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Abstract Nanotechnology has emerged to be one of

the most powerful engineering approaches in the past

half a century. Nanotechnology brought nanomateri-

als for biomedical use with diverse applications. In the

present manuscript we summarize the recent progress

in adopting nanobiomaterials for bone healing and

repair approaches. We first discuss the use of nano-

phase surface modification in manipulating metals

and ceramics for bone implantation, and then the use

of polymers as nanofiber scaffolds in bone repair.

Finally we briefly present the potential use of the

nanoparticle delivery system as adjunct system in

promoting bone regeneration following fracture.
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Introduction

Nanotechnology has emerged to be one of the most

powerful engineering approaches in the past half a

century, since Feynman’s famous talk in 1959. Nano-

technology represents the manner to manipulation

atoms and molecules over the scale of nanometer, and

generates the materials with at least one dimension in

nanoscale. The nanomaterials posses many specific

characteristics in comparison to the bulk material due

to the ‘‘quantum mechanical effect’’ (Sato and Webster

2004; Wang 2005; Powell and Kanarek 2006; Slocik

and Naik 2010). Nanomaterials also have a much larger

surface to volume ratio when compared to bulk

materials. Nowadays, most nanomaterials can be

applied to many aspects in biomedical research. One

intriguing application of nanomaterials is to mimic the

natural tissues and provide the proper extracellular

environment for cells to grow and survive inside of the

material (Venugopal et al. 2008; Scheller et al. 2009;

Khang et al. 2010); moreover, these bio-compatible

biomaterials, pre-implanted with cells or not, implied

prospective approaches for tissue repair and regener-

ation in injured or disease conditions.

Orthopaedic surgeons have recognized the needs

for proper materials to repair large defects in bone

fracture (Hing 2004; Laurencin et al. 2009; Pellegrini

et al. 2009). Many kinds of tissue grafts including

allo-grafts and auto-grafts were used in past days;

however problems including the immune rejection,

infection, pain and inflammation, limited availability

and ethic questions exist. Moreover, the surface of

these materials might not be cell-coated and tissue

compatibility is very low. Biomaterials were there-

fore synthesized as alternative sources for
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transplantation. Their characteristics vary according

to the size of pores, water content, surface interaction,

physical properties and the ability to host cells inside

or on the surface. Nanomaterials being developed for

repair and regeneration of bones included nanopar-

ticle-containing materials with enhanced mechanical

properties, nanofibrous scaffolds that can host cells,

and nano-delivery systems for delivering drugs into

the injured area that promote bone healing (Khan

et al. 2008; Laurencin et al. 2009).

Bone healing and repair with grafts

In small bone fraction cases, initial inflammation is

followed by soft callus formation, hard callus

formation, and, ultimately, bone remodelling. Such

automatic recovery does not happen for large bone

fractures, which suggests a need for bone repair with

grafts to fill the gap. The easiest way is to fix the two

ends of broken bones with different metal plates or

rods, which was called ‘‘internal fixation’’ (Venable

and Stuck 1948; Burch 1958; Deyerle and Bowers

1962; Schatzker et al. 1975). In many years of study,

people have optimized stainless steel, cobalt chrome

alloys, titanium, and titanium alloy materials with

surface modifications and proper screws for internal

fixation over other materials (Schatzker et al. 1975;

Uhthoff et al. 1981; Head et al. 1995; Disegi and

Eschbach 2000). However all these metal-based

materials were not bioresorbable, and were suscep-

tible for long-term fatigue or even fracture (Khan

et al. 2008); sometimes they also caused immune

reactions in the surrounding tissues (Torgersen et al.

1995; Voggenreiter et al. 2003).

The second way is to employ bones from humans

(including both autograft and allograft) and animals

in repair. Autografts often contain osteogenic cells,

bone marrow cells and the existing collagen matrix

can promote the healing processes; this method was

also considered as the ‘‘gold standard’’ (Fleming et al.

