 cases screened at

the FHCRC and 1 of the 25 cases screened at the BCCA were

fusion-positive (exemplary positive RT-PCRs in Figure 1C). This

gives an estimated prevalence of ESRRA-C11orf20 fusion

transcripts in serous ovarian cancer as 10 in 67, or 15% (exact

binomial 95% confidence interval: 7% to 26%). It should be noted

that, in order for a patient sample to be called fusion-positive, we

required that the majority of technical PCR replicates be positive;

some cases showed fusion products but less reproducibly and so

our counts may be subject to false negatives; thus this prevalence

may be an under-estimate.

Author Summary

Serous ovarian cancer, the most common form of ovarian
cancer, is especially lethal because it is usually only
detected at a late stage in its progression, after the cancer
has spread to other tissues. We searched for molecular
markers of this cancer that might provide a better way to
detect tumors at a curable stage and that might provide
targets for new treatments. Chromosomal rearrangements
that fuse two genes to produce a recombinant gene that
enhances growth or spread of the cancer are particularly
specific biomarkers and have been found in many cancers.
By ‘‘deep’’ sequencing of the RNA molecules that carry
genetic information in serous ovarian cancers, we discov-
ered a rearrangement that fuses the same two neighbor-
ing genes in at least 15% of these tumors. The two fused
genes are ESRRA, which encodes a key regulator of gene
expression, and an essentially uncharacterized gene,
C11orf20, that is normally adjacent to the ESRRA gene.
Chromosomal rearrangements that recombine parts of
two nearby genes or even parts of a single gene may be a
common, important feature of the cancer genome that
eludes detection by most approaches to characterizing
cancer genomes.

A Recurrent Gene Fusion in Ovarian Cancer
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Nearly all positive cases expressed one or both of the two

ESRRA-C11orf20 fusion isoforms previously observed in our

tumor pool (E2-C3, E2-C4). One patient expressed exclusively a

third isoform (E2-C5) in which ESRRA exon 2 was spliced to exon

5 of C11orf20 (Patient 3, Figure 1C).

The ESRRA protein consists of an N-terminal regulatory

domain (NTD), a DNA binding domain (DBD) comprising two

zinc-fingers, and a putative ligand-binding domain (LBD) [19].

The fusion transcripts all encode the NTD and the first zinc-finger

of the DBD, but lack both the second zinc-finger and the LBD.

Two of the three fusion transcripts preserve reading frame across

the junction (E2-C3 and E2-C5); both share sequences encoding

the 35 C-terminal amino acids of the predicted C11orf20 protein,

including a basic potential nuclear-localization signal (Figure 1D).

The E2-C4 junction introduces a frameshift, resulting in a

nonsense codon shortly after the junction (Figure 1B). All fusion-

positive tumors we have identified expressed at least one of the in-

frame isoforms.

Genomic Rearrangement in the C11orf20-ESRRA Locus
In principle, the ESRRA-C11orf20 fusion transcripts could

have resulted from: (1) an acquired or germline rearrangement of

the C11orf20-ESRRA region of Chromosome 11 deviating from

that in reported human reference genomes or reported variants (to

our knowledge, no germline structural variant rearranging

ESRRA and C11orf20’s relative positions has been reported,

including in the 1000 genomes project.), or (2) trans-splicing of

ESRRA and C11orf20 transcripts from an unrearranged locus. To

discriminate these possibilities, we used a hybridization-selection

and UHTS strategy to deeply sequence the C11orf20-ESRRA

genomic region in two tumors that were positive for the fusion

transcripts E2-C3 and E2-C4. A matched normal PBMC sample

chromosome 11q13.1
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Figure 1. Fusion transcripts identified in serous ovarian cancers. (A) C11orf20 is an ORF transcribed from a region whose 59 end is less than
1 kb upstream of ESRRA’s transcriptional start in the wild-type genomic organization of 11q13.1. (B) Three isoforms of a fusion transcript, ESRRA-
C11orf20, inconsistent with a wild-type genomic organization and canonical transcription have been detected by our sequence analysis of RNA from
serous ovarian cancer cases. Each fusion isoform joins ESRRA exon 2 to a distinct exon of C11orf20. E2-C3 and E2-C5 are in frame events; E2-C4 is out
of frame and has been detected in combination with E2-C3. (C) Representative RT-PCR reactions demonstrating the presence of the fusion in 5
individual cases. Patient 1–4 were from FHCRC and Patient 5 was from BCCA. Fusions were confirmed by Sanger sequencing; the specific fusion
variants seen are detailed in Table S1. (D) All fusions are predicted to contain the N-terminal 108 amino acids of ESRRA, including the DNA-binding
zinc finger and P-Box, and conserved phosphorylation and sumoylation sites (Ser 19, Lys 14, respectively); in-frame fusions all contain the C-terminal
portion of C11orf20 with a basic putative nuclear-localization signal.
doi:10.1371/journal.pbio.1001156.g001
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was available for one tumor. We note in passing that all analyses

presented here used original genomic DNA for library generation;

initial attempts using phi29-amplified DNA gave apparently

unreliable results.