2000). However the harvest of autograft leads to

donor site deficiency, and surgical pain. At the same

time, allografts from other individuals or animals

could bring diseases to the recipient host and

immunological rejection with a long-term failure in

follow up studies (CDC 2001; Wheeler and Enneking

2005). In recent decades, the use of synthetic

materials for bone repair has achieved significant

progress with the progresses in nanotechnology, and

brought new approaches in clinical bone repair.

Nanotechnology and nanomaterials for bone

repair

Feynman suggested: ‘‘there’s plenty of room at the

bottom’’. Nanotechnology has emerged to be one of

the most powerful technologies in applied biomedical

sciences. Nanomaterials include all types of materials

with at least one dimension in less than 100 nm. The

scale differences and surface modifications let

nanomaterials vary in physical and chemical proper-

ties. Currently there are several major applications of

nanotechnology for bone repair materials. One

important property of bone repair materials is the

mechanical property, and many nanomaterials have

superior mechanical characteristics (Balasundaram

and Webster 2006; Webster and Ahn 2007). The

other way is to perform surface modification at nano-

level, which provide better matrix for osteoblasts to

grow and to function. For instance, osteoblasts on

nanosized Ti, Ti6Al4V, and CoCrMo powder-mod-

ified metal surfaces as well as ceramics have

improved adhesion and functions when compared to

macrophase ones (Webster et al. 2000a; Webster and

Ejiofor 2004; Webster and Smith 2005). The third

way is to generate degradable polymers or use

nanotechnology to modify some natural polymers

such as collagen. The nano-scaffolds are much more

porous and could better mimic the real extracellular

matrix (ECM) in terms of number, sizes of pores and

physical properties when compared to micro-scaf-

folds. It has been found that these nano-rough

materials could also improve osteoblast functions

when compared to macro-rough scaffolds (Balasun-

daram and Webster 2006; Marquis et al. 2009;

Scheller et al. 2009; Tran and Webster 2009). Finally,

nanoparticles enabling delivery of drugs and growth

factors were used to promote healing and functional

recovery (Fig. 1; Table 1).

Nanotechnology based metal and ceramic

materials

It is easier to perform surface modifications on

currently used metal plates and screws in comparison

to generate a whole plate of nanomaterials for
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internal fixation. The bio-compatibility of these

materials was largely determined by surface proper-

ties, such as immunogenicity, hydrophilicity, the

ability to host cells and processes, and adhesion of

osteoblasts. These modifications were reported to

elongate the integration of implanted plates and bone

tissues over extended time periods (Buser et al. 1999;

Ferris et al. 1999; Webster and Ejiofor 2004; Oyane

et al. 2005; Liu et al. 2006; Fan et al. 2007;

Yokoyama et al. 2007; Harvey et al. 2010). As

mentioned above, with nanosized Ti, Ti6Al4V, and

CoCrMo powder-modified (pressed onto the surface)

metal surfaces, seeded osteoblasts showed improved

functions including adhesion, proliferation, and depo-

sition of calcium-containing minerals (Webster et al.

2000a; Webster and Ejiofor 2004; Webster and Smith

2005). Another way to change the surface property of

metals is the anodization that can bring nano-sized

pores (Yao et al. 2007; Yao et al. 2008), which could

be further used for installation of other nano-

structures such as carbon nanotubes as biosensors

for bone regrowth (Sirivisoot et al. 2007). The fact

that nanometer roughness is most suitable for

biological tissues to grow one can emphasize the

importance of nanotechnology in bone repair in the

coming decades.

Besides metals, people have found nanostructured

ceramics promoted bone functions when compared to

micro-structured ones (Webster et al. 1999; Webster

et al. 2000a; Webster et al. 2000b; Li et al. 2009).

These include: (1) metallic oxides such as aluminium,

zirconium, and titanium; (2) calcium phosphates such

as hydroxyapatite (HA), tricalcium phosphate (TCP)

and calcium tetraphosphate; (3) glassceramics such as

Bioglass and Ceravital (Tran and Webster 2009).

These materials showed similar material properties as

surface modification of metals, such as increased

osteoblasts adhesion, proliferation, alkaline phospha-

tase activity, and calcium deposition (Webster et al.

1999; Webster et al. 2000a, b; Kay et al. 2002). More

updates of ceramics such as protein based surface

modifications are now being developed and explored

(Webster et al. 2000b; Balasundaram and Webster

2006; Colilla et al. 2008; Tran and Webster 2009).

Nanomaterials based polymers and scaffolds

Synthetic materials also include polymers that could

form scaffold like structures, and when seeded with

osteoblasts, provide ideal environment for cell prolif-

eration and growth matrix. During the process of bone

healing, these materials could be degraded and even

used (as in the case of self-assembling peptides),

without causing any immunological response. Because

they are synthetic, there is no risk of viral infection or

bringing diseases to the recipient hosts. The degrada-

tion time depends on the property of the scaffold itself,

the density of scaffold, and the available enzymes in

Fig. 1 Nanotechnology enables repair of bone fracture in bone

fracture cases, nanomaterials were implanted into the wound

area. The figure represents the use of nanocomposites of

polymer scaffolds and ceramics as well as nanoparticles. Many

drugs and growth factors can be included in the scaffold for

controllable release over the time period to promote bone

healing

Table 1 Available nanomaterials being employed for bone repair

Type Major application Bio-compatibility Stability

Metal Internal fixation; bone replacement;

physical supports

Could be improved with

surface modification

Long-term efficiency

Ceramics

Polymers Cell seeding; soft tissue replacement;

surface application; weak physical support

Depending on materials Depending on

biodegradationScaffolds, hydrogels High

Nanoparticles Drug delivery; gene delivery; protein delivery;

controlled and targeted release

Could be improved with

surface modification

Could be controlled
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the bone tissues (Marquis et al. 2009; Harvey et al.

2010; Khang et al. 2010; Kubinova and Sykova 2010;

Vallet-Regi 2010). Therefore this is a system with

controllable degradation, which could be combined

with drug or growth factor release during bone healing.

Collagen was one of the first nanofiber scaffolds that

was generated due to its common presence in natural

tissues (Laurencin et al. 2009; Prabhakaran et al. 2009).

The high biocompatibility suggested collagen to be the

ideal choice for soft tissue repair or transplantation

when seeded together with types of cells of interest.

However, there is lack of good mechanical properties

and the use for bone repair is therefore weakened.

Some other candidates with better mechanical charac-

teristics include poly-lactic acid (PLA), poly-glycolic

acid (PGA), and poly-lactic-co-glycolic acid (PLGA).

They have been approved by the US Food and Drug

Administration (FDA) for clinical uses. When these

polymers form nanofiber scaffolds, these materials

were found to be able to enhance the protein adsorption

functions of osteoblasts (Wei and Ma 2004; Xiao et al.

2008). Additionally, the polymer casts of nanophase

carbon fibers rather than conventional fibers showed

improved properties in supporting the functions of

osteoblasts (Price et al. 2003, 2004). In other studies,

Ceramic/Polymer nanocomposites were designed and

developed to create better materials as bone implant

scaffolds with improved mechanical strength. It was

found that the mixed material showed better support

for osteoblasts than each individual component (Marra

et al. 1999; Ma et al. 2001; Blaker et al. 2003; Jung et al.

2005). More and more nanocomposites of different

compositions and thus different mechanical properties

as well as diverse biocompatibilities are yet to be

developed.

Among different types of nanofiber scaffolds, one

family was found to be interesting and prospective in

regenerative medicine. That is the self-assembling

peptides (SAP). The concept of self-assembling

peptides, which is very common in biological activ-

ities such as protein aggregation, suggested that

biomaterials could be designed to support cell

functions in a controllable manner (Semino 2008).