Paired-end sequencing libraries were prepared from the three

samples (a tumor/normal matched pair and one tumor lacking a

matched normal). A 166 kb bacterial artificial chromosome (BAC)

was used to enrich for reads in the ESRRA locus. The resulting

enriched libraries were each sequenced in one lane of an Illumina

GA IIx flowcell at an average sequencing depth of 8 million

mapped 80 bp PE reads. The sequenced libraries all showed

significant inhomogeneity in sequencing depth across the targeted

interval (see Text S1); however, the inhomogeneous coverage was

consistent between samples, allowing us to model copy number

variation in the sequenced tumors by comparison to the normal

PBMC sample.

Our genomic analysis strategy is summarized as follows and

detailed in Text S1. Paired ends uniquely mapping to a 20 kb

radius of ESRRA, whose joint chromosomal coordinates and

orientations inconsistent with the reference genome were flagged.

In Tumor 1, a statistically significant ‘‘pile’’ of PE reads predicted

that ESRRA intron 2 had been rearranged upstream of C11orf20

exon 3. This hypothesis was tested using PCR to amplify the

predicted rearrangement (PCR1, Figure 2A) and a computational

method described below, both of which confirmed the expected

breakpoint (sequence in Text S1).

Because the breakpoint in Tumor 1 is flanked by a SINE repeat

both upstream in ESRRA and downstream in C11orf20, we

performed additional PCRs using primers external to those in the

first PCR, in parallel, on Tumor 1 DNA and negative control

normal DNA, to rule out an in vitro PCR artifact. Each of these

(PCR2, PCR3) produced a tumor-specific band of expected size,

and the sequenced products showed the identical breakpoint.

In parallel with PCR confirmation, an unbiased computational

approach using the de novo assembly program Velvet [25,26] was

used as a discovery tool (‘‘orphan-end assembly’’). Briefly, for each

200 bp window in the reference genome, all PE reads where one

side aligned the reference in this window and the other side failed

an alignment to the reference were flagged. The reads failing

alignment were assembled using Velvet, and screened to

determine if they supported a rearrangement placing ESRRA

upstream of C11orf20. The breakpoint sequence discovered with

PCR was also found using this computational method, and no

other breakpoint providing a parsimonious explanation for an

ESRRA-C11orf20 fusion was discovered in Tumor 1 or the other

tumor (see Text S1). Furthermore, while Illumina library reads

from Tumor 1 tiled the breakpoint, no Illumina sequence reads

from any other library aligned to it.

Finally, copy number analysis of Tumor 1 (Figure 2B) shows a

relative copy number increase precisely in the region between the

reference coordinates defining the breakpoint (and nowhere else in

the targeted region, analysis not shown). The simplest model to

account for the junctional sequence and copy number data for

Tumor 1 is that a tandem duplication of an interval between

C11orf20 and ESRRA is present in one of two diploid copies of

chromosome 1, as depicted in Figure 2A. Thus, sequence analysis

provides strong evidence that the ESRRA-C11orf20 fusions in

Tumor 1 are transcriptional products of a genomic rearrangement

that positions ESRRA upstream of C11orf20 (rather than trans-

splicing).

Tumor 2 shows significant copy number variation in the

C11orf20 and ESRRA locus (Figure 2B), as well as a large degree

of copy number variation throughout the region enriched by the

BAC (analysis not shown). Although this is evidence for a genomic

rearrangement in Tumor 2 in the critical region, we have not been

able to pinpoint a breakpoint sequence with UHTS analysis for

anomalously mapping read-pairs and orphan-end assembly, nor

by long-range genomic PCR. Several types of rearrangements

might not be detected by our short-read detection approach: for

example, a complex rearrangement including ectopic sequence

that does not hybridize to the BAC or a rearrangement within a

region of ESRRA and C11orf20 that cannot be uniquely assigned

to either gene. A substantial fraction of this region falls in a ‘‘blind

spot’’ of this method: 10% of 80-mers in ESRRA (1,008 of 10,078)

and 7% in C11orf20 (378 of 4,962) have more than 10 matches to

the human genome (hg19 build).

Discussion

We used UHTS analysis of RNA from a pool of tumor samples

in a deliberate search for a recurrent gene fusion in serous ovarian

cancer, a deadly cancer for which there is currently no early-

detection screen and in which no recurrent gene fusions had been

identified. Systematic analysis of the sequence data revealed novel

fusion transcripts combining 59 exons from ESRRA, a gene

encoding a transcription factor of the nuclear hormone receptor

family, and 39 exons from C11orf20, an uncharacterized but

phylogenetically conserved gene immediately upstream of ESRRA

on Chromosome 11. In an RT-PCR/Sanger sequencing survey of

serous ovarian cancers at two different institutions, we confirmed

ESRRA-C11orf20 fusion transcripts in 10 of the 67 tumors, or

15% (95% confidence interval: 7% to 26%), suggesting that this

fusion is present in a significant fraction of serous ovarian cancers.

To test the hypothesis that the ESRRA-C11orf20 fusion was the

result of a genomic rearrangement, we combined hybridization

selection of the C11orf20-ESRRA genomic region of Chromo-

some 11 with UHTS to analyze the structure of this interval in two

tumors. The results provide strong evidence that a fusion

transcript arose from a genomic rearrangement of the C11orf20-

ESRRA region of Chromosome 11 in one tumor and copy-

number variation evidence of rearrangement in the second tumor.

The ESSRA-C11orf20 fusion is, to our knowledge, the first

recurrent gene fusion to be identified in serous ovarian cancer.

This fusion gene and its components are now high-priority targets

for further investigation of their potential roles in pathogenesis and

as potential diagnostic or therapeutic targets. Our findings cast a

spotlight on ESRRA as a candidate oncogene in serous ovarian

cancer. ESRRA has been most studied in the context of breast

cancer: it is a negative prognostic marker in ER(–) tumors [14,15],

and it induces VEGF mRNA expression and contributes to the

malignant phenotype of a breast cancer cell line [16,17]. It has

been less studied in ovarian cancer, but has recently been

associated with increased risk of ovarian cancer [22] and

decreased patient survival [20].

Two of the three fusion isoforms we observed, E2-C3 and E2-

C5, are in-frame and predicted to encode fusion proteins that

contain the N-terminal portion of the ESRRA protein and the C-

terminal portion of the predicted C11orf20 protein. Although one

of the two zinc-finger domains and the putative ligand-binding

domain of ESRRA are absent from the predicted fusion protein,

important functional features of ESRRA are retained, including

the first zinc-finger domain, critical for the DNA sequence

specificity of ESRRA, as well as a phosphorylation site (Ser 19)

and a phosphorylation-dependent sumoylation site (Lys 14) that

have been shown to regulate transcriptional activation by ESRRA

[19]. C11orf20 is a largely uncharacterized gene, with expression

reportedly restricted to testis in mouse (RIKEN cDNA

1700019N12; [27]) and human (http://biogps.gnf.org). The

A Recurrent Gene Fusion in Ovarian Cancer
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predicted protein product of C11orf20 is conserved in mammals

but uncharacterized; it lacks any known functional domains and

has no apparent homology to any protein of known function.

Although any functional role for the ESSRA-C11orf20 fusion

remains to be established, fusions to other nuclear hormone

receptor transcription factors have been found in other cancers,

including PAX8–PPARG in follicular thyroid tumors [28],

EWSR1-NR4A3 in extraskeletal myxoid chondrosarcomas [29],

and PML-RARA in acute promyelocytic leukemia [30]. In those

fusions the nuclear receptor portion comprises the C-terminal

component of the fusion protein and contains the entire DNA-

binding and ligand-binding domains, whereas in the fusions

reported here, the ESRRA component is N-terminal and contains

only the first half of the DNA-binding domain (P-box zinc finger).

Single zinc fingers, however, can mediate DNA-binding, for

example in GATA-1 and SUPERMAN; in these known examples,

Figure 2. Genomic rearrangements in patient samples. Data for genomic structures of tumors analyzed with respect to the reference human
genome, build hg19. C11orf20 and ESRRA regions are color-coded and exons numbered. KCNK4 is the gene immediately upstream of C11orf20 and
PRDX5 is the gene immediately downstream of ESRRA. (A) Model for Tumor 1 DNA rearrangement. Brackets indicate a genomic interval (coordinates
ch11:64,070,517-64,079,032) from upstream of C11orf20 exon 3 to downstream of ESRRA exon 2, tandemly duplicated in the tumor (model shown
above the reference). The transcripts (E2-C3 and E2-C4) expressed by the tumor are pictured above the rearrangement model, as are the extents of
three PCR products spanning the breakpoint (PCR1, PCR2, PCR3). (B) Copy number plots for two tumors. The point estimate for copy number (as a
dot) and 95% confidence interval (as error bars) are shown for each sequence interval (bin) with reliable counts. These were computed by grouping
single aligned reads into 100 bp bins after removing potential PCR duplicates and comparing to the corresponding bin from the normal PBMC
sample. For Tumor 1, copy number estimate interior to breakpoints is approximately 1.56 the copy number exterior to breakpoints, consistent with
the model in (A), where one of two diploid chromosomes has a tandem duplication. For Tumor 2, inspection of the 95% error bars indicates that
Tumor 2 exhibits statistically significant copy number variation within ESRRA intron 2, as well as at additional points.
doi:10.1371/journal.pbio.1001156.g002

A Recurrent Gene Fusion in Ovarian Cancer

PLoS Biology | www.plosbiology.org 5 September 2011 | Volume 9 | Issue 9 | e1001156



adjacent basic regions are also required [31,32]. It is therefore

noteworthy that the in-frame fusions we identified join the

ESRRA P-box zing finger to a basic sequence in the C11orf20

C-terminus (Figure 1).

We have presented evidence that a tumor-specific ESRRA-

C11orf20 fusion transcript is present in a substantial fraction of

serous ovarian cancers and that in one of two profiled tumors,

Tumor 1, a genomic rearrangement that can account for the

fusion transcript is present in a majority of tumor cells. Copy

number variation at the ESRRA locus also suggests a structural

rearrangement in Tumor 2. Although it remains possible that the

ESRRA-C11orf20 fusion is an incidental consequence of another,

functionally important, genetic event or that it is merely a

‘‘passenger,’’ the apparent frequency with which this rearrange-

ment occurs in serous ovarian cancer and the lack of evidence that

it accompanies large-scale structural variation (such as gene

amplification) are more suggestive of a direct role.