In past decades, many different types of SAP were

designed and reported, which would start gelation in

polarized solvents, such as physiological solutions.

These include EAK16, RAD16-I, RAD16-II, DN1,

KLN12, etc. For instance, RAD16-I would form

nanofiber scaffold in ionic solutions, which has been

shown to be able to support growth and proliferation

of many types of cells, and when transplanted in vivo,

to repair injured tissue with functional recovery

(Bokhari et al. 2005; Genove et al. 2005; Garreta

et al. 2007; Dubois et al. 2008; Dégano et al. 2009;

Tang and Zhao 2010). RAD16-I was found to be able

to promote bone regeneration and to lead to new

bridge formation, as well as to inhibit demineraliza-

tion (Misawa et al. 2006; Garreta et al. 2007; Kirkham

et al. 2007). It was also suggested that by modification

of anionic groups of the side-chains, the SAP could

have better properties in attracting calcium and

inducing salt precipitation (Kirkham et al. 2007),

which is critical for new bone formation. The best

news is that people could design any type of SAP they

wanted as long as the basic physical laws are

respected, which provides almost endless possibilities

in new materials development and discoveries.

Last but not least, carbon nanotubes could form

scaffolds for bone repair. Both single-wall and multi-

wall carbon nanotubes were found to be able to

interact with the biological tissues and to be useful

for bone repair (Tutak et al. 2009; Zhang et al. 2009;

Bhattacharya et al. 2011; Joshi et al. 2010; Mendes

et al. 2010; Niu et al. 2010; Sahithi et al. 2010; Tutak

et al. 2010). This has been well presented in the

published literature and will not be further discussed

here (see above references).

Nanoparticle delivery system for bone healing

Besides the contribution as bone implant, nanotech-

nology provides excellent drug and molecule delivery

systems with high targeting efficiency. Currently

available nanoparticles for drug delivery mainly

include polymeric nanoparticle, PEG-ylation modified

particles, micelle, liposome, dendrimer, and nanosized

inorganic materials (Kim and Fisher 2007). These

systems vary in terms of their efficiency in different

biological systems, toxicity, the sizes of genetic

sequences being carried, penetration depth in tissue,

and targeting efficiency (Goldberg et al. 2007; Zhang

and Uludag 2009). For bone healing, both genes and

proteins could be delivered to promote proliferation of

osteoblasts, the formation of new blood vessels, and the

secretion of calcium salts. For instance, the system of

VEGF-DNA loaded PLGA nanoparticles was tested in

vitro and was shown to penetrate the cytoplasm and to

attain the nucleus (Yi et al. 2006). Also, cationic
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liposomes with BMP-2 cDNA could enhance bone

regeneration in a rabbit model of cranial bone defects

(Ono et al. 2004). Similar studies with BMP-2 gene

delivery showed effects on cultured cells and rat

models (Matsuo et al. 2003; Park et al. 2003). Given the

fact that many signalling molecules for bone healing

and regeneration have been identified in the past years,

it is believed that with nanoparticle delivery and

controlled release bone repair could be largely facil-

itated in the future.

Summary

In summary, in the recent years nanotechnology had

greatly promoted the development of new methods

and approaches for bone repair. One major aspect is

the emergence of diverse nanomaterials with abun-

dant properties for different types of applications, and

experts can still further engineer these materials for

individual medicinal use. This is prospective novelty.

The other side of nanotechnology is nanodelivery,

which is more efficient and precise than conventional

approaches. Currently there is lack of sufficient pre-

clinical and clinical studies with nanomaterials for

bone repair: while there is evidence that human stem

cells could be seeded onto nanomaterials for growth

and amplification (Soumetz et al. 2008; Sundelacruz

and Kaplan 2009; Dupont et al. 2010). The authors

believe that the application of nanotechnology in

modern bone repair will finally bring further benefits

for patients in the future.
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