Several characteristics of the ESRRA-C11orf20 rearrangement

reinforce themes emerging from high-resolution studies of both

normal human genetic variation [33,34] and cancer-specific

genomic alterations. Indeed, although none were found to be

recurrent, 4 of the 11 gene fusions identified in a previous UHTS

survey of RNA from a series of melanomas were strikingly similar

to the ESRRA-C11orf20 fusion; adjacent genes in the same

transcriptional orientation were rearranged to yield a fusion

transcript in which the order of the two participating genes was

reversed [10]. In a second study, using UHTS to profile genomic

rearrangements in 24 breast cancers, the overwhelming majority

of rearrangements identified were intrachromosomal; more than

90% of these involved breakpoints separated by 2 Mb or less [12].

These rearrangements, like the ESRRA-C11orf20 rearrangement

described here, are consistent with a model in which double-strand

breaks are preferentially repaired by joining sequences in physical

proximity [35–37]. Most such fine-scale genomic rearrangements,

including the ESRRA-C11orf20 rearrangement, cannot be

detected by traditional cytogenetic methods, nor, unless they lead

to extensive copy-number alterations, by array CGH. ‘‘Exome

sequencing’’ will generally fail to detect any chromosomal

rearrangement, except for the rare cases in which a breakpoint

falls within an exon. A very recent large integrated genomics

survey indeed found that high-grade serous ovarian carcinoma is

characterized by a higher degree of somatic copy-number

alterations and lower degree of somatic point mutations than the

previously surveyed cancer glioblastoma [38]; however, the

methods employed were unlikely to (and did not) identify the

rearrangement presented here. We were able to detect the

ESRRA-C11orf20 fusion, based on UHTS analysis of either

RNA or genomic DNA, only by conducting a deliberate focused

search for evidence of structural rearrangements. We suggest that

chromosomal rearrangements involving nearby or adjacent genes

may comprise a substantial fraction of oncogenic mutations that

have heretofore escaped detection.

Materials and Methods

Specimen Collection
Ovarian cancer samples and matched controls were collected

following procedures approved by the IRB at each institution:

from the Pacific Ovarian Cancer Research Consortium (POCRC)

and Fred Hutchinson Cancer Research Center (FHCRC), and

from the British Columbia Cancer Agency (BCCA) Tumour

Tissue Repository, Victoria, BC, a member of the Canadian

Tumour Repository Network. Samples were (1) collected at initial

debulking surgery using standardized protocols and (2) reviewed

by a gynecological research pathologist to confirm the histological

characteristics of the tissue; all tumor samples used in this article

contained at least 70% malignant epithelium. Clinical data for

RT-PCR screened samples are shown in Table S1.

RNA-SEQ Library Preparation
RNA was pooled from 12 high grade serous stage III/IV

carcinoma of the ovary samples together with doping control RNA

(see Text S1). 10 micrograms total RNA was diluted with water to

50 microliters, heated to 70 uC for 5 min, and purified with

DYNAL DynaBeads Oligo (dT)25 (Invitrogen, Carlsbad, CA,

USA) per manufacturer protocol. RNA was fragmented to an

average size of 350 bp by alkaline hydrolysis: RNA was added to

preheated fragmentation buffer (50 mM sodium carbonate/

bicarbonate, 1 mM EDTA, pH 9.2) and incubated at 95 uC for

6 min, then neutralized with 1/10 volume of 3 M sodium acetate

pH 5.2, and precipitated with 3 volumes ice-cold EtOH. The

pellet was washed with 75% EtOH, dried, and resuspended in

water.

First and second strand cDNA synthesis, end repair, 39-dA tail

addition, and paired-end adaptor ligation were performed using

standard protocols and reagents from the PAIRED-END Sample

Prep Kit (part # 1001809, Illumina, San Diego, CA, USA). cDNA

products were resolved by electrophoresis in 2% low-melting

agarose gels, one sample per gel. The gels were stained with SYBR

Gold (Invitrogen) and visualized on a blue light table (Dark

Reader, Clare Chemical Research, Dolores, CO). The desired

band was excised with sterile scalpels and purified with a

QIAquick Gel Extraction kit with the modifications described in

[39] to minimize GC-bias. Each sample was amplified with

Phusion DNA Polymerase and Illumina primers PE 1.0 and PE

2.0 for 15 cycles, then purified with a QIAquick PCR purification

kit per Illumina library preparation protocol.

The concentration of each sample was determined using an

Agilent Bioanalyzer. Samples were then diluted to a concentration

of 10 pM as specified by Illumina protocols. The sample derived

from pooled tumor RNA was subjected to 76-base, paired-end

sequencing in two lanes of an Illumina Genome Analyzer II and,

in a separate run, 7 lanes of 38-base paired-end sequencing.

Sequencing runs all used the Illumina Sequencing Kit v3-36

reagents. Sequencing data from this study are available on the

SRA through dbGaP.

Selection of Fusion Candidates from Paired End Reads
As seen in Figure S1, reads from two 76-base, paired-end lanes

and seven 38-base, paired-end lanes were passed through the

Illumina PF filter and aligned using Bowtie [40] to the hg19

RefSeq transcriptome as paired-end reads. Those paired ends that

successfully aligned were put aside as they do not represent novel

fusion events. The paired-end sequences that failed this alignment

were then subjected to alignments of each end separately with a

more stringent requirement for unique alignment within the

RefSeq transcriptome. Paired reads, of which side 1 mapped

uniquely to a RefSeq annotated gene (gene A) and side 2 mapped

uniquely to a different RefSeq annotated gene (gene B), were taken

as indirect evidence of a fusion between gene A and gene B. A

FASTA file of all exon-exon junctions between gene A and gene B

was generated; reads that failed to align to the reference

transcriptome were aligned to this FASTA file of exon-exon

junctions. 76-mer reads that aligned to a junction between genes A

and B, including at least 10 bp overlap on each side of the

junction, and whose mate mapped to either gene A or gene B,

were subjected to further analysis.
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RT-PCR Validation and Screening
cDNA was prepared with SuperScript III First-Strand Synthesis

kit, PCR amplifications were performed with Platinum Taq DNA

Polymerase, and products were cloned with TOPO TA Cloning

kits, all from Invitrogen (Carlsbad, CA, USA).

For initial RT-PCR validation in the RNA pool, we used primers

G1P1-FWD = 59-GGCATTGAGCCTCTCTACATCA-39 (ESRRA

exon 2) and G2P1-REV = 59-TCGATGTATCGCTGCAGCT-

CCTTA-39 (C11orf20 exon 5). PCR was run for 40 cycles; each cycle

was 94uC 15 s, 55uC 30 s, 70uC 60 s.

For screening of fusion transcript prevalence, we used a nested RT-

PCR for increased specificity. For each sample, we performed up to 6

technical replicates, and only considered positive if a majority of

replicates gave a fusion product. The outer primers were G1P1-

FWD = 59-GGCATTGAGCCTCTCTACATCA-39 (ESRRA)

and REV_pair3 = 59-GGGTCAGGCTTGGGTCTG-39 (C11orf-

20); the inner primers were G1P2-FWD = 59-AAAGGGTT-

CCTCGGAGACAGAGA-39 (ESRRA) and F1-REV = 59-

TAATTCACGTACAGCCTCTTGCTCCG-39 (C11orf20). The

outer PCR was run for 20 cycles, then diluted 1/200 into inner

PCR mix, and run for 30 cycles; each cycle was 94uC 15 s, 55uC 30 s,

72uC 60 s.

Hybrid-Selection and UHTS of Genomic DNA:
Tissue samples were obtained from two FHCRC patients whose

tumor samples expressed the ESRRA-C11ORF20 fusion tran-

script (one tumor lacked a matched normal). The samples were

processed using TRIZOL (Invitrogen) to extract RNA and

genomic DNA.

The DNA samples were sheared to an intended size of 400 bp

in Covaris sample tubes (part # 500111; Covaris, Inc., Woburn,

MA, USA) in a Covaris S2 controlled by SonoLab software, using

settings of 10% duty cycle, intensity 4, 200 cycles per burst, for two

30-s periods.

We generally followed the Illumina protocol for hybridization

enrichment libraries, using Herculase II Fusion Enzyme (Agilent,

Santa Clara, CA, USA) for PCR amplification. Samples were

purified between steps using Agencourt AMPure SPRI XP beads

(Beckman Coulter, Brea, CA, USA).

Hybrid-selection of the Illumina genomic libraries was based on

[41–43]. A fully sequenced BAC, RP11-783K16 (GenBank #
AP001453) encompassing the C11orf20-ESRRA region, was

obtained from BACPAC Resource Center (Oakland, CA). BAC

DNA was biotinylated using a nick-translation kit (Roche Applied

Science, Indianapolis, IN). Illumina library (0.8 micrograms) was

hybridized at 65 uC for .24 h to biotinylated BAC DNA (0.2

micrograms) in a solution containing: Cot-1 DNA (4 micrograms),

sheared E. coli DNA (1 microgram), sheared vector DNA (0.5

micrograms), four adaptor-blocking oligos ([43]; 600 pmoles each),

in 56 SSPE, 5 mM EDTA, 56 Denhardt’s, 0.1% SDS (total

volume 24 microliters). The genomic library DNA that hybridized

to the BAC probe was captured on streptavidin-magnetic beads

(Dynal MyOne, Invitrogen), which were then washed and eluted

with 0.1 M NaOH. The eluate was precipitated and resuspended

in 60 microliters of water. 20 microliters of the resulting solution of

hybridization-selected genomic library DNA was amplified with

Illumina PCR primers for 18 cycles (within the exponential

amplification range), yielding ,1 microgram of product. Each

hybridization-selected genomic DNA library was sequenced on a

separate lane of an Illumina GAIIx flow cell.

Genomic Sequence Analysis
We identified read-pairs in the selected region where the

distance between the paired sequences in the reference genome

was greater than 1 kb—inconsistent with library insert sizes (which

were ,0.8 kb). The C11ORF20-ESRRA genomic region was

divided into bins. The counts of anomalous read-pairs were

compiled in a 2-dimensional histogram where each axis repre-

sented the genomic coordinate (bin) of one end of the read-pair,

with read 1 aligning in the (+) orientation and read2 aligning in the

(2) orientation. This was done for each sample, both tumors and

normals. Pile-ups were nominated for further consideration at a

given false discovery rate using a Poisson model for PE reads that

takes into account position-specific bias. This model and

subsequent analysis is detailed in Text S1.

The following computational approach was implemented to

discover highly represented sequences inconsistent with the

reference. A 20 kb radius around the transcriptional start of

ESRRA was discretized into 200 bp bins. For each bin, reads

where one read aligned to the plus strand and the other read failed

to align to the human genome hg19 build were flagged, and the

unaligned reads were consolidated and input to the de novo

assembler Velvet. The same procedure was followed for reads

where one read aligned to the minus strand. Velvet outputs

contigs: putative sequences assembled from input reads. These

contigs were subjected to further analysis by computationally

fragmenting each contig to tiling 80-mers and aligning these 80-

mers to the genome. In order to narrow our search to tumor-

specific rearrangements, only contigs with portions that failed to

align to the reference genome were scrutinized. Contigs which had

sample-specific representation in the sequencing data (i.e., present

in one tumor, and none of the remaining samples, or present in the

normal sample of one individual and none of the remaining

samples) were further scrutinized. The only such sequence with the

potential to directly explain a genomic configuration capable of

generating the fusion transcript was found in Tumor 1 and

confirmed by PCR (see Text S1). Sequencing data from this study

are available on the SRA through dbGaP.

Supporting Information

Figure S1 Detailed analysis pipeline for detection of fusion

transcripts in paired-end sequences from tumor RNA. The

pipeline for analysis of sequences from tumor RNA is schematized

with files in blue and Postgres tables in red. We start by aligning

paired-end reads to RefSeq using Bowtie, retaining reads which

failed to align (leftovers) in table read1 leftovers and read2

leftovers. The leftovers are re-aligned separately to RefSeq using

Bowtie with m = 1 (unique) and alignments retained as r1seq and

r2seq Postgres tables. We identify mate pairs in these alignments

where one gene (A) differs from the paired mate (B). We then

created a database of all A-B, B-A, A-A, and B-B junctions. We

created junctions using all the exons in each gene A and B from

the mate pair A-B as well as the exons within A and the exons

within B. All long (76 bp) purity filtered (PF) reads were then

aligned to the junction database, and successful alignments were

tracked by Postgres tables. We performed queries to select reads

with a transcriptome alignment as one half of a mate pair, and a

junction read-through on the other mate, resulting in a table of

fusion candidates.

(EPS)

Figure S2 Null hypothesis (fusions explained by homology)

versus alternative hypothesis (potentially real fusion). (A) Orienta-

tion of alignments of Paired End (PE) reads from potentially real

fusions at exon-exon boundaries. (B) Orientation of alignments of

PE reads from putative fusions arising from homology between

gene 1 and gene 2 at exon-exon boundaries. An intra-gene read

that matches to a fusion junction due to sequence homology (2nd
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step) can be interpreted as evidence for a fusion, but has a polarity

inconsistent with the gene order in the fusion.

(EPS)

Figure S3 RT-PCR fusion products seen in the Ovarian Cancer

12 patient pool. Lanes 1 and 2 are beta-Actin controls, expected

353 bp product. Lane 3 is a negative beta-Actin control. Lanes 4

through 7 are fusion products. Lanes 4 and 6 RT used gene

specific primers G2P1-REV and G2P2-REV. Lanes 5 and 7 RT

used oligo(dT) primer. Lanes 4 and 5 PCR primers are G1P1-

FWD and G2P1-REV ‘‘pair-1.’’ Lanes 6 and 7 PCR primers are

G1P2-FWD and G2P2-REV ‘‘pair-2.’’ Lane 8 is a negative H2O

control. Lanes 9 and 10 are ladder: 100 bp, 250 bp, 400 bp,

800 bp, and 1,500 bp. Primer sequences and predicted product

sizes are given in Text S1.

(TIFF)

Table S1 Clinical samples. Clinical details (age, stage, grade,

histology, and chemotherapy) are shown for (1) the 42 patients

from FHCRC and (2) the 25 patients from BCCA. Fusion-positive

cases are indicated by shading and the isoforms identified are

given in the column ‘‘Observed Fusion Isoforms.’’

(XLS)

Table S2 Potential fusion candidates. The fusion candidates

derived from our RNA pipeline are listed, sorted by the first

column ‘‘Count,’’ which sums all the junctional reads involving a

given pair of genes. For each gene pair, the precise exons fused are

listed; when more than one distinct exon-exon junction was

identified, all are listed. In some cases of short exons, reads

matched to consecutive exons in a gene: for example ‘‘CO-

L1A1.exon10,11:COL1A2.exon1’’ indicates a match involving

both exon 10 and 11 of COL1A1 as the 59 side of the fusion. The

ESRRA-C11orf20 fusion studied in detail in this report has rank 2

in the list, with five junctional counts; four correspond to the E2-

C3 isoform and one to the E2-C4 isoform.

(XLS)

Text S1 Supporting text.

(DOC)

Acknowledgments

We thank John Coller, Ji Xuhuai, and Mike Collier (Stanford Functional

Genetics Facility) for help with Illumina sequencing; the POCRC for

providing samples used in this study; Kathy O’Briant (FHCRC, POCRC)

for coordination of patient samples and clinical data; members of the

Brown lab: Jamie Bates, Robert Pesich, and Mari Olsen for technical

assistance; Greg Hogan, Dan Riordan, and Jason Casolari for advice and

discussion; Raymond Chen for critical reading of the manuscript; and Don

Listwin (the Canary Foundation) for continuing support and encourage-

ment.

Author Contributions

The author(s) have made the following declarations about their

contributions: Conceived and designed the experiments: JS RJM PLW

POB. Performed the experiments: JS RJM PLW AEG JSN. Analyzed the

data: JS RJM PLW POB. Contributed reagents/materials/analysis tools:

JS RJM PLW AEG JSN BHN CWD POB. Wrote the paper: JS RJM PLW

POB.

References

1. Garcia M, Jemal A, Ward EM, Center MM, Hao Y, et al. (2007) Global cancer

facts & figures 2007. In: Society AC, ed. Atlanta: American Cancer Society.

2. Kosary C (2007) Cancer of the ovary. In: Ries LAG, Young JL, Keel GE,

Eisner MP, Lin YD, et al. (2007) SEER survival monograph: cancer survival

among adults: US SEER Program, 1988-2001, patient and tumor character-

istics. Bethesda (Maryland): National Cancer Institute, SEER Program.

3. Brown PO, Palmer C (2009) The preclinical natural history of serous ovarian

cancer: defining the target for early detection. PLoS Med 6: e1000114.

doi:10.1371/journal.pmed.1000114.

4. Druker BJ, Talpaz M, Resta DJ, Peng B, Buchdunger E, et al. (2001) Efficacy

and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic

myeloid leukemia. N Engl J Med 344: 1031–1037.

5. Tomlins SA, Rhodes DR, Perner S, Dhanasekaran SM, Mehra R, et al. (2005)

Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate

cancer. Science 310: 644–648.

6. Rikova K, Guo A, Zeng Q, Possemato A, Yu J, et al. (2007) Global survey of

phosphotyrosine signaling identifies oncogenic kinases in lung cancer. Cell 131:

1190–1203.

7. Soda M, Choi YL, Enomoto M, Takada S, Yamashita Y, et al. (2007)

Identification of the transforming EML4-ALK fusion gene in non-small-cell lung

cancer. Nature 448: 561–566.

8. Maher CA, Kumar-Sinha C, Cao X, Kalyana-Sundaram S, Han B, et al. (2009)

Transcriptome sequencing to detect gene fusions in cancer. Nature 458: 97–101.

9. Maher CA, Palanisamy N, Brenner JC, Cao X, Kalyana-Sundaram S, et al.

(2009) Chimeric transcript discovery by paired-end transcriptome sequencing.

Proc Natl Acad Sci U S A 106: 12353–12358.

10. Berger MF, Levin JZ, Vijayendran K, Sivachenko A, Adiconis X, et al. (2010)

Integrative analysis of the melanoma transcriptome. Genome Res 20: 413–427.

11. McPherson A, Hormozdiari F, Zayed A, Giuliany R, Ha G, et al. (2011) deFuse:

an algorithm for gene fusion discovery in tumor RNA-seq data. PLoS Comput

Biol 7: e1001138. doi:10.1371/journal.pcbi.1001138.

12. Stephens PJ, McBride DJ, Lin ML, Varela I, Pleasance ED, et al. (2009)

Complex landscapes of somatic rearrangement in human breast cancer

genomes. Nature 462: 1005–1010.

13. Sboner A, Habegger L, Pflueger D, Terry S, Chen DZ, et al. (2010) FusionSeq:

a modular framework for finding gene fusions by analyzing paired-end RNA-

sequencing data. Genome Biol 11: R104.

14. Ariazi EA, Clark GM, Mertz JE (2002) Estrogen-related receptor alpha and

estrogen-related receptor gamma associate with unfavorable and favorable

biomarkers, respectively, in human breast cancer. Cancer Res 62: 6510–6518.

15. Riggins RB, Mazzotta MM, Maniya OZ, Clarke R (2010) Orphan nuclear

receptors in breast cancer pathogenesis and therapeutic response. Endocr Relat

Cancer 17: R213–R231.

16. Stein RA, Chang CY, Kazmin DA, Way J, Schroeder T, et al. (2008) Estrogen-

related receptor alpha is critical for the growth of estrogen receptor-negative

breast cancer. Cancer Res 68: 8805–8812.

17. Stein RA, Gaillard S, McDonnell DP (2009) Estrogen-related receptor alpha

induces the expression of vascular endothelial growth factor in breast cancer

cells. J Steroid Biochem Mol Biol 114: 106–112.

18. Villena JA, Hock MB, Chang WY, Barcas JE, Giguere V, et al. (2007) Orphan

nuclear receptor estrogen-related receptor alpha is essential for adaptive

thermogenesis. Proc Natl Acad Sci U S A 104: 1418–1423.

19. Tremblay AM, Giguere V (2007) The NR3B subgroup: an ovERRview. Nucl

Recept Signal 5: e009.

20. Sun P, Sehouli J, Denkert C, Mustea A, Konsgen D, et al. (2005) Expression of

estrogen receptor-related receptors, a subfamily of orphan nuclear receptors, as

new tumor biomarkers in ovarian cancer cells. J Mol Med 83: 457–467.

21. Luo H, Rankin GO, Liu L, Daddysman MK, Jiang BH, et al. (2009)

Kaempferol inhibits angiogenesis and VEGF expression through both HIF

dependent and independent pathways in human ovarian cancer cells. Nutr

Cancer 61: 554–563.

22. Permuth-Wey J, Chen YA, Tsai YY, Chen Z, Qu X, et al. (2011) Inherited

variants in mitochondrial biogenesis genes may influence epithelial ovarian

cancer risk. Cancer Epidemiol Biomarkers Prev 20: 1131–1145.

23. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and

quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5: 621–628.

24. Salzman J, Jiang H, Wong WH (2011) Statistical modeling of RNA-Seq data.

Statistical Science 26: 62–83.

25. Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short read assembly

using de Bruijn graphs. Genome Res 18: 821–829.

26. Zerbino DR, McEwen GK, Margulies EH, Birney E (2009) Pebble and rock

band: heuristic resolution of repeats and scaffolding in the velvet short-read de

novo assembler. PLoS One 4: e8407. doi:10.1371/journal.pone.0008407.

27. Kogo H, Kowa-Sugiyama H, Yamada K, Bolor H, Tsutsumi M, et al. (2010)

Screening of genes involved in chromosome segregation during meiosis I: toward

the identification of genes responsible for infertility in humans. J Hum Genet 55:

293–299.

28. Kroll TG, Sarraf P, Pecciarini L, Chen CJ, Mueller E, et al. (2000) PAX8-

PPARgamma1 fusion oncogene in human thyroid carcinoma [corrected].

Science 289: 1357–1360.

29. Clark J, Benjamin H, Gill S, Sidhar S, Goodwin G, et al. (1996) Fusion of the

EWS gene to CHN, a member of the steroid/thyroid receptor gene superfamily,

in a human myxoid chondrosarcoma. Oncogene 12: 229–235.

30. Zelent A, Guidez F, Melnick A, Waxman S, Licht JD (2001) Translocations of

the RARalpha gene in acute promyelocytic leukemia. Oncogene 20: 7186–

7203.

A Recurrent Gene Fusion in Ovarian Cancer

PLoS Biology | www.plosbiology.org 8 September 2011 | Volume 9 | Issue 9 | e1001156



31. Dathan N, Zaccaro L, Esposito S, Isernia C, Omichinski JG, et al. (2002) The

Arabidopsis SUPERMAN protein is able to specifically bind DNA through its
single Cys2-His2 zinc finger motif. Nucleic Acids Res 30: 4945–4951.

32. Omichinski JG, Clore GM, Schaad O, Felsenfeld G, Trainor C, et al. (1993)

NMR structure of a specific DNA complex of Zn-containing DNA binding
domain of GATA-1. Science 261: 438–446.

33. Itsara A, Wu H, Smith JD, Nickerson DA, Romieu I, et al. (2010) De novo rates
and selection of large copy number variation. Genome Res 20: 1469–1481.

34. Pang AW, MacDonald JR, Pinto D, Wei J, Rafiq MA, et al. (2010) Towards a

comprehensive structural variation map of an individual human genome.
Genome Biol 11: R52.

35. Ferguson DO, Sekiguchi JM, Chang S, Frank KM, Gao Y, et al. (2000) The
nonhomologous end-joining pathway of DNA repair is required for genomic

stability and the suppression of translocations. Proc Natl Acad Sci U S A 97:
6630–6633.

36. Pace JK, 2nd, Sen SK, Batzer MA, Feschotte C (2009) Repair-mediated

duplication by capture of proximal chromosomal DNA has shaped vertebrate
genome evolution. PLoS Genet 5: e1000469. doi:10.1371/journal.pgen.

1000469.

37. Soutoglou E, Dorn JF, Sengupta K, Jasin M, Nussenzweig A, et al. (2007)

Positional stability of single double-strand breaks in mammalian cells. Nat Cell
Biol 9: 675–682.

38. The Cancer Genome Atlas Research Network (2011) Integrated genomic

analyses of ovarian carcinoma. Nature 474: 609–615.
39. Quail MA, Kozarewa I, Smith F, Scally A, Stephens PJ, et al. (2008) A large

genome center’s improvements to the Illumina sequencing system. Nat Methods
5: 1005–1010.

40. Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-

efficient alignment of short DNA sequences to the human genome. Genome Biol
10: R25.

41. Bashiardes S, Veile R, Helms C, Mardis ER, Bowcock AM, et al. (2005) Direct
genomic selection. Nat Methods 2: 63–69.

42. Gnirke A, Melnikov A, Maguire J, Rogov P, LeProust EM, et al. (2009) Solution
hybrid selection with ultra-long oligonucleotides for massively parallel targeted

sequencing. Nat Biotechnol 27: 182–189.

43. Hodges E, Rooks M, Xuan Z, Bhattacharjee A, Benjamin Gordon D, et al.
(2009) Hybrid selection of discrete genomic intervals on custom-designed

microarrays for massively parallel sequencing. Nat Protoc 4: 960–974.

A Recurrent Gene Fusion in Ovarian Cancer

PLoS Biology | www.plosbiology.org 9 September 2011 | Volume 9 | Issue 9 | e1001156